不同生态恢复措施对紫色土活性有机碳的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Different Ecological Restoration Measures on Active Organic Carbon in Purple Soil
  • 作者:黄石德 ; 黄龙为 ; 李建民 ; 黄雍容 ; 黄锦祥 ; 朱洪如
  • 英文作者:Huang Shide;Huang Longwei;Li Jianmin;Huang Yongrong;Huang Jinxiang;Zhu Hongru;Fujian Academy of Forestry;Fujian Provincial Key Laboratory of Silviculture and Forest Product Processing and Utilization;Soil and Water Conservation Station of Ninhua County;Fujian Academy of Investigating and Programming;
  • 关键词:土壤活性有机碳 ; 紫色土侵蚀区 ; 生态恢复 ; 微生物量碳 ; 土壤有机碳
  • 英文关键词:active soil organic carbon;;purple soil erosion;;ecological restoration;;microbial biomass;;soil organic carbon
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:福建省林业科学研究院;福建省森林培育与林产品加工利用重点实验室;宁化县水土保持站;福建省林业调查规划院;
  • 出版日期:2018-06-25
  • 出版单位:中国农学通报
  • 年:2018
  • 期:v.34;No.489
  • 基金:国家林业局行业科研专项“长汀红壤侵蚀区生态经济型植被恢复技术研究”(201304303);; 福建省属公益类项目“长汀中轻度侵蚀区生态经济型模式综合效益稳定性研究”(2017R1011-4);; 福建省科技重大专项“水土流失初步治理生态循环与产业提升技术研究与示范”(2012NZ0002-1-5-2)
  • 语种:中文;
  • 页:ZNTB201818018
  • 页数:7
  • CN:18
  • ISSN:11-1984/S
  • 分类号:113-119
摘要
研究不同生态恢复措施—"参考林分"(C0)、"林果草+水平沟"(C1)、"乔灌草+竹节沟"(C2)、"油茶+等高草带"(C3)和"未治理地"(CK)对土壤总有机碳和活性有机碳的影响。结果表明:生态恢复后,其中C1和C2措施总有机碳含量分别比未治理地CK增加了51.87%和52.90%(P<0.05),达到C0措施的48.42%和48.75%。然而,C3措施未显著影响总有机碳含量,仅为C0措施的29.32%。C1和C2措施的微生物量碳、冷水和热水浸提的可溶性有机碳含量均显著提高,分别比CK措施增加了49.91%~78.77%、43.15%~91.11%和28.17%~108.36%,达到C0措施的67.01%~89.47%、35.65%~57.95%和32.88%~39.21%,而C3措施的微生物量碳和冷水浸提的可溶性有机碳略为减少,而热水浸提的可溶性有机碳增加了29.87%。土壤总有机碳与各活性碳之间以及各活性碳之间相关性均达到极显著水平。微生物量碳、冷水和热水浸提的可溶性有机碳占总有机碳的比例分别介于1.91%~4.73%、0.76%~2.49%和4.11%~8.16%之间。
        Effects of different ecological restoration measures on total soil organic carbon(SOC) and active soil organic carbon are studied. The measures include reference forest(C0), forest-garden-grass+horizontal ditch(C1), arbor-shrub-grass + bamboo knot ditch(C2), Camellia oleifera + equal height grass strip(C3) and unrestored area(CK). The results showed that the SOC of C1 and C2 significantly increased by 51.87% and 52.90% compared with that of CK after ecological restoration, and reached 48.42% and 48.75% of that of C0.Microbial biomass carbon, soluble organic carbon extracted by cold water and hot water under C1 and C2 increased by 49.91%-78.77%, 43.15%-91.11% and 28.17%-108.36% compared with those of CK, and they were 67.01%-89.47%, 35.65%-57.95% and 32.88%-39.21% of that of C0, while biomass carbon, soluble organic carbon extracted by cold water under C3 slightly decreased, soluble organic carbon extracted by hot water increased by 29.87%. There were extremely significant relationships between the SOC and different labile organic carbon components and among the components. The proportion of microbial biomass carbon,soluble organic carbon extracted by cold water and hot water to the total organic carbon ranged from 1.91% to 4.73%, 0.76% to 2.49% and 4.11% to 8.16%, respectively.
