1. [地质云]滑坡
铂表面修饰及相关电催化反应和增强红外光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面电化学是电化学与表面化学交叉的前沿学科,而电催化反应是表面电化学的研究热点,涵盖了燃料电池阳极毒物CO的电氧化、阳极燃料物种的电氧化、阴极氧气的电还原等。对于不同的电催化反应,催化剂的选择往往是决定催化效果的关键因素,因此对催化剂的表面改性、表征以及电催化反应机理的探索显得尤为重要。Pt是一种常见的燃料电池电催化剂,就Pt表面改性对分子吸附与反应的影响进行多层次研究,具有重要的科学意义和实际意义。电化学衰减全反射表面增强红外光谱(ATR-SEIRAS)具有表面选律简单,传质不受干扰,表面信号强,灵敏度高等特点,还可以很方便地检测出参与界面反应的共吸附水等重要信息,特别适合于实时跟踪电极表面极性较高的小物种的吸附变化。结合常规的电化学手段和现场表面增强红外光谱,可鉴别电催化反应过程的中间体物种,推断电极表面分子的取向和键合,从分子水平上探究Pt表面电催化反应机制,对催化剂表面修饰和改性提供理论依据。
     本论文利用ATR-SEIRAS技术,围绕Pt的表面修饰及其对电催化反应的影响展开工作。首先详细研究了氯离子特性吸附对Pt上CO氧化过程的影响,并考察了更强特性吸附的碘离子对CO氧化动力学的影响;其次,提出了一种通用的模拟欠电位沉积法(MUPD)在各种Pt表面上实现无电、可控修饰Sb(即Pt-Sb)用于甲酸的电催化氧化研究,并进一步将之拓展到Pb在Pt表面的修饰(即Pt-Pb);随后,结合SEIRAS和DFT计算研究了甲酸分子在Pt-Sb表面上的电催化氧化机理;最后,初步开展了乙醇在MUPD法制得的Pt-Sb、Pt-Pb电极上电氧化及表面红外光谱研究。论文的主要内容和结果摘要如下:
     1、特性吸附阴离子对Pt上CO氧化的影响
     CO是Pt表面电催化氧化的一个重要模型分子,另一方面,由于氯铂酸是制备阳极Pt/C催化剂的最主要的前驱体,使得氯离子在合成过程中容易被引入体系且难以在后续过程中去除,因此研究氯离子存在时Pt表面CO的氧化有着重要的意义。与此同时,氯离子在何电位下开始吸附,吸附在电极表面何处尚存在许多争议,氯离子如何影响CO的氧化过程还需要更多分子水平上的证据。本章详细研究了溶液中存在氯离子时,氢欠电位沉积区以及双层区电位下预吸附的CO在多晶Pt表面的氧化过程。电化学结果显示,氯离子的存在使CO预氧化峰及主氧化峰变宽,氧化峰电位发生正移;SEIRAS结果表明,氯离子在0.1V(vsRHE)时就开始吸附在未被CO占据的Pt空位上(包括但不仅限于缺陷位)与OH发生竞争吸附,或阻碍CO扩散到OH的吸附位发生反应,从而减缓了CO的氧化速率。低电位下氯离子的吸附对CO畴域(domain)产生一定的“压缩”效果,扰乱了吸附在CO层顶端的界面自由水排布,在光谱结果中表现为O-H伸缩振动峰积分强度的变弱。此外,当更强特性吸附的碘离子存在时CO的氧化受到了更大的阻碍,表现为碘离子不仅与表面OH物种发生竞争吸附,它还挤占了CO的表面吸附位造成CO在低电位下的非氧化脱附,并且仅当碘离子氧化后CO的主氧化才开始发生。通过比较析氢反应对CO氧化的影响,发现预吸附的CO层与其共吸附水层的结构比较稳定,其析氢后的氧化动力学并没有发生明显改变。
     2、一种Pt表面可控修饰Sb, Pb用于甲酸电氧化的新方法
     在Pt表面修饰Sb用于甲酸电氧化时,常用的表面修饰技术有不可逆吸附法(IRA)以及欠电位沉积法(UPD)两种。然而前者无法方便调控表面覆盖度达到最佳值,后者必须在电化学控制条件下完成,因此均不适于实际生产中大批量催化剂的合成和改性。在本章的工作中,提出了一种更为简捷,且可方便调控修饰Sb的覆盖度的方法来制备Sb修饰的Pt基催化剂,即模拟欠电位沉积(MUPD)法。通过将本体Pt电极或分散的Pt/C粉末浸入到酒石酸锑钾与抗坏血酸的混合溶液中,控制溶液的浓度,反应温度或时间,就可以获得最佳的覆盖度。其中抗坏血酸是一种温和的还原剂,它能显著降低体系的开路电位,使Pt表面保持还原态以利于Sb的修饰。实验发现,用MUPD法制备的Pt-Sb/C催化剂对甲酸的催化活性远高于商业化的Pt-Ru/C或传统IRA法制备的Pt-Sb/C。该方法可普遍适用于所有类型的Pt表面,特别适合大批量Pt/C的改性并用作直接甲酸燃料电池的阳极催化剂。此外,该方法还成功拓展到Pt表面Pb的修饰,相应的Pt-Pb或Pt-Pb/C对甲酸催化氧化也显示出优异的性能。
