硅纳米十字架二聚体的单向性散射特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Unidirectional Scattering Properties of Silicon Nanocross Dimer
  • 作者:张明 ; 吕靖薇 ; 杨琳 ; 许文静 ; 王建鑫 ; 刘超 ; 牟海维
  • 英文作者:Zhang Ming;LüJingwei;Yang Lin;Xu Wenjing;Wang Jianxin;Liu Chao;Mou Haiwei;College of Electronics Science,Northeast Petroleum University;
  • 关键词:材料 ; 纳米天线 ; 散射特性 ; 磁热点 ; 单向散射
  • 英文关键词:materials;;nanoantennas;;scattering properties;;magnetic hotspots;;unidirectional scattering
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:东北石油大学电子科学学院;
  • 出版日期:2018-12-03 16:36
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.643
  • 基金:东北石油大学青年自然科学基金(NEPUQN2014-05);东北石油大学研究生创新科研项目(YJSCX2017-034NEPU);; 国家自然科学基金(51474069,41472126);; 中国博士后基金(2016M59150);; 黑龙江省自然科学基金(E2016007,E2017010)
  • 语种:中文;
  • 页:JGDJ201908022
  • 页数:8
  • CN:08
  • ISSN:31-1690/TN
  • 分类号:188-195
摘要
以硅十字架二聚体纳米天线为研究对象,采用有限元法(FEM)系统研究其远场单向散射特性,利用多极分解的方法对其散射特性进行解释。通过分析纳米天线中不同共振模式的响应对散射特性的影响,发现这些共振模式的耦合作用导致了高介电材料硅十字架二聚体结构磁热点的产生和远场单向性散射,为实现远场单向性可控的纳米天线提供了坚实的理论基础。
        The far-field unidirectional scattering properties of silicon nanocross dimers are investigated systematically by the finite element method.The multipole decomposition method is used to explain the scattering properties of nanocross dimers.By the analysis of the effects of different resonance modes on the scattering properties of nanoantennas,it is found that the coupling of these resonance modes of silicon nanocross dimers leads to the formation of magnetic hotspots and the far-field unidirectional scattering.The adjustable optical properties of nanocross dimers may provide a solid theoretical foundation for achieving far-field unidirectional controllable nanoantennas.
引文
[1] Curto A G, Volpe G, Taminiau T H,et al.Unidirectional emission of a quantum dot coupled to a nanoantenna[J].Science,2010,329(5994):930-933.
    [2] Alisafaee H,Fiddy M A.Nanoantennas for nanowire photovoltaics[J].Applied Physics Letters,2014,105(11):113107.
    [3] Stewart M E,Anderton C R,Thompson L B,et al.Nanostructured plasmonic sensors[J]. Chemical Reviews,2008,108(2):494-521.
    [4] Li J X.Manipulation of the characteristics of light based on artificial microstructures[D]. Tianjin:Nankai University,2016.李健雄.人工微结构光场特性操控研究[D].天津:南开大学,2016.
    [5] Cui J,Ji B Y,Lin J Q.Plasmonic fano resonance in metallic disk-like nanostructure system[J].Laser &Optoelectronics Progress,2018,55(6):060002.崔健,季博宇,林景全.激发等离激元Fano共振的金属类圆盘纳米结构体系[J].激光与光电子学进展,2018,55(6):060002.
    [6] Ma G H,Yu H,Liu Y Q,et al.Resonance radiation enhancement of metal nanometer surface plasmons[J].Laser &Optoelectronics Progress,2018,55(4):042601.马光辉,于贺,刘宇乾,等.金属纳米表面等离子激元的共振辐射增强研究[J].激光与光电子学进展,2018,55(4):042601.
    [7] Jahani S,Jacob Z.All-dielectric metamaterials[J].Nature Nanotechnology,2016,11(1):23-36.
    [8] Alaeian H, Dionne J A. Controlling electric,magnetic,and chiral Dipolar emission with PTsymmetric potentials[J].Physical Review B,2015,91(24):245108.
    [9] Boudarham G,Abdeddaim R,Bonod N.Enhancing the magnetic field intensity with a dielectric gap antenna[J].Applied Physics Letters,2014,104(2):021117.
    [10] Manjavacas A. Anisotropic optical response of nanostructures with balanced gain and loss[J].ACS Photonics,2016,3(7):1301-1307.
    [11] Chen Y, Wang L W,Song J. Multifunctional nanophotonics technology for precise biomedical applications[J].Chinese Journal of Lasers,2018,45(3):0307003.陈越,王璐玮,宋军.面向精准化生物医学的多功能纳米光子学技术[J].中国激光,2018,45(3):0307003.
