富氮生物质热解气的分级冷凝特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on fractional condensation of pyrolysis vapors of nitrogen-enriched biomass
  • 作者:黄凌瑞 ; 朱锡锋
  • 英文作者:HUANG Lingrui;ZHU Xifeng;School of Engineering Science, University of Science and Technology of China;
  • 关键词:生物质 ; 富氮 ; 热解 ; 分级冷凝 ; 分离
  • 英文关键词:biomass;;nitrogen-enrich;;pyrolysis;;fractional condensation;;separation
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国科学技术大学工程科学学院;
  • 出版日期:2019-03-11 17:08
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51676179)
  • 语种:中文;
  • 页:HGSZ201906022
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:211-218
摘要
采用固定床热解反应系统对稻壳负载尿素进行了热解耦合分级冷凝的研究,实验采用三级冷凝的方法,对比了热解温度(400、500、600℃)和冷凝温度(30、60、90℃)对产物分布和富集的影响,研究了生物质富氮热解和分级冷凝的机理。结果表明:富氮热解促进了Maillard反应产生含氮杂环物;分级冷凝富集规律明显,一级生物油富集了高露点的酚类,二级生物油富集了低露点的含氮杂环物;提高热解温度可以增加二级生物油中含氮杂环物的含量和降低二级生物油水分含量,热解温度为500℃时,液体产物产率和酚类产物产率最大;提高冷凝温度能增强各级油组分的富集效果,并降低一级生物油水分含量,一级冷凝温度为90℃时,水分几乎完全富集在第二级中,且一级生物油酚类产物含量最高。
        The pyrolysis coupling and grading of rice husk-loaded urea was studied by fixed bed pyrolysis reaction system. The experiment used three-stage condensation method to compare the pyrolysis temperature(400, 500,600℃) and condensation. The mechanism of nitrogen-enriched biomass pyrolysis and fractional condensation was explored. The results showed that the Maillard reaction promoted the conversion of carbonyl compounds to nitrogenous heterocyclic compounds(NHCs) in the nitrogen-enriched pyrolysis process. The high value-added compounds were enriched by fractional condensation. Phenols with high dew points were enriched in first stage(Oil-1), while the second stage(Oil-2) enriched the low dew points NHCs. Liquid product yield, phenols content in Oil-1 and NHCs content in Oil-2 were increased with the pyrolysis temperature raised, especially the NHCs content reached highest(20%) in Oil-2 at 600℃. However, the liquid product yield and phenols content were decreased when the pyrolysis temperature was higher. As the first stage condensing temperature increased, the enrichment of phenols and NHCs were further improved, while the moisture content of Oil-1 was decreased. Particularly, when the first stage condensing temperature was 90℃, the water was almost condensed in the second stage(84%), and Oil-1 had the lowest water content [16%(mass)] and highest phenols content(43%).
引文
[1] Isa Y M, Ganda E T. Bio-oil as a potential source of petroleum range fuels[J]. Renewable and Sustainable Energy Reviews, 2018,81:69-75.
    [2] Chen D Y, Mei J M, Li H P, et al. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products[J]. Bioresource Technology, 2017, 228:62-68.
    [3] Zhang L Q, Li S S, Li K, et al. Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil:effects of pyrolysis temperature and residence time[J]. Energy Conversion and Management, 2018, 166:260-267.
    [4] Zhang Q, Chang J, Wang T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1):87-92.
    [5] Maddi B, Viamajala S, Varanasi S. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(23):11018-11026.
    [6] Yuan T, Tahmasebi A, Yu J. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor[J]. Bioresource Technology, 2015, 175:333-341.
    [7] Li K, Zhu C P, Zhang L Q, et al. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source[J].Bioresource Technology, 2016, 209:142-147.
    [8]闻明,张世红,邵敬爱,等.生物质富氮热解联产高值含氮油炭的理化特性[J].农业工程学报, 2015, 31(13):229-235.Wen M, Zhang S H, Shao J A, et al. Physicochemical properties of nitrogen rich in oil and char during biomass nitrogen-rich pyrolysis[J] Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13):229-235.
    [9]王景华,崔洪友,李志和,等.生物油的性质及其分离研究进展[J].化工进展, 2009,(12):2099-2104.Wang J H, Cui H Y, Li Z H, et al. Research progress in the separation and purification of bio-oil[J]. Chemical Industry and Engineering Progress, 2009,(12):2099-2104.
    [10]王誉蓉,王树荣,王相宇,等.不同蒸馏压力下的生物油分子蒸馏分离特性研究[J].燃料化学学报, 2013, 41(2):177-182.Wang Y R, Wang S R, Wang X Y, et al. Molecular distillation separation characteristic of bio-oil under different pressures[J].Journal of Fuel Chemistry and Technology, 2013, 41(2):177-182.
    [11]韩平,蒋恩臣,王明峰,等.生物油分级冷凝研究进展[J].农业机械学报, 2016, 47(5):164-170.Han P, Jiang E C, Wang M F, et al. Research progress in fractional condensation of bio-oil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5):164-170.
    [12] Gooty A T, Li D B, Berruti F, et al. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106:33-40.