     3、EC-SEIRAS与DFT组合研究甲酸在Pt-Sb表面的电氧化机理
     迄今为止,有关甲酸在Pt表面的电催化氧化机理以及氧化过程产生的中间体甲酸根物种的作用,还存在许多争议,一种观点认为,甲酸在Pt上氧化遵循“双途径机理”,甲酸根是“直接氧化途径”的活性中间体;另一种观点认为,甲酸根对氧化电流的贡献很小,它在甲酸氧化过程中只是一个“旁观者”。也有一些DFT计算结果表明甲酸根氧化为C02需要较高的能垒,它很可能只是甲酸氧化的“助催化剂”。尽管甲酸在Pt上的氧化已有许多报道研究,但是甲酸在肤层金属原子(如Sb)修饰的Pt表面上的氧化机理目前尚无相关报道。针对于此,本章工作联用现场电化学表面增强红外光谱与周期性密度泛函理论计算,研究了甲酸在Sb修饰的Pt(即Pt-Sb)电极表面上的电化学氧化机理。电化学与红外增强光谱数据表明,与洁净的Pt相比,低电位下甲酸在Pt-Sb上的主氧化电流提升了约10倍,但同时表面甲酸根物种及CO的强度均大幅减小,说明“非甲酸根”途径是Pt-Sb电极上甲酸氧化的主要途径。基于周期性DFT计算结果,Pt表面的Sb吸附原子促进了甲酸分子以CH端向下构型吸附在Pt表面,且阻碍了甲酸O端向下构型的吸附,从动力学上更有利于甲酸完全氧化为CO2。此外,Sb的修饰还降低了CO在Pt上的吸附能,有助于减轻Pt上的CO中毒效应。
     4、乙醇在Pt-M(M=Sb, Pb)电极上氧化的SEIRAS研究初探
     乙醇作为直接醇类燃料电池的另一种可替代燃料吸引了广大科研工作者浓厚的兴趣。乙醇氧化的机理虽然已有大量研究,但还存在许多不明之处,其中最关键的问题是反应中乙醇分子C-C键如何被打断从而完全氧化生成CO2。在本章工作中,采用SEIRAS技术初步研究了乙醇在Pt及MUPD法制备的Pt-Sb、Pt-Pb电极上的电氧化过程。结果表明,相对于Pt而言,在Pt-Sb和Pt-Pb电极上乙醇的氧化峰电位负移,并且氧化峰电流大大提升;在SEIRAS谱图中,Pt-Pb及Pt-Sb电极上CO及界面自由水的峰积分强度有明显增大,意味着乙醇在这两种电极上更容易断键从而产生毒性中间体CO;另外,可能与乙酸C-O伸缩振动及O-H变形振动有关的谱峰从低电位下开始出现以及乙醛C=O振动峰的消失,意味乙醇在这两种电极表面上可能直接被氧化成乙酸。
Surface electrochemistry is the foreland crossed by electrochemistry and surface chemistry, with an emphasis on the studies of electrocatalysis on metals including many fuel cell related reactions such as electrocatalytic oxidation of CO, anodic oxidation of fuel and cathodic reduction of oxygen. Catalyst design is the key to achieve higher catalytic performance, as a result, it is important to characterize the property of the catalysts upon the surface modification and to explore the mechanism of the catalysis process. Platinum is a widely used catalyst in fuel cells, therefore, it will be of great significance in both scientific and application aspects to investigate and analyze the adsorption and reaction on the modified Pt surfaces on molecular level.
