HTR-PM600反应堆保护系统维修策略初步研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary Study on Reactor Protection Systems Maintenance Strategy of HTR-PM600
  • 作者:曹枭虓 ; 熊华胜 ; 郭超 ; 李铎
  • 英文作者:Cao Xiaoxiao;Xiong Huasheng;Guo Chao;Li Duo;Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University;
  • 关键词:HTR-PM600 ; 反应堆保护系统 ; 维修策略 ; 定期试验 ; 优化
  • 英文关键词:HTR-PM600;;reactor protection system;;maintenance strategy;;periodic test;;optimization
  • 中文刊名:DZYQ
  • 机构:清华大学核能与新能源技术研究院先进核能技术协同创新中心先进反应堆工程与安全教育部重点实验室;
  • 出版日期:2017-11-08
  • 出版单位:仪器仪表用户
  • 年:2017
  • 期:v.24;No.153
  • 语种:中文;
  • 页:DZYQ201711018
  • 页数:6
  • CN:11
  • ISSN:12-1334/TH
  • 分类号:50-55
摘要
反应堆保护系统是核电站最重要的安全系统,对其实施维修是保障其安全可靠运行的必要手段。HTRPM600由6个反应堆模块组成,每个反应堆模块配备一套保护系统。若HTR-PM600保护系统的维修仍沿用传统单模块核电站的策略,其维修成本将是传统单模块核电站的6倍,单位功率维修成本将显著增加。此外,维修活动对反应堆保护系统也存在一定的不利影响,选取合适的维修周期,才能确保安全可靠性。因此,为了降低HTR-PM600保护系统维修成本,保证其安全稳定运行,有必要对HTR-PM600反应堆保护系统的维修策略开展相关研究。针对反应堆保护系统维修策略的现状和优化模型进行了调研,并对HTR-PM600保护系统维修策略的优化开展了初步研究。
        Reactor protection system(RPS) is the most important safety system in nuclear power plants(NPPs). Proper maintenance is essential to ensure its safe and reliable operation. HTR-PM600 consists of six reactor modules, and each module is equipped with a RPS. If the maintenance strategy of traditional single module NPP RPS is applied to the RPSs of HTR-PM600, the maintenance cost will approximately be six times as much as that of traditional single module NPP, the maintenance cost per unit power will be distinctly increased. In addition, maintenance may have adverse impacts on the system, selecting a suitable maintenance cycle is significant to ensure the safety and reliability of the RPS. Therefore, it is necessary to conduct intensive research on RPS maintenance strategy of HTR-PM600 to significantly reduce its maintenance cost and guarantee the safety and reliability.In this paper, the current research status and optimization models of RPS maintenance strategy were investigated, and preliminary study on maintenance strategy optimization of the HTR-PM600 protection systems is presented.
引文
[1]LAPA C M F,PEREIRA C M N A,de BARROS M P.A model for preventive maintenance planning by genetic algorithms based in cost and reliability[J].Reliability Engineering&System Safety,2006,91(2):233-240.
    [2]陈宇,朱卫海.以可靠性为中心的维修技术在大亚湾核电站的应用[J].电力设备,2008(12):113-116.
    [3]KHALAQUZZAMAN M,KANG H G,KIM M C,et al.Optimization of periodic testing frequency of a reactor protection system based on a risk-cost model and public risk perception[J].Nuclear Engineering and Design,2011,241(5):1538-1547.
    [4]WU T M,HWANG S L.Maintenance error reduction strategies in nuclear power plants,using root cause analysis[J].Applied Ergonomics,1989,20(2):115-121.
    [5]COURTOIS P,DELSARTE P.On the optimal scheduling of periodic tests and maintenance for reliable redundant components[J].Reliability Engineering&System Safety,2006,91(1):66-72.
    [6]LI F,YANG Z,AN Z,et al.The first digital reactor protection system in China[J].Nuclear Engineering and Design,2002,218(1-3):215-225.
    [7]陈通,杨鹏程.CPR1000核电机组反应堆保护系统定期试验系统改进研究[J].自动化与仪器仪表,2015(09):181-184.