    [13] Sui H Q, Yang H P, Shao J G, et al. Fractional condensation of multicomponent vapors from pyrolysis of cotton stalk[J]. Energy&Fuels, 2014, 28(8):5095-5102.
    [14] Westerhof R J M, Brilman D W F, Garcia-Perez M, et al.Fractional condensation of biomass pyrolysis vapors[J]. Energy&Fuels, 2011, 25(4):1817-1829.
    [15]王储,朱锡锋.分级冷凝生物油组分富集与组分稳定性研究[J].燃料化学学报, 2018, 46(11):1315-1322.Wang C, Zhu X F. Study on component enrichment and storage stability of bio-oils obtained from fractional condensation[J].Journal of Fuel Chemistry and Technology, 2018, 46(11):1315-1322.
    [16]朱锡锋,朱昌朋.生物质热解液化与美拉德反应[J].燃料化学学报, 2013, 41(8):911-916.Zhu X F, Zhu C P. Biomass fast pyrolysis and Maillard reaction[J]. Journal of Fuel Chemistry and Technology, 2013, 41(8):911-916.
    [17]栗冬,郭强,郝代林,等.温度对稻草流化床快速热解液相产物影响的研究[J].燃料化学学报, 2010, 38(1):47-51.Li D, Guo Q, Hao D L, et al. Effect of temperature on the bio-oil from fast pyrolysis of straw in a fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1):47-51.
    [18] Huang J, Zhang J, Wang L. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J].Applied Thermal Engineering, 2015, 89:469-484.
    [19]隋海清.生物质热解气分级冷凝机制及其产物的应用研究[D].武汉:华中科技大学, 2016.Sui H Q. Study on the machanism of fractional condensation for pyrolysis vapors and the products application[D]. Wuhan:Huazhong University of Science and Technology, 2016.
    [20] Ma S W, Zhang L Q, Zhu L, et al. Preparation of multipurpose biooil from rice husk by pyrolysis and fractional condensation[J].Journal of Analytical and Applied Pyrolysis, 2018, 131:113-119.
    [21] Gooty A T, Li D, Briens C, et al. Fractional condensation of biooil vapors produced from birch bark pyrolysis[J]. Separation and Purification Technology, 2014, 124:81-88.
    [22] Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk:product yields and compositions[J]. Bioresource Technology,2007, 98(1):22-28.
    [23] Pollard A S, Rover M R, Brown R C. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties[J]. Journal of Analytical and Applied Pyrolysis, 2012,93:129-138.
    [24] Johansson A C, Iisa K, Sandstr?m L, et al. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123:244-254.
    [25]王楷,郭庆杰,杨林.微拟球藻脂肪热解及对全组分制备生物油的影响[J].燃料化学学报, 2016, 44(1):60-68.Wang K, Guo Q J, Yang L. Pyrolysis of fat from Nannochloropsis sp. and its effect on bio-oil from pyrolysis of all components[J].Journal of Fuel Chemistry and Technology, 2016, 44(1):60-68.
    [26]韩平.生物质连续热解挥发物分级冷凝特性研究[D].哈尔滨:东北农业大学, 2017.Han P. Study on fractional condensation characteristics of biomass continuous pyrolysis volatiles[D]. Harbin:Northeast Agricultural University, 2017.
    [27]李凯.木质纤维素类生物质负载氨源及钾盐热解实验研究[D].合肥:中国科学技术大学, 2016.Li K. Experimental study on the pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source and potassium salts[D]. Hefei:University of Science and Technology of China, 2016.
    [28]隋海清,李攀,王贤华,等.生物质热解气分级冷凝对生物油特性的影响[J].化工学报, 2015, 66(10):4138-4144.Sui H Q, Li P, Wang X H, et al. Influence on bio-oil by fractional condensation of biomass pyrolysis vapor[J]. CIESC Journal, 2015,66(10):4138-4144.
    [29] Li K, Zhang L Q, Zhu L, et al. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry[J]. Bioresour. Technol., 2017,234:48-52.
    [30]丁徐红,常胜,赵增立,等.富氮生物油理化性质表征及其热解特性研究[J].可再生能源, 2014, 32(5):680-686.Ding X H, Chang S, Zhao Z L, et al. Study on properties and pyrolysis behavior of nitrogen-enriched bio-oil[J]. Renewable Energy Resources, 2014, 32(5):680-686.
    [31] Li M F, Fan Y M, Xu F, et al. Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production:characterization of the cellulose rich fraction[J]. Industrial Crops and Products, 2010, 32(3):551-559.
    [32]王树荣,骆仲泱.生物质组分热裂解[M].北京:科学出版社,2013:190-192.Wang S R, Luo Z Y. Pyrolysis of Biomass Components[M].Beijing:Science Press, 2013:190-192.
    [33]张军,范志林,林晓芬,等.生物质快速热解过程中产物的在线测定[J].东南大学学报(自然科学版), 2005, 35(1):16-19.Zhang J, Fan Z L, Lin X F, et al. Online measurement of products during fast pyrolysis of biomass[J]. Journal of Southeast University(Natural Science Edition), 2005, 35(1):16-19.