Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers
  • 作者:Chenguang ; Liu ; Wenchen ; Zheng ; Ruoxiao ; Xie ; Yupeng ; Liu ; Zhe ; Liang ; Guoan ; Luo ; Mingyu ; Ding ; Qionglin ; Liang
  • 英文作者:Chenguang Liu;Wenchen Zheng;Ruoxiao Xie;Yupeng Liu;Zhe Liang;Guoan Luo;Mingyu Ding;Qionglin Liang;Key Laboratory of Chemical Biology (Ministry of Education), Beijing Key Laboratory of Microanalytical Methods ξ Instrumentation, Department of Chemistry, Tsinghua University;State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology;
  • 英文关键词:Microfluidics;;Water-in-water droplets;;Droplet fibers;;Intercellular communication;;Water remediation
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:Key Laboratory of Chemical Biology (Ministry of Education), Beijing Key Laboratory of Microanalytical Methods ξ Instrumentation, Department of Chemistry, Tsinghua University;State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Chemical Letters
  • 年:2019
  • 期:v.30
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. 81872835, 21621003);; Ministry of Science and Technology (Nos. 2017YFC0906902 and 2017ZX09301032);; Macau Science and Technology Development Fund (No. 129/2017/A3)
  • 语种:英文;
  • 页:FXKB201902044
  • 页数:4
  • CN:02
  • ISSN:11-2710/O6
  • 分类号:207-210
摘要
Aqueous microdroplets are of significant interest in biological fields, while the employment of water-inoil (w/o) emulsion and lack of spatial control precluded its widespread application. Herein a novel microfluidic approach is developed to generate water-in-water (w/w) microdroplets embedded in hydrogel microfibers. Aqueous two phase system (ATPS) is applied to generate w/w droplets, and alginate is introduced to continuous phase to form microfibers, which offers spatial restriction and manipulation possibility to droplets. The size and pattern of aqueous droplets can be precisely controlled, and immobilization within hydrogel fiber facilitates easy manipulation and observation. The microdroplets surrounded by hydrophilic environment can act as a cell-cell interaction model, and their potential for biological and environmental applications are demonstrated by long-term culture of encapsulated cells and water remediation of Bacillus subtilis.
        Aqueous microdroplets are of significant interest in biological fields, while the employment of water-inoil (w/o) emulsion and lack of spatial control precluded its widespread application. Herein a novel microfluidic approach is developed to generate water-in-water (w/w) microdroplets embedded in hydrogel microfibers. Aqueous two phase system (ATPS) is applied to generate w/w droplets, and alginate is introduced to continuous phase to form microfibers, which offers spatial restriction and manipulation possibility to droplets. The size and pattern of aqueous droplets can be precisely controlled, and immobilization within hydrogel fiber facilitates easy manipulation and observation. The microdroplets surrounded by hydrophilic environment can act as a cell-cell interaction model, and their potential for biological and environmental applications are demonstrated by long-term culture of encapsulated cells and water remediation of Bacillus subtilis.
引文
[1] A.B. Theberge, F. Courtois, Y. Schaerli, et al., Angew. Chem. Int. Ed. 49(2010)5846-5868.
    [2] E.Z. Macosko, A. Basu, R. Satija, et al., Cell 161(2015)1202-1214.
    [3] C.G. Yang, R.Y. Pan, Z.R. Xu, Chin. Chem. Lett. 26(2015)1450-1454.
    [4] L. Li, W. Wang, M. Ding, G. Luo, Q. Liang, Anal. Chem. 88(2016)6734-6742.
    [5] M. Windbergs, Y. Zhao, J. Heyman, D.A. Weitz, J. Am. Chem. Soc. 135(2013)7933-7937.
    [6] R. Wieduwild, S. Krishnan, K. Chwalek, et al., Angew. Chem. Int. Ed. 54(2015)3962-3966.
    [7] D.R. Griffin, W.M. Weaver, P.O. Scumpia, D.D. Carlo, T. Segura, Nat. Mater. 14(2015)737-744.
    [8] H. Lee, C.H. Choi, A. Abbaspourrad, et al., Adv. Mater. 28(2016)8425-8430.