    [8]尤兵,宫成军,李逊存.福清核电站反应堆保护系统T2试验方案的优化[J].中国核电,2016(03):261-266.
    [9]路德才,张斌,左新,等.高温气冷堆核电站保护系统定期试验方案设计[J].自动化博览,2016(10):60-62.
    [10]JIEJUAN T,DINGYUAN M,DAZHI X.A genetic algorithm solution for a nuclear power plant risk-cost maintenance model[J].Nuclear Engineering and Design,2004,229(1):81-89.
    [11]余小权,张晓玉,于德勇,等.核电厂定期试验周期延长论证[J].核动力工程,2015(S2):50-54.
    [12]MARTORELL S A,SERRADELL V G,SAMANTA P K.Improving allowed outage time and surveillance test interval requirements:a study of their interactions using probabilistic methods[J].1995,47(2):119-129.
    [13]JUSSI K VAURIO D S.unavailability analysis of redundant safety systems:1980 Reliability Conference for the Electric Power Industry Madison,Wisconsin,Wisconsin,1980[C].April 29-30.
    [14]JI S H,DAI I K.Licensing experience of the surveillance testing for digital I&C system important to safety[J].
    [15]EPIN M,MAVKO B.Probabilistic safety assessment improves surveil lance requirements in technical specifications[J].1997,56(1):69-77.
    [16]KIM I S,SAMANTA P K,MARTORELL S,et al.Quantitative evaluation of surveillance test intervals including test-caused risks[J].1992.
    [17]KIM I S,MARTORELL S A,VESELY W E,et al.Risk analysis of surveillance requirements including their adverse effects[J].Reliability Engineering&System Safety,1994,45(3):225-234.
    [18]CONTINI S,COPELLI S,RABONI M,et al.IEC 61508:Effect of Test Policy on the Probability of Failure on Demand of Safety Instrumented Systems[J].2013,33:487-492.
    [19]KHALAQUZZAMAN M,KANG H G,KIM M C,et al.A model for estimation of reactor spurious shutdown rate considering maintenance human errors in reactor protection system of nuclear power plants[J].Nuclear Engineering and Design.2010,240(10):2963-2971.
    [20]KHALAQUZZAMAN M,KANG H G,KIM M C,et al.Quantification of unavailability caused by random failures and maintenance human errors in nuclear power plants[J].Nuclear Engineering and Design,2010,240(6):1606-1613.
    [21]LAPA C M F,PEREIRA C M N A,FRUTUOSO E MELO P F.Surveillance test policy optimization through genetic algorithms using non-periodic intervention frequencies and considering seasonal constraints[J].Reliability Engineering&System Safety,2003,81(1):103-109.
    [22]CHO S,JIANG J.Analysis of surveillance test interval by Markov process for SDS1 in CANDU nuclear power plants[J].Reliability Engineering&System Safety,2008,93(1):1-13.
    [23]TORRES-ECHEVERRIA A C,MARTORELL S,THOMPSON H A.Modelling and optimization of proof testing policies for safety instrumented systems[J].Reliability Engineering&System Safety,2009,94(4):838-854.
    [24]BUSACCA P G,MARSEGUERRA M,ZIO E.Multiobjective optimization by genetic algorithms:application to safety systems[J].Reliability Engineering&System Safety,2001,72(1):59-74.
    [25]JIEJUAN T,DINGYUAN M,DAZHI X.A genetic algorithm solution for a nuclear power plant risk-cost maintenance model[J].Nuclear Engineering and Design,2004,229(1):81-89.
    [26]CHIANG J H,YUAN J.Optimal maintenance policy for a Markovian system under periodic inspection[J].Reliability Engineering&System Safety,2001,71(2):165-172.
    [27]MARSEGUERRA M,ZIO E.Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo simulation[J].Reliability Engineering&System Safety,2000,68(1):69-83.
    [28]WANG W.An overview of the recent advances in delay-time-based maintenance modelling[J].Reliability Engineering&System Safety,2012,106:165-178.