基于固态基底的SERS免疫检测新方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SERS Immunoassay Based on Solid Silicon Substrate
  • 作者:贾小飞 ; 荣振 ; 何小羊 ; 肖瑞 ; 王升启
  • 英文作者:JIA Xiao-Fei;RONG Zhen;HE Xiao-Yang;XIAO Rui;WANG Sheng-Qi;College of Life Sciences and Bio-Engineering, Beijing University of Technology;Institute of Radiation Medicine, Academy of Military Medical Sciences, Academy of Military Sciences;
  • 关键词:表面增强拉曼散射(SERS) ; 免疫检测 ; 固态基底 ; SERS检测探针 ; 金标银染
  • 英文关键词:surface-enhanced Raman scattering(SERS);;immunoassay;;solid substrate;;SERS detection probes;;gold label silver stain
  • 中文刊名:SWTX
  • 英文刊名:Letters in Biotechnology
  • 机构:北京工业大学生命科学与生物工程学院;军事科学院军事医学研究院辐射医学研究所;
  • 出版日期:2019-01-30
  • 出版单位:生物技术通讯
  • 年:2019
  • 期:v.30;No.151
  • 基金:北京市科技计划生命科学领域前沿技术培育课题(Z161100000116040)
  • 语种:中文;
  • 页:SWTX201901020
  • 页数:6
  • CN:01
  • ISSN:11-4226/Q
  • 分类号:104-109
摘要
目的:通过引入新型表面增强拉曼散射(SERS)检测探针(Au-DTNB-Tyr NPs)和金标银染技术,建立基于固态硅片基底的SERS免疫检测新技术。方法:羊抗人IgM-HRP作为检测抗体,在硅片基底上检测不同浓度的人IgM,HRP催化SERS检测探针沉积,利用金标银染技术增强SERS信号。结果:所建立的SERS免疫检测新方法检测人IgM的检测限为10 pg/mL,且SERS信号强度与人IgM浓度具有良好的线性关系(R2=0.993)。结论:基于硅片基底的SERS免疫检测新技术可高灵敏地定量检测人IgM,为实现固态硅片基底对多种抗原的高通量集成化检测奠定了基础。
        Objective: A new surface-enhanced Raman scattering(SERS) immunoassay based on solid silicon substrate was established by introducing novel SERS detection probes(Au-DTN B-Tyr NPs) and gold label silver stain techniques. Methods: Goat anti-human IgM-HRP was used as detection antibody to detect different concentrations of human IgM on the silicon substrate. HRP catalyzed the deposition of SERS detection probes, and gold label silver stain was used to enhance the SERS signal. Results: The limit of detection of our new SERS immunoassay for human IgM was 10 pg/mL, and a good linear relationship was observed between the human IgM concentrations and the SERS signal intensity(R~2=0.993). Conclusion: As determined from the new SERS immunoassay based on the silicon substrate, human IgM was highly sensitive and quantitative detection, which laid the foundation for highthroughput detection of multiple antigens based on solid silicon substrate.
引文
[1] Wu L,Wang Z, Zong S, et al. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods[J]. Biosens Bioelectron, 2012,38(1):94-99.
    [2] Lopez A, Lovato F,Oh S H,et al. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles[J]. Talanta, 2016,146(2016):388-393.
    [3] Li M,Yang H,Li S,et al. Ultrasensitive and quantitative detection of a new beta-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering(SERS)[J].J Agric Food Chem, 2014,62(45):10896-10902.
    [4] Kaminska A, Sprynskyy M,Winkler K,et al. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma[J]. Anal Bioanal Chem,2017,409(27):6337-6347.
    [5] Liang J, Liu H, Lan C, et al. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium[J]. Nanotechnology, 2014,2(49):495501.
    [6] Ko J, Lee C, Choo J. Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles[J]. J Hazard Mater, 2015,285:11-17.
    [7] Yang K, Hu Y, Dong N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosens Bioelectron, 2016,80(2016):373-377.
    [8] Guven B, Basaran-Akgul N,Temur E, et al. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration[J]. Analyst, 2011 136(4):740-748.
    [9] Ngo H T, Wang H N, Burke T, et al. Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip[J]. Anal Bioanal Chem, 2014,406(14):3335-3344.
    [10] Wang X,Choi N,Cheng Z, et al. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor[J]. Anal Chem, 2017,89(2):1163-1169.
    [11] Wang J, Wu X, Wang C, et al. Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition[J]. ACS Appl Mater Interfaces, 2015,7(37):20919-20929.
    [12] Wang H,Zhou Y,Jiang X, et al. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip[J]. Angew Chem Int Ed Engl, 2015,54(17):5132-5136.
    [13] Wang Y, Yan B, Chen L. SERS tags:novel optical nanoprobes for bioanalysis[J]. Chem Rev, 2013,113(3):1391-1428.
    [14] Abell J L, Driskell J D, Dluhy R A, et al. Fabrication and characterization of a multiwell array SERS chip with biological applications[J]. Biosens Bioelectron, 2009,24(12):3663-3670.
    [15] Choi S, Hwang J, Lee S, et al. Quantitative analysis of thyroid-stimulating hormone(TSH)using SERSbased lateral flow immunoassay[J]. Sens Actuators B,2017,240(2017):358-364.
    [16] Hwang J,Lee S, Choo J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B[J]. Nanoscale, 2016,8(22):11418-11425.