     Electrochemical surface enhanced infrared absorption spectroscopy with Kretschmann ATR configuration (EC-ATR-SEIRAS) possesses merits of high surface sensitivity, strong surface signal and unrestricted mass transport, and facilitates the detection of coadsorbed water which may be included in the interfacial reactions. Specially, it is quite suitable for tracing the irreversible reaction of small molecules with high polarity. Furthermore, the EC-ATR-SEIRAS can effectively distinguish the intermediate during the electrocatalytic process and deduce the orientation and bonding of the molecules on the electrode surface, which provides important evidence to the electrocatalytic mechanism on molecular level and helps to design new modified catalysts with high catalytic activity.
     In the present thesis, investigations which are focused on the surface modification on Pt and its influence to the electrocatalysis have been carried out with ATR-SEIRAS. Firstly, the effect of the presence of specifically adsorbed chloride or iodide on the CO oxidation has been detailedly studied. Secondly, a versatile mimetic underpotential deposition (MUPD) approach to controlled modification of Sb on various Pt surface (Pt-Sb) towards efficient electrocatalysis of formic acid has been proposed and extended to the surface modification of Pb (Pt-Pb). Thirdly, the combined ATR-SEIRAS and DFT calculations has been used for the mechanistic study of formic acid electrooxidation at the Sb modified Pt electrodes. At last, the Pt-Sb and Pt-Pb electrodes prepared by MUPD have been applied to the primary investigation of ethanol electrooxidation. The main results and conclusions are summarized as follows:
     1. Effect of specifically adsorbed anions on the CO electro-oxidation at Pt electrode
     As an important catalytic process, the electro-oxidation of CO has been extensively investigated on various single crystalline and polycrystalline Pt electrodes. On the other hand, high surface area Pt nanoparticles synthesized from PtCl62-ions-containing solutions, are mainly used in fuel cell-related practical catalysts in the pursuit of a better utilization of Pt. As a result, specifically adsorbed Cl- ions are likely brought into the system during the synthesis of the Pt-based catalysts and hardly removed from the Pt surfaces. Along this line, it is of fundamental and practical interest to understand the effect of Cl- on the CO electro-oxidation at Pt electrodes. Meanwhile, it is controversial that when and where the Cl" adsorbs on the surface and how it affects the CO oxidation. In this section, the electro-oxidation of CO adlayer on Pt electrode in Cl--containing 0.1 M HClO4 has been investigated with in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Two potentials were selected for predosing CO on the Pt electrode: one is in the H-UPD region, i.e.,0.1 V (vs. RHE) and the other is the double-layer region, i.e.,0.45 V (vs. RHE). The broadening of the prewave and the main peak for the CO oxidation is observed, in addition to the positively shifted oxidation potentials. The spectroelectrochemical data suggest the specific adsorption of Cl- starts at a potential as negative as 0.1 V which may compete with the adsorption of OH at CO-unoccupied sites (including but not limited to defect sites) and/or hinder the diffusion of CO to OH adsorption sites on Pt electrode, slowing down the CO oxidation. This competitive Cl- adsorption at lower potentials disrupts the interfacial free H2O molecules on the top of CO adlayer, signaled by a reduced OH stretching band intensity. Furthermore, the oxidation of CO is more interfered by the adsorption of iodides, which not only occupy the free sites but also replace partial CO molecules on the surface, and the CO main oxidation occurs only after the oxidation of iodides. On the other hand, the dynamics of CO oxidation is not obviously changed by the hydrogen evolution, indicating the structure of CO adlayer and is rather stable.
