气液两相喷射器喷嘴型线优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal design of nozzle profile for gas-liquid two phase ejector
  • 作者:刘昌鹏 ; 刘向农 ; 李学靖 ; 吴涛 ; 陈炎
  • 英文作者:Liu Changpeng;Liu Xiangnong;Li Xuejing;Wu Tao;Chen Yan;School of Automotive and Traffic Engineering,Hefei University of Technology;
  • 关键词:喷射器 ; 两相流 ; 均相模型 ; 等速度梯度 ; 膨胀波
  • 英文关键词:Ejecto;;Two phase flow;;Homogeneous model;;Equal velocity gradient;;Expansion wave
  • 中文刊名:DWYC
  • 英文刊名:Cryogenics & Superconductivity
  • 机构:合肥工业大学汽车与交通工程学院;
  • 出版日期:2019-07-23 11:29
  • 出版单位:低温与超导
  • 年:2019
  • 期:v.47
  • 语种:中文;
  • 页:DWYC201907016
  • 页数:5
  • CN:07
  • ISSN:34-1059/O4
  • 分类号:85-89
摘要
采用均相流模型一维计算方法,优化设计两相喷射器的工作喷嘴型线,与对应工况锥形喷嘴的流动参数进行对比。运用流体动力学方程,先使用等压降方法计算喷嘴型线,进而采取更适合两相流动的等速度梯度数学方法来优化型线。结果表明:在流场出口压力以及出口速度差值在1%以内的情况下,相较于锥形结构喷嘴,此方法得到的喷嘴结构贴合两相流膨胀加速过程,关键位置压力降变化稳定,膨胀波发生位置后移90%,喉部后的流体平稳区域是其5倍,加强对超音速流体的适应能力,得到良好品质的出口流场,使喷射器中工作流体和引射流体的初步混合不偏离理想混合压力,降低对喷射系数的影响。
        A one-dimensional calculation method of homogeneous flow model was used to optimize the design of the working nozzle line of the two-phase ejector,and the flow parameters of the conical nozzle were compared with the corresponding working conditions. Using the hydrodynamic equation,the nozzle type line was calculated first by using the equal pressure drop method,and then the equal velocity gradient mathematical method which was most suitable for two-phase flow was adopted to optimize the line. The results show that under the condition that the outlet pressure of the flow field and the difference of outlet speed is less than 1%,compared with the conical structure nozzle,the pressure drop at the critical position is stable,the position of the expansion wave is shifted by 90%,and the fluid stable area behind the throat is 5 times,which enhances the adaptability to supersonic fluid. The good quality outlet flow field is obtained,so that the initial mixing of working fluid and ejection fluid in the ejector does not deviate from the ideal mixing pressure and reduces the influence on the injection coefficient.
引文
[1]索科洛夫EЯ,津格尔H M.喷射器[M].黄秋云,译.北京:科学出版社,1977.
    [2]王俊奇.天然气跨音速气水分离技术[M].北京:石油工业出版社,2010:32-32.
    [3]丛文.气液两相喷射器的计算与实验研究[D].大连理工大学,2011.
    [4]郭建,沈恒根,梁珍,等.喷射器结构改进方法及其CFD分析[J].低温与超导,2009,37(1):63-66.
    [5]EAMES I W. A new prescription for the design of supersonic jet-pumps:the constant rate of momentum change method[J]. Applied Thermal Engineering,2002,22(2):121-131.
    [6] WANG X,YU J. Experimental investigation on twophase driven ejector performance in a novel ejector enhanced refrigeration system[J]. Energy Conversion&Management,2016,111:391-400.
    [7] CHUNNANOND K,APHORNRATANA S. Ejectors:Applications in refrigeration technology[J]. Renewable&Sustainable Energy Reviews,2004,8(2):129-155.
    [8]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [9]刘大有.两相速度平衡条件下的两相流声速[J].力学学报,1990,22(6):660-669.
    [10]刘杨,边江,郭晓明,等. Laval喷管结构对流动特性和制冷性能的影响[J].低温与超导,2016,(12):67-71.
    [11]易仕和.超声速与高超声速喷管设计[M].北京:国防工业出版社,2013.
    [12]邓建强,姜培学,卢涛,等.跨临界CO2蒸气压缩/喷射制冷循环理论分析[J].清华大学学报(自然科学版),2006,46(5):670-673.
    [13]SARKAR J. Ejector enhanced vapor compression refrigeration and heat pump systems—A review[J]. Renewable&Sustainable Energy Reviews,2012,16(9):6647-6659.