High performance n~+p-Si/Ti/NiS_xO_y photocathode for photoelectrochemical hydrogen evolution in alkaline solution
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High performance n~+p-Si/Ti/NiS_xO_y photocathode for photoelectrochemical hydrogen evolution in alkaline solution
  • 作者:Qing ; Jia ; Chunlin ; Yu ; Wei ; Liu ; Guokui ; Zheng ; Chaojun ; Lei ; Lecheng ; Lei ; Xingwang ; Zhang
  • 英文作者:Qing Jia;Chunlin Yu;Wei Liu;Guokui Zheng;Chaojun Lei;Lecheng Lei;Xingwang Zhang;Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University;
  • 英文关键词:Photoelectrochemical water splitting;;Silicon;;Photocathode;;Nickel oxysulfide
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.30
  • 基金:supported by Zhejiang Provincial Natural Science Foundation of China [Grant no.LR17B060003];; Major Science and Technology Project of Water Pollution Control and Management[No.2017ZX07101003];; financially supported by the Natural Science Foundation of China [Project nos.21436007,21522606,21476201,21676246,U1462201,and 21776248]
  • 语种:英文;
  • 页:TRQZ201903014
  • 页数:7
  • CN:03
  • ISSN:10-1287/O6
  • 分类号:109-115
摘要
Silicon, as a promising semiconductor for fabricating photocathode toward photoelectrochemical hydrogen evolution reaction(PEC-HER), should be improved in light harvesting ability and catalytic kinetics to obtain high PEC performance. Herein, a novel amorphous Nickel Oxysulfide(NiS_xO_y) film is effectively integrated with a Ti protected n~+p-Si micropyramid photocathode by the electrodeposition method. The fabricated n~+p-Si/Ti/Ni SxOyphotocathode exhibits excellent PEC-HER performance with an onset potential of 0.5 V(at J =-0.1 mA/cm~2), a photocurrent density of-26 mA/cm~2 at 0 V vs. RHE, and long term stability of six hours in alkaline solution(pH ≈ 14). The synergy of unique n~+p-Si micropyramid architectures(omnidirectional broadband light harvesting ability), novel amorphous NiS_xO_y catalyst(high HER electrocatalytic activity and good optical transparency) results in the high performance of n~+pSi/Ti/Ni S_xO_y. This work offers a novel strategy for effectively integrating electrocatalysts with semiconductor to design efficient photoelectrode toward PEC water splitting.
        Silicon, as a promising semiconductor for fabricating photocathode toward photoelectrochemical hydrogen evolution reaction(PEC-HER), should be improved in light harvesting ability and catalytic kinetics to obtain high PEC performance. Herein, a novel amorphous Nickel Oxysulfide(NiS_xO_y) film is effectively integrated with a Ti protected n~+p-Si micropyramid photocathode by the electrodeposition method. The fabricated n~+p-Si/Ti/Ni SxOyphotocathode exhibits excellent PEC-HER performance with an onset potential of 0.5 V(at J =-0.1 mA/cm~2), a photocurrent density of-26 mA/cm~2 at 0 V vs. RHE, and long term stability of six hours in alkaline solution(pH ≈ 14). The synergy of unique n~+p-Si micropyramid architectures(omnidirectional broadband light harvesting ability), novel amorphous NiS_xO_y catalyst(high HER electrocatalytic activity and good optical transparency) results in the high performance of n~+pSi/Ti/Ni S_xO_y. This work offers a novel strategy for effectively integrating electrocatalysts with semiconductor to design efficient photoelectrode toward PEC water splitting.
引文
[1]M.Momirlan,T.N.Veziroglu,Int.J.Hydrogen Energy 30(2005)795-802.
    [2]N.S.Lewis,D.G.Nocera,Proc.Natl.Acad.Sci.USA 103(2006)15729-15735.
    [3]J.A.Turner,Science 305(2004)972-974.
    [4]M.G.Walter,E.L.Warren,J.R.Mc Kone,S.W.Boettcher,Q.Mi,E.A.Santori,N.S.Lewis,Chem.Rev.110(2010)6446-6473.
    [5]Z.Chen,T.F.Jaramillo,T.G.Deutsch,A.Kleiman-Shwarsctein,A.J.Forman,N.Gaillard,R.Garland,K.Takanabe,C.Heske,M.Sunkara,E.W.McFarland,K.Domen,E.L.Miller,J.A.Turner,H.N.Dinh,J.Mater.Res.25(2011)3-16.
    [6]J.R.McKone,N.S.Lewis,H.B.Gray,Chem.Mater.26(2014)407-414.