     2. A new versatile approach to modify Sb or Pb on Pt towards efficient oxidation of formic acid
     Traditional surface modification of Sb could be achieved by either irreversible adsorption (IRA) or underpotential deposition (UPD) with subsequently external potential control to desorb partial adatoms. It is not suitable for the large scale synthesis or improvement of carbon supported catalysts in practice. In this section, a new facile approach towards developing superior Pt-based catalysts for HCOOH electrooxidation has been proposed, which is exemplified with a mimetic underpotential deposition (MUPD) of Sb on Pt surfaces to attain a favorable coverage. Suitable Sb modification was achieved simply through immersing a bulk Pt electrode or dispersing Pt/C powders in a Sb(III) solution mixed with ascorbic acid (AA). AA serves as the mild reducing agent to ensure freshly reduced Pt surfaces for Sb modification, as demonstrated by the negatively shifted open circuit potential. The catalytic activity towards HCOOH electrooxidation on the above Sb-modified Pt/C catalyst far exceeds that on commercial Pt-Ru/C or Sb-modified Pt/C through traditional irreversible adsorption. This electroless approach is generally applicable to all types of Pt surfaces, in particular suited for upgrading Pt/C for practical anode catalysts of direct formic acid fuel cells. Such an approach has also been extended to the modification of Pb on the Pt surface towards HCOOH electrooxidation.
     3. Combined ATR-SEIRAS and first-principles study on electrooxidation of formic acid at Sb modified Pt electrodes
     So far it is still controversial about the mechanism of HCOOH oxidation on Pt surface and the effect of the formate intermediate during the process of HCOOH oxidation. The so-called "dual pathway" and "triple pathway" were proposed in which the formate was considered to be the active intermediate of'direct pathway" and the "spectator" during HCOOH oxidation, respectively. Note that the formate is also supposed to be helpful for the HCOOH oxidation on the basis of DFT calculations. However, no literatures of HCOOH oxidation on Sb-modified Pt (Pt-Sb) could be found yet. In this section, in situ electrochemical surface-enhanced infrared absorption spectroscopy (EC-SEIRAS) together with a periodic density functional theory (DFT) calculation has been initially applied to investigate the mechanism of formic acid electro-oxidation on Pt-Sb electrode. EC-SEIRAS measurement reveals that the main formic acid oxidation current on Pt-Sb electrode is ca 10-fold enhanced as compared to that on clean Pt electrode, mirrored by nearly synchronous decrease of the CO and formate surface species, suggesting a "non-formate" oxidation as the main pathway on the Pt-Sb electrode. Based on the calculations from periodic density functional theory (DFT), the catalytic role of Sb adatoms can be rationalized as a promoter for the adsorption of the CH-down configuration but an inhibitor for the adsorption of the O-down configuration of formic acid, kinetically facilitating the complete oxidation of HCOOH into CO2. In addition, Sb modification lowers the CO adsorption energy on Pt, helps to mitigate the CO poisoning effect on Pt.
     4. Primary investigation of the ethanol oxidation on Pt-M (M=Sb, Pb) electrodes with SEIRAS
     Ethanol is the very promising fuel in the low temperature fuel cells, and it has been intensively investigated in the last decade. The key of ethanol oxidation is how to break up the C-C bonding of ethanol molecule, and thus promotes the complete oxidation of ethanol. In this section, the primary investigation of ethanol oxidation on Pt-Sb or Pt-Pb electrodes prepared by MUPD has been carried out with SEIRAS. The results show that the Pt-M (M=Sb, Pb) not only negatively shift the peak potential but also enhance the peak current of ethanol oxidation. In the SEIRAS spectra, bands of CO and free water are clearly observed on Pt-M electrodes, which implies that it is easier for ethanol to break the C-C bonding and form CO on Pt-M electrodes than that on clean Pt. Besides that, bands at ca.1238 and 1398 cm-1 which are probably concerned to the vibration of CH3COOH, could be observed at low potentials while bands of C=O stretching of CH3CHO are hardly observed. The results imply that ethanol may be oxidized to acetic acid directly on the Pt-M electrodes.
引文
[1]A. J. Bard, L. R. Faulkner. Electrochemical Methods Fundamentals and Applications [M]. John Wiley & Sons, Inc.2001.
    [2]查全性等.电极过程动力学导论(第三版)[M].北京:科学教育出版社,2002.
    [3]张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社,2000.