    [9] L. Kong, E. Amstad, M. Kai, et al., Chin. Chem. Lett. 28(2017)1897-1900.
    [10] D.L.Richmond, E.M. Schmid, S. Martens, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011)9431-9436.
    [11] N.N. Deng, M. Yelleswarapu, W.T. Huck, J. Am. Chem. Soc. 138(2016)7584-7591.
    [12] S. Deshpande, Y.Caspi, A.E. Meijering, C. Dekker, Nat. Commun. 7(2016)10447.
    [13] Y.S. Song, Y.H. Choi, D.H. Kim, J. Chromatogr. A 2(2007)180-186.
    [14] B.U. Moon, N. Abbasi, S.G. Jones, D.K. Hwang, S.S.H. Tsai, Anal. Chem. 88(2016)3982-3989.
    [15] I. Ziemecka, V. van Steijn, G.J.M. Koper, et al., Lab Chip 11(2011)620-624.
    [16] H.C. Shum, J. Varnell, D.A. Weitz, Biomicrofluidics 6(2012)012808.
    [17] C. Zhou, P. Zhu, Y. Tian, et al., Lab Chip 17(2017)3310-3317.
    [18] K. Zhang, Q. Liang, S. Ma, et al., Lab Chip 9(2009)2992-2999.
    [19] K. Zhang, Q. Liang, X. Ai, et al., Lab Chip 11(2011)1271-1275.
    [20] D.R. Link, E. Grasland-Mongrain, A. Duri, et al., Angew. Chem. Int. Ed. 45(2006)2556-2560.
    [21] D.J. Collins, T. Alan, K. Helmerson, A. Neild, Lab Chip 13(2013)3225-3231.
    [22] Y. Jun, E. Kang, S. Chae, S.H. Lee, Lab Chip 14(2014)2145-2160.
    [23] P. Xu, R. Xie, Y. Liu, et al., Adv. Mater. 29(2017)1701664.
    [24] J. Cheng, Y. Jun, J. Qin, S.H. Lee, Biomaterials 114(2017)121-143.
    [25] R. Xie, P. Xu, Y. Liu, et al., Adv. Mater. 30(2018)1705082.
    [26] Y. Yu, H. Wen, J. Ma, et al., Adv. Mater. 26(2014)2494-2499.
    [27] E. Um, J.K. Nunes, T. Pico, H.A. Stone, J. Mat. Chem. B 2(2014)7866-7871.
    [28] X.H. He, W. Wang, Y.M. Liu, et al., ACS Appl. Mater. Interfaces 7(2015)17471-17481.
    [29] A.S. Chaurasia, F. Jahanzad, S. Sajjadi, Chem. Eng.J. 308(2017)1090-1097.
    [30] H. Walter, G. Johansson, Methods in Enzymology, Academic Press, New York,1994.
    [31] S.D. Geschiere, I. Ziemecka, V. van Steijn, et al., Biomicrofluidics 6(2012)022007.
    [32] R.I. Tanner, J. Polym. Sci. Part A:Polym. Phys. 8(1970)2067-2078.
    [33] Z. Liang, C. Liu, L. Li, et al., Sci. Rep. 6(2016)33462.
    [34] O. Frey, P.M. Misun, D.A. Fluri, J.G. Hengstler, A. Hierlemann, Nat. Commun. 5(2014)4250.
    [35] L. Zhou, S. Mao, Q. Huang, X. He, J.M. Lin, Sci. China Chem. 61(2018)1034-1042.
    [36] K. Zhang, Q. Liang, X. Ai, et al., Anal. Chem. 83(2011)8029-8034.
    [37] J. Xiao, C. Zhu, D. Sun, P. Guo, Y. Tian, J. Environ. Sci. China 23(2011)1279-1285.
    [38] S.D. Chen, C.Y. Chen, Y.F. Wang, Water Sci. Technol. 39(1999)311-314.
    [39] S.J. Ferguson, Antonie van Leeuwenhoek 66(1994)89-110.
    [40] K. Fujimoto, K. Higashi, H. Onoe, N. Miki, Micromachines 9(2018)76-85.