    [7]A.Paracchino,V.Laporte,K.Sivula,M.Gratzel,E.Thimsen,Nat.Mater.10(2011)456-461.
    [8]S.Hu,M.R.Shaner,J.A.Beardslee,M.Lichterman,B.S.Brunschwig,N.S.Lewis,Science 344(2014)1005-1009.
    [9]S.W.Boettcher,E.L.Warren,M.C.Putnam,E.A.Santori,D.Turner-Evans,M.D.Kelzenberg,M.G.Walter,J.R.McKone,B.S.Brunschwig,H.A.Atwater,N.S.Lewis,J.Am.Chem.Soc.133(2011)1216-1219.
    [10]Y.Hou,B.L.Abrams,P.C.K.Vesborg,M.E.Bj?rketun,K.Herbst,L.Bech,A.M.Setti,C.D.Damsgaard,T.Pedersen,O.Hansen,J.Rossmeisl,S.Dahl,J.K.N?rskov,I.Chorkendorff,Nat.Mater.10(2011)434.
    [11]S.Y.Reece,J.A.Hamel,K.Sung,T.D.Jarvi,A.J.Esswein,J.J.H.Pijpers,D.G.Nocera,Science 334(2011)645-648.
    [12]Y.Na,B.Hu,Q.-L.Yang,J.Liu,L.Zhou,R.-Q.Fan,Y.-L.Yang,Chin.Chem.Lett.26(2015)141-144.
    [13]K.A.Brown,S.Dayal,X.Ai,G.Rumbles,P.W.King,J.Am.Chem.Soc.132(2010)9672-9680.
    [14]S.Jeong,S.Wang,Y.Cui,J.Vac.Sci.Technol.A 30(2012)060801.
    [15]S.W.Boettcher,J.M.Spurgeon,M.C.Putnam,E.L.Warren,D.B.Turner-Evans,M.D.Kelzenberg,J.R.Maiolo,H.A.Atwater,N.S.Lewis,Science 327(2010)185.
    [16]Q.Zhang,T.Li,J.Luo,B.Liu,J.Liang,N.Wang,X.Kong,B.Li,C.Wei,Y.Zhao,X.Zhang,J.Mater.Chem.A 6(2018)811-816.
    [17]H.Zhang,Q.Ding,D.He,H.Liu,W.Liu,Z.Li,B.Yang,X.Zhang,L.Lei,S.Jin,Energy Environ.Sci.9(2016)3113-3119.
    [18]B.M.Kayes,H.A.Atwater,N.S.Lewis,J.Appl.Phys.97(2005)114302.
    [19]B.Seger,A.B.Laursen,P.C.Vesborg,T.Pedersen,O.Hansen,S.Dahl,I.Chorkendorff,Angew.Chem.Int.Ed.51(2012)9128-9131.
    [20]M.G.Kast,L.J.Enman,N.J.Gurnon,A.Nadarajah,S.W.Boettcher,ACS Appl.Mater.Interfaces 6(2014)22830-22837.
    [21]F.Chen,Q.Zhu,Y.Wang,W.Cui,X.Su,Y.Li,ACS Appl.Mater.Interfaces 8(2016)31025-31031.
    [22]Q.Ding,J.Zhai,M.Caban-Acevedo,M.J.Shearer,L.Li,H.C.Chang,M.L.Tsai,D.Ma,X.Zhang,R.J.Hamers,J.H.He,S.Jin,Adv.Mater.27(2015)6511-6518.
    [23]D.Bae,T.Pedersen,B.Seger,M.Malizia,A.Kuznetsov,O.Hansen,I.Chorkendorff,P.C.K.Vesborg,Energy Environ.Sci.8(2015)650-660.
    [24]Y.Lin,R.Kapadia,J.Yang,M.Zheng,K.Chen,M.Hettick,X.Yin,C.Battaglia,I.D.Sharp,J.W.Ager,A.Javey,J.Phys.Chem.C 119(2015)2308-2313.
    [25]M.Malizia,B.Seger,I.Chorkendorff,P.C.K.Vesborg,J.Mater.Chem.A 2(2014)6847-6853.
    [26]K.Sun,S.Shen,Y.Liang,P.E.Burrows,S.S.Mao,D.Wang,Chem.Rev.114(2014)8662-8719.
    [27]E.L.Warren,J.R.McKone,H.A.Atwater,H.B.Gray,N.S.Lewis,Energy Environ.Sci.5(2012)9653.
    [28]M.D.Kelzenberg,S.W.Boettcher,J.A.Petykiewicz,D.B.Turner-Evans,M.C.Putnam,E.L.Warren,J.M.Spurgeon,R.M.Briggs,N.S.Lewis,H.A.Atwater,Nat.Mater.9(2010)239.