    [4]巴德,福克纳著.邵元华,朱果逸,董献堆等译,电化学方法—原理和应用[M].北京:化学工业出版社,2005.
    [5]E. Yeager, T. E. Furtak, K. L. Kliewer, D. W. Lynch. Non-Traditional Approaches to the Study of the Solid Electrolyte Interface [M]. Amsterdam:North-Holland Publishing Co.,1980.
    [6]A. J. Bard, H. D. Abruna, C. E. Chidsey, L. R. Faulkner, S. W. Feldberg, K. Otaya, M. Majda, O. Melroy, R. W. Murrary, M. D. Porter, M. P. Soriaga, W.H.S. The electrode electrolyte interface a status report [J]. J. Phys. Chem.,1993,97 (28): 7147-7173.
    [7]田中群,孙世刚,罗瑾,杨勇.现场光谱电化学研究的新进展[J].物理化学学报,1994,10(9):860-866.
    [8]A. Wieckowshki. Interfacial electrochemistry [M]. New York:VCH,1999.
    [9]郑华均,马淳安.光谱电化学原位测试技术的应用及进展[J].浙江工业大学学报,2003,31(5):501-507.
    [10]林仲华,叶思宇,黄明东等.电化学中的光学方法[M].北京:科学出版社,1990.
    [11]V. R. Stamenkovic, N. M. Markovic P. N. Ross. Structure relationships in electrocatalysis:oxygen reduction and hydrogen oxidation reactions on Pt (111) and Pt (100) in solutions containing chloride ions [J]. J. Electroanal Chem.,2001,500: 44-51.
    [12]J. C. Davies, B. E. Hayden, D. J. Pegg, M. E. Rendall. The electrooxidation of carbon monoxide on ruthenium modified Pt (111) [J]. Surf. Sci.,2002,496:110-120.
    [13]A. V. Tripkovic, K. Dj. Popovic, R. M. Stevanovic, R. Socha, A. Kowal. Activity of a PtBi alloy in the electrochemical oxidation of formic acid [J]. Electrochem. Commun.,2006,8:1492-1498.
    [14]J. C. Bauer, X. L. Chen, Q. S. Liu, T. H. Phan, R. E. Schaak. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis [J]. J. Mater. Chem.,2008,18:275-282.
    [15]F. Matsumoto, C. Roychowdhury, F. J. DiSalvo, H. D. Abruna. Electrocatalytic Activity of Ordered Intermetallic PtPb Nanoparticles Prepared by Borohydride Reduction toward Formic Acid Oxidation [J]. J. Electrochem. Soc.,2008,155: B148-B154.
    [16]A. Miura, H. S. Wang, B. M. Leonard, H. D. Abruna, F. J. DiSalvo. Synthesis of Intermetallic PtZn Nanoparticles by Reaction of Pt Nanoparticles withZnVapor and TheirApplication as FuelCellCatalysts [J]. Chem. Mater.,2009,21:2661-2667.
    [17]M. Watanabe, M. Horiuchi, S. Motoo. Electrocatalysis by ad-atoms Part ⅩⅩⅢ. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the Ⅳth and the Vth groups [J]. J. Electroanal. Chem.,1988,250:117-125.
    [18]A. Fernandez-Vega, J. M. Feliu, A. Aldaz, J. Claviller. Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms [J]. J. Electroanal. Chem.,1989,258:101-113.
    [19]J. M. Feliu, A. Fernandez-Vega, A. Aldaz. New observations of a structure sensitive electrochemical behaviour of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt (111) and Pt (100) orientations [] J. Electroanal. Chem., 1988,256:149-163.
    [20]E. Leiva, T. Iwasita, E. Herrero, J. M. Feliu. Effect of adatoms in the electrocatalysis of HCOOH oxidaton. A theoretical model [J]. Langmuir,1997,13: 6287-6293.
    [21]罗瑾,林仲华,田昭武.电化学原位紫外可见反射光谱法[J].化学通报,1994(2):5-8.
    [22]吴玲玲,罗瑾,陈捷光,林仲华.电化学动态研究—原位时间分辨紫外可见光谱法[J].化学通报,1999,2:32-36.
    [23]J. D. E. Mcintyre, D. E. Aspnes. Differential reflection spectroscopy of very thin surface films [J]. Surf. Sci.,1971,24:417-434.