引文
[1]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [2]Lal R.Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect[J].Progress in Environmental Science,1999,1(4):307-326.
    [3]谢涛,王明慧,郑阿宝,等.苏北沿海不同林龄杨树林土壤活性有机碳特征[J].生态学杂志,2012,31(1):51-58.
    [4]余再鹏,黄志群,王民煌,等.亚热带米老排和杉木人工林土壤呼吸季节动态及影响因子[J].林业科学,2014,50(8):7-14.
    [5]Zou X M,Ruan H H,Fu Y,et al.Estimating soil labile organic carbon and potential turnover rates using a sequential fumigationincubation procedure[J].Soil Biology and Biochemistry,2005,37(10):1923-1928.
    [6]周国模,姜培坤.不同植被恢复对侵蚀型红壤活性碳库的影响[J].水土保持学报,2004,18(6):68-71.
    [7]Jandl R,Sollins P.Water-extractable soil carbon in relation to the belowground carbon cycle[J].Biology and Fertility of Soils,1997,25(2):196-201.
    [8]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    [9]罗献宝,张颖清,徐浩,等.温带阔叶红松林表层土壤活性碳、氮库的季节动态[J].生态与农村环境学报,2012,28(1):42-46.
    [10]Sharma V,Hussain S,Sharma K R,et al.Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems[J].Geoderma,2014,232-234(12):81-87.
    [11]杨宁,邹冬生,杨满元,等.衡阳紫色土丘陵坡地植被恢复阶段土壤特性的演变[J].生态学报,2014,34(10):2693-2701.
    [12]林开旺.宁化禾口紫色土不同治理措施土壤结构特性[J].福建水土保持,2002,14(2):57-60.
    [13]黄雍容,黄石德,叶功富,等.植被恢复模式对紫色土团聚体分布及稳定性的影响[J].福建林业科技,2016,43(4):1-7.
    [14]Joergensen R G.The fumigation-extraction method to estimate soil microbial biomass:calibration of the kECvalue[J].Soil Biology and Biochemistry,1996,28(1):25-31.
    [15]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:106-288.
    [16]Shi A,Marschner P.Soil respiration and microbial biomass after residue addition are influenced by the extent by which waterextractable organic C was removed from the residues[J].European Journal of Soil Biology,2014,63(4):28-32.
    [17]Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass-C[J].Soil Biology Biochemistry,1987,19(6):703-707.
    [18]Harris J A.Measurements of the soil microbial community for estimating the success of restoration[J].European Journal of Soil Science,2003,54(4):801-808.
    [19]杨宁,邹冬生,杨满元,等.紫色土丘陵坡地植被恢复过程中土壤微生物量碳、微生物熵的变化[J].水土保持通报,2014,34(5):39-43.
    [20]谢锦升.植被恢复对退化红壤易变碳及土壤呼吸的影响[D].北京:北京林业大学,2005.
    [21]庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J].应用与环境生物学报,2009,15(3):390-398.
    [22]Tu C,Liu C,Lu X,et al.Sources of dissolved organic carbon in forest soils:evidences from the differences of organic carbon concentration and isotope composition studies[J].Environment Earth Science,2011,63(4):723-730.
    [23]王清奎,范冰,徐广标.亚热带地区阔叶林与杉木林土壤活性有机质比较[J].应用生态学报,2009,20(7):1536-1542.
    [24]刘翥,杨玉盛,司友涛,等.植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响[J].植物生态学报,2014,38(11):1174-1183.
    [25]丘清燕,梁国华,黄德卫,等.森林土壤可溶性有机碳研究进展[J].西南林业大学学报,2013,33(1):86-96.
    [26]万晓华,黄志群,何宗明,等.杉木采伐迹地造林树种转变对土壤可溶性有机质的影响[J].应用生态学报,2014,25(1):12-18.
    [27]徐秋芳.森林土壤活性有机碳库的研究[D].杭州:浙江大学,2003.