    [29]P.Dai,J.Xie,M.T.Mayer,X.Yang,J.Zhan,D.Wang,Angew.Chem.Int.Ed.125(2013)11325-11329.
    [30]J.R.McKone,E.L.Warren,M.J.Bierman,S.W.Boettcher,B.S.Brunschwig,N.S.Lewis,H.B.Gray,Energy Environ.Sci.4(2011)3573-3583.
    [31]Y.Sun,C.Liu,D.C.Grauer,J.Yano,J.R.Long,P.Yang,C.J.Chang,J.Am.Chem.Soc.135(2013)17699-17702.
    [32]J.D.Benck,S.C.Lee,K.D.Fong,J.Kibsgaard,R.Sinclair,T.F.Jaramillo,Adv.Energy Mater.4(2014)1400739.
    [33]B.Seger,D.S.Tilley,T.Pedersen,P.C.K.Vesborg,O.Hansen,M.Gratzel,I.Chorkendorff,RSC Adv.3(2013)25902-25907.
    [34]D.Bae,S.Shayestehaminzadeh,E.B.Thorsteinsson,T.Pedersen,O.Hansen,B.Seger,P.C.K.Vesborg,S.ólafsson,I.Chorkendorff,Sol.Energy Mater.Sol.Cells 144(2016)758-765.
    [35]X.Zhang,F.Meng,S.Mao,Q.Ding,M.J.Shearer,M.S.Faber,J.Chen,R.J.Hamers,S.Jin,Energy Environ.Sci.8(2015)862-868.
    [36]I.Roger,M.A.Shipman,M.D.Symes,Nat.Rev.Chem.1(2017)0003.
    [37]B.Seger,T.Pedersen,A.B.Laursen,P.C.Vesborg,O.Hansen,I.Chorkendorff,J.Am.Chem.Soc.135(2013)1057-1064.
    [38]Q.Ding,F.Meng,C.R.English,M.Cabán-Acevedo,M.J.Shearer,D.Liang,A.S.Daniel,R.J.Hamers,S.Jin,J.Am.Chem.Soc.136(2014)8504-8507.
    [39]L.Ji,M.D.McDaniel,S.Wang,A.B.Posadas,X.Li,H.Huang,J.C.Lee,A.A.Demkov,A.J.Bard,J.G.Ekerdt,E.T.Yu,Nat.Nanotechnol.10(2015)84-90.
    [40]J.Feng,M.Gong,M.J.Kenney,J.Z.Wu,B.Zhang,Y.Li,H.Dai,Nano Res.8(2015)1577-1583.
    [41]W.Liu,H.Liu,L.Dang,H.Zhang,X.Wu,B.Yang,Z.Li,X.Zhang,L.Lei,S.Jin,Adv.Funct.Mater.27(2017)1603904.
    [42]M.Edwards,S.Bowden,U.Das,M.Burrows,Sol.Energy Mater.Sol.Cells 92(2008)1373-1377.
    [43]L.Yang,X.Wu,X.Zhu,C.He,M.Meng,Z.Gan,P.K.Chu,Appl.Surf.Sci.341(2015)149-156.
    [44]N.Jiang,L.Bogoev,M.Popova,S.Gul,J.Yano,Y.Sun,J.Mater.Chem.A 2(2014)19407-19414.
    [45]J.Zhao,L.Cai,H.Li,X.Shi,X.Zheng,ACS Energy Lett.2(2017)1939-1946.
    [46]A.Sivanantham,P.Ganesan,S.Shanmugam,Adv.Funct.Mater.26(2016)4661-4672.
    [47]Y.Xue,Z.Zuo,Y.Li,H.Liu,Y.Li,Small 13(2017)1700936.
    [48]L.Liu,Nanoscale 5(2013)11615-11619.
    [49]F.Le Formal,N.Tétreault,M.Cornuz,T.Moehl,M.Gr?tzel,K.Sivula,Chem.Sci2(2011)737-743.
    [50]U.Sim,J.Moon,J.An,J.H.Kang,S.E.Jerng,J.Moon,S.-P.Cho,B.H.Hong,K.T.Nam,Energy Environ.Sci.8(2015)1329-1338.
    [51]N.S.Lewis,J.Electrochem.Soc.131(1984)2496-2503.
    [52]F.Cardon,W.P.Gomes,J.Phys.D:Appl.Phys.11(1978)L63.
    [53]B.Seger,S.D.Tilley,T.Pedersen,P.C.K.Vesborg,O.Hansen,M.Gratzel,I.Chorkendorff,J.Mater.Chem.A 1(2013)15089-15094.