    [24]A. Michaelis, J. W. Schultze, B. Bunsenges. In-situ UV visible reflectance spectroscopic investigation of the nickel electrode-alkaline solution interface [J]. Phys Chem.,1993,97:431-443.
    [25]W. Akemann, K. A. Friedrich, U. Linke, U. Stimming. The catalytic oxidation of carbon monoxide at the platinum/electrolyte interface investigated by optical second harmonic generation (SHG):comparison of Pt(111) and Pt(997) electrode surfaces [J]. Surf. Sci.,1998,402 (1-3):571-575
    [26]G. Q. Lu, A. Lagutchev, D. D. Dlott, A. Wieckowski. Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry:CO on a Pt electrode [J]. Surf. Sci.,2005,585 (1-2):3-16
    [27]M. L. Lynch, R. M. Corn. In-situ 2nd-Harmonic generation studies of the surface-structure of a well-ordered Pt(111) electrode [J]. J. Phys. Chem.,1990,94 (11): 4382-4385.
    [28]B. Pettinger, J. Lipkowski, S. Mirwald, A. Friedrich. Specific adsorption at Au(111) electrodes studied by second harmonic generation [J]. J. Electroanal. Chem., 1993,329:289-311.
    [29]D. A. Higgins, R. M. Corn.2nd- Harmonic generation studies of adsorption at a liquid-liquid electrochemical interface [J]. J. Phys. Chem.,1993,97 (2):489-493.
    [30]O. Sato, R. Baba, K. Hashimoto, A. Fujishima. Coherent interferometric analysis of the molecular orientation based on the study of the optical second harmonic generation [J]. J. Electroanal. Chem.,1991,306:291-296.
    [31]P. Guyot-Sionnest, A. Tadjeddine. Spectroscopic investigations of adsorbates at the metal—electrolyte interface using sum frequency generation [J]. Chem. Phys. Lett., 1990,172:341-345.
    [32]G. Binnig, H. Rohrer, C. Gerber, E. Weibel. Surface studies by scanning tunneling microscopy [J]. Phys. Rev. Lett.,1982,49:57-61.
    [33]G. Binnig, H. Rohrer.7×7 Reconstruction on Si (111) resolved in real space [J]. Phys. Rev. Lett.,1983,50:120-123.
    [34]白春礼.扫描隧道显微技术及其应用[M].上海:科学技术出版社,1992.
    [35]万立骏.电化学扫描隧道显微技术及其应用[M].北京:科学出版社,2005.
    [36]韩桂泉,李京伟,苏哗,方新飞,严虎,唐叶平,沈兰,孙萃萃.扫描探针显微镜[J].化工时刊,2006,20:75-77.
    [37]李巧霞.复旦大学博士论文[D].上海,2008.
    [38]Binnig G, Quate CF and Gerber CH. Atomic force microscope [J]. Phys. Rev. Lett.,1986,56:930-933.
    [239]郭云昌,蔡颖谦.扫描探针显微镜的进展[J].现代科学仪器分析,2005,3:21-25.
    [40]Bustamante C and Keller D. Scanning Force Microscopy in Biology. [J]. Physics Today,1995,12:32-38.
    [41]D. J. Ellis, D. T. F. Dryden, T. Berge, J. M. Edwerdson, R. M. Henderson. Direct observation of DNA translocation and cleavage by endonuclease using atomic force microscopy [J]. Nature Structural biology,1999,6:15-17.
    [42]Y. Fang, T. S. Spisz, T. Wiltshire, NP. D'Costa, N. Bankman, R. H. Reeves, J. H. Hoh. Solid-state DNA sizing by atomic force microscopy [J]. Anal.Chem.,1998,70: 2123-2139.
    [43]E. J. Fechter, P. B. DerVan. Allosteric Inhibition of Protein-DNA Complexes by Polyamide-Intercalator Conjugates [J]. J.Am. Chem. Soc.,2003,125:8476-8485.
    [44]段涛,彭同江,唐永建.表面增强拉曼光谱技术在纳米材料研究中的新进展[J].材料导报,2008,22:93-97.
    [45]田中群,任斌,佘春兴,陈衍珍.电化学原位拉曼光谱的应用及进展[J].电化学,1999,5:1-13.