    [12] Wu D J,Wu X W,Cheng Y,et al.Dual-frequency plasmon lasing modes in active three-layered bimetallic Ag/Au nanoshells[J].Applied Physics Letters,2015,107(19):191909.
    [13] Li J Q,Verellen N,Vercruysse D,et al.Alldielectric antenna wavelength router with bidirectional scattering of visible light[J].Nano Letters,2016,16(7):4396-4403.
    [14] Qin F F,Liu Z Z,Zhang Z,et al.Broadband fullcolor multichannel hologram with geometric metasurface[J].Optics Express,2018,26(9):11577-11586.
    [15] Guo Q B,Liu X F,Qiu J R.Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J].Chinese Journal of Lasers,2017,44(7):0703005.郭强兵,刘小峰,邱建荣.局域表面等离子体纳米结构的超快非线性光学及其应用研究进展[J].中国激光,2017,44(7):0703005.
    [16] AlùA, Engheta N. Wireless at the nanoscale:Optical interconnects using matched nanoantennas[J].Physical Review Letters,2010,104(21):213902.
    [17] Kerker M,Wang D S,Chew H.Surface enhanced Raman scattering(SERS)by molecules adsorbed at spherical particles:Errata[J].Applied Optics,1980,19(24):4159-4174.
    [18] Li Y,Xu K,Ding P,et al.Zero-backward scattering by Metallo-Dielectric core-shell nanostructures[J].Scientia Sinica:Physica,Mechanica &Astronomica,2017,47(8):084208.李艳,许坤,丁佩,等.金属-电介质纳米核壳结构的零背向散射特性[J].中国科学:物理学力学天文学,2017,47(8):084208.
    [19] Liu W,Miroshnichenko A E,Neshev D N,et al.Broadband unidirectional scattering by magnetoelectric core-shell nanoparticles[J]. ACS Nano,2012,6(6):5489-5497.
    [20] Naraghi R R,Sukhov S,Dogariu A.Directional control of scattering by all-dielectric core-shell spheres[J].Optics Letters,2015,40(4):585-588.
    [21] Person S,Jain M,Lapin Z,et al.Demonstration of zero optical backscattering from single nanoparticles[J].Nano Letters,2013,13(4):1806-1809.
    [22] Crozier K B,Sundaramurthy A,Kino G S,et al.Optical antennas:Resonators for local field enhancement[J].Journal of Applied Physics,2003,94(7):4632-4642.
    [23] Yang Z J.Fano interference of electromagnetic modes in subwavelength dielectric nanocrosses[J].The Journal of Physical Chemistry C,2016,120(38):21843-21849.
    [24] Evlyukhin A B,Fischer T,Reinhardt C,et al.Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles[J].Physical Review B,2016,94(20):205434.
    [25] Palik E D.Handbook of optical constants of solids[M].New York:Academic Press,1985:286-295.
    [26] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M].Weinheim,Germany:Wiley-VCH Verlag GmbH,1998.
    [27] García-Etxarri A,Gómez-Medina R,Froufe-Pérez L S,et al.Strong magnetic response of submicron silicon particles in the infrared[J].Optics Express,2011,19(6):4815-4826.
    [28] Chen Y H,Liu G Q,Huang K,et al.Investigation of optical transparent properties of sub-wavelength complex structure of a metal ellipsoid periodic array and a metal film[J]. Laser &Optoelectronics Progress,2013,50(7):071602.陈元浩,刘桂强,黄宽,等.亚波长金属椭球周期阵列—金属薄膜复合结构的光透明特性研究[J].激光与光电子学进展,2013,50(7):071602.
    [29] Jain P K, Huang W, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs:A plasmon ruler equation[J].Nano Letters,2007,7(7):2080-2088.
    [30] Maurer T,Nicolas R,Lévêque G,et al.Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film[J].Plasmonics,2014,9(3):507-512.
    [31] Nazir A,Panaro S,Proietti Zaccaria R,et al.Fano coil-type resonance for magnetic hot-spot generation[J].Nano Letters,2014,14(6):3166-3171.
    [32] Das P,Lourenco-Martins H,Tizei L H G,et al.Nanocross:A highly tunable plasmonic system[J].The Journal of Physical Chemistry C,2017,121(30):16521-16527.
    [33] LǖJ,Mu H W,Liu Q,et al.Multi-wavelength unidirectional forward scattering in the visible range in an all-dielectric silicon hollow nanodisk[J].Applied Optics,2018,57(17):4771-4776.
    [34] Chen Y.Designs and applications of bowtie aperture optical antenna[D].Hefei:University of Science and Technology of China,2016.陈杨.领结形纳米孔光学天线的设计及应用[D].合肥:中国科学技术大学,2016.