SARD与CSTR反应器半连续发酵产氢能力对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen Production Capacity of Semi-continuous Fermentation of SARD and CSTR Bio-hydrogen Production Reactor
  • 作者:刘常青 ; 陈琬 ; 曾艺芳 ; 杜朝丹 ; 陈美香 ; 张燕琼 ; 郑育毅 ; 赵由才
  • 英文作者:LIU Chang-qing;CHEN Wan;ZENG Yi-fang;DU Chao-dan;CHEN Mei-xiang;ZHANG Yan-qiong;ZHENG Yu-yi;ZHAO You-cai;School of Geographical Science,Fujian Normal University;College of Environmental Science and Engineering,Fujian Normal University;Fujian Environmental Protection Design Institute Co.Ltd.;Fujian Haixia Environmental Protection Group Ltd.;State Key Laboratory of Pollution Control and Resource Reuse,Tongji University;
  • 关键词:污泥 ; 餐厨垃圾 ; 生物制氢 ; SARD反应器 ; CSTR反应器
  • 英文关键词:sludge;;food waste;;bio-hydrogen production;;semi-continuous anaerobic rotary drum;;continuous stirred tank reactor
  • 中文刊名:GSPS
  • 英文刊名:China Water & Wastewater
  • 机构:福建师范大学地理科学学院;福建师范大学环境科学与工程学院;福建省环境保护设计院有限公司;福建海峡环保集团股份有限公司;同济大学污染控制与资源化研究国家重点实验室;
  • 出版日期:2018-11-01
  • 出版单位:中国给水排水
  • 年:2018
  • 期:v.34;No.473
  • 基金:福建省科技厅重大专项(2015YZ0001-1);福建省科技厅重点项目(2018Y0022)
  • 语种:中文;
  • 页:GSPS201821006
  • 页数:6
  • CN:21
  • ISSN:12-1073/TU
  • 分类号:15-19+25
摘要
污泥与餐厨垃圾含有丰富有机质,将其进行生物产氢具有处理固体废弃物和开发氢能的双重意义。生物反应器的高效启动是该技术的关键因素。采用SARD和CSTR反应器并辅以血清瓶,以污泥和餐厨垃圾作为反应基质,考察不同运行时间、投配比(回流比)下的氢气浓度及比产氢速率,以确定各反应器的最佳运行条件并筛选出较优的反应器。结果表明,SARD和CSTR在10~15 h内先后达到了50. 34%和53. 43%的氢气浓度最大值,最大比产氢速率分别为18. 09、14. 98 mL/(gDS·h)。投配比为50%、进料时间间隔为8 h是较理想的进料方式。SARD与CSTR反应器半连续运行的比产氢速率在稳定阶段分别维持在4. 40、2. 37 mL/(gDS·h)左右。相比较而言,SARD的运行效果优于CSTR,且半连续运行比批式运行的效果更佳。
        Sludge and food wastes are rich in organic matter,and can be used as the substrate of bio-hydrogen production,which has a double significance for solid waste treatment and development of hydrogen energy. How to start the reactor efficiently is the key factors. SARD( semi-continuous anaerobic rotary drum) and CSTR( continuous stirred tank reactor) were used as hydrogen production reactor to investigate the influence of operation time and reflux ratio by adding sludge and food wastes,and analyzing hydrogen concentration and specific hydrogen yield. The results indicated that the hydrogen concentration reached the maximum value of 50. 34% and 53. 43% after 10-15 h in SARD and CSTR,respectively; the maximum specific hydrogen yield was 18. 09 mL/( gDS·h) and 14. 98 mL/( gDS·h) respectively. The better feeding mode was 50% adding ratio and interval 8 h. The specific hydrogen yields of SARD and CSTR were stable at 4. 40 mL/( gDS·h) and 2. 37 mL/( gDS·h) respectively. In comparison,semi-continuous operation was better than batch one,and SARD was better than CSTR.
引文
[1]卢文玉,刘铭辉,陈宇,等.厌氧发酵法生物制氢的研究现状和发展前景[J].中国生物工程杂志,2006,26(7):99-104.Lu Wenyu,Liu Minghui,Chen Yu,et al.Research process of anaerobic fermentative hydrogen production and its development future[J].China Biotechnology,2006,26(7):99-104(in Chinese).
    [2]任南琪,李永峰,李建政,等.中国发酵法生物制氢技术研究进展[J].化工学报,2004,55(S1):7-14.Ren Nanqi,Li Yongfeng,Li Jianzheng,et al.Progress of fermentative biohydrogen production process in China[J].Journal of Chemical Industry and Engineering,2004,55(S1):7-14(in Chinese).
    [3]Liu X Y,Wang L,Li Y F,et al.The succession of microbial community in CSTR hydrogen production system[J].Adv Mater Res,2010,113/116:1297-1301.
    [4]Dinamarca C,Bakke R.Process parameters affecting the sustainability of fermentative hydrogen production:Ashort-review[J].International Journal of Energy Environment&Economics,2011,2(6):1067-1078.
    [5]Han S K,Kim S H,Shin H S.UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste[J].Process Biochem,2005,40(8):2897-2905.
    [6]Wang X,Ding J,Ren N Q,et al.CFD simulation of an expanded granular sludge bed(EGSB)reactor for biohydrogen production[J].International Journal of Hydrogen Energy,2009,34(24):9686-9695.
    [7]郭强.餐厨垃圾滚筒式发酵制氢反应器设计及运行参数调控[D].上海:同济大学,2007.Guo Qiang.Design and Operation Parameters Regulation of Hydrogen Production of Food Wastes in SARD[D].Shanghai:Tongji University,2007(in Chinese).
    [8]Zhang Z P,Show K Y,Tay J H,et al.Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community[J].Process Biochem,2006,41(10):2118-2123.