    [46]任斌,田中群.表面增强拉曼光谱的研究进展[J].现代仪器,2004,5:1-8.
    [47]M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett.,1974,26:163-166.
    [48]L. Jeanmaire, R. P. Van Duyne. Surface raman spectroelectrochemistry part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. [J]. J. Electroannal. Chem.,1977,84:1-20.
    [49]M. G. Albrecht, J. A. Creighton. Anomalously intense Raman spectra of pyridine at silver electrode [J]. J. Am. Chem. Soc.,1979,99:5215-5217.
    [50]A. Otto, I. Mrozek, H. Grabhorn, W. Akemann. Surface-enhanced Raman scattering [J]. J. Phys. Condens. Matter.,1992,4:1143-1212.
    [51]M. Moskovits. Surface-enhanced Raman Spectroscopy [J]. Rev. Mod. Phys., 1985,57 (3):783-826.
    [52]J. Corset, J. Aubard. Surface enhanced Raman scattering:new trends and applications [J]. J. Raman Spectrosc., Special Issue,1999,29 (8).
    [53]R. L. Birke, T. H. Lu, J. R. Lombardi. In Techniques for Characterization of Electrodes and Electrochemical processes [M]. Edited by R. Varma and J. R. Selman, chapt.5,212,1991.
    [54]B. Ren, X. F. Lin, Z. L. Yang, R. F. Aroca, B. W. Mao, Z. Q. Tian. Surface-Enhanced Raman Scattering in the Ultraviolet Spectral Region:UV-SERS on Rhodium and Ruthenium Electrodes [J]. J. Am. Chem. Soc.,2003,125:9598-9599.
    [55]M. Moskovits. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals [J]. J. Chem. Phys.,1978,69:4159-4161.
    [56]G. C. Schatz, R. P. Van Duyne. Electromagnetic mechanism of surface-enhanced spectroscopy [M]. Handbook of vibrational spectroscopy. Edt. By J. M. Chalmers and P. R. Griffiths, John Wiley &Son Ltd, Chichester,2002.
    [57]V. M. Hallmark, A. Campion. A modification of the image dipole selection rules for surface Raman scattering [J]. J. Chem. Phys.,1986,84:2942-2944.
    [58]J. C. Tsang, J. R. Kirtley, J. A. Bradley. Surface-enhanced raman spectroscopy and surface plasmon [J]. Phys. Rev. Lett.,1979,43:772-775.
    [59]严彦刚.复旦大学博士论文[D].上海,2007.
    [60]蒋玉雄.厦门大学博士论文[D].厦门,2006.
    [61]陈艳霞.厦门大学博士学位论文[D].厦门,1998.
    [62]邹受忠.厦门大学硕士学位论文[D].厦门,1994.
    [63]J. Gui, T. M. Devine. Obtaining surface-enhanced Raman-spectra from the passive film on iron [J]. J. Electrochem. Soc.,1991,138(5):1376-1384.
    [64]L. J. Oblonsky, T. M. Devine, J. W. Ager, S. S. Perry, X. L. Mao, R. E. Russo. Surface-enhanced Raman-scattering from pyridine adsorbed on thin-layers of stainless-steel [J]. J. Electrochem. Soc.,1994,141(12):3312-3317.
    [65]L.W. H. Leung, M. J. Weaver. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces:Carbon monoxide adsorption and electrooxidation on platinum and palladium-coated gold electrodes [J]. J. Am. Chem. Soc.,1987,109: 5113-5119.
    [66]S. Zou, M. J. Weaver. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes:Chemical bonding versus electrostatic field effects [J]. J. Phys. Chem. B,1996,100:4237-4242.
    [67]S. Zou, M. J. Weaver, X. Q. Li, B. Ren, Z. Q. Tian. New strategies for surface-enhanced Raman scattering at transition-metal interfaces: Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon [J]. J. Phys. Chem. B,1999,103:4218-4222.
    [68]S. Zou, M. J. Weaver. Surface-enhanced Raman scattering on uniform transition-metal films:Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? [J].Anal. Chem.,1998,70:2387-2395.
    [69]S. Zou, C. T. Williams, E. K. Y. Chen, M. J. Weaver. Probing molecular vibrations at catalytically significant interfaces:A new ubiquity of surface-enhanced Raman scattering [J]. J. Am. Chem. Soc.,1998,120(15):3811-3812.
    [70]M. F. Mrozek, Y. Xie, M. J. Weaver. Surface-enhanced Raman scattering on uniform platinum-group overlayers:preparation by redox replacement of underpotential-deposited metals on gold [J].Anal. Chem.,2001,73(24):5953-5960.
    [71]S. A. Bilmes, J. C. Rubim, A. Otto, A. J. Arvia. SERS from pyridine adsorbed on electrodispersed platinum electrodes [J]. Chem. Phys. Lett.,1989,159:89-96.
    [72]W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, Z. Q. Tian. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope:dependence of surface roughening pretreatment [J]. Surf. Sci.,1998,406:9-22.
    [73]B. Ren, X. F. Lin, J. W. Yan, B. W. Mao, Z. Q. Tian. Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy [J]. J. Phys. Chem. B,2003,107(4):899-902.
    [74]P. G. Cao, J. L. Yao, B. Ren, R. Gu, Z. Q. Tian. Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO4 solution [J]. J. Phys. Chem. B,2002,106(39):10150-10156.
    [75]Y. Xie, D. Y. Wu, G. K. Liu, Z. F. Huang, B. Ren, J. W. Yan, Z. L. Yang, Z. Q. Tian. Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories [J]. J. Electroanal. Chem.,2003,554:417-425.
    [76]Q. J. Huang, X. F. Lin, Z. L.Yang, J. W. Hu, Z. Q. Tian. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy [J]. J. Electroanal. Chem.,2004,563(1):121-131.
    [77]Z. Q. Tian, Z. L. Yang, B. Ren, J. F. Li, Y. Zhang, X. F. Lin, J. W. Hu, D. Y. Wu. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape [J]. Faraday Discuss.,2006,132:159-170.
    [78]J. Corset, J. Aubard, Ed., Surface enhanced Raman scattering: new trends and applications [J]. J. Raman Spectrosc., Special Issue,1999,29:8.
    [79]Z. Q. Tian, Ed., Surface-enhanced Raman scattering:advancements and applications [J]. J. Raman Spectrosc., Special Issue,2005,36:6-7.
    [80]K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld. Single molecule detection using surface- enhanced Raman scattering (SERS) [J]. Phys. Rev. Lett.,1997,78(9):1667-1670.
    [81]S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science,1997,275:1102-1106.
    [82]Z. Q. Tian, B. Ren, D. Y. Wu. Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B,2002,106(37):9463-9483.
    [83]B. Ren, Z. Q. Tian. The progress in surface-enhanced Raman spectroscopy [J]. Mod. Instrum.,2004,5(9):1-8.
    [84]R. M. Stockle, Y. D. Suh, V. Deckert, R. Zenobi. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy [J]. Chem. Phys. Lett.,2000,318(1-3):131-136.
    [85]N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata. Metallized tip amplification of near-field Raman scattering [J]. Opt. Commun.,2000,183(1-4):333-336.
    [86]M. S. Anderson. Locally enhanced Raman spectroscopy with an atomic force microscope [J].Appl. Phys. Lett.,2000,76(21):3130-3132.
    [87]B. Pettinger, G. Picardi, R. Schuster, G. Ertl. Surface-enhanced Raman spectroscopy:towards single molecule spectroscopy [J]. Electrochemistry,2000, 68(12):942-949.
    [88]Z. Q. Tian, B. Ren, J. F. Li, Z. L. Yang. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy [J]. Chem. Commun.,2007,3514-3534. (FEATURE ARTICLE)
    [89]J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464:392-395.
    [90]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.
    [91]P. A. Brooksby, W. R. Fawcett. Determination of the Electric Field Intensities in a Mid-Infrared Spectroelectrochemical Cell Using Attenuated Total Reflection Spectroscopy with the Otto Optical Configuration [J]. Anal. Chem.,2001,73: 1155-1160.
    [92]A. Bewick, J. M. Mellor, B. S. Pons. Distinction between ECE and disproportionation mechanisms in the anodic oxidation of methyl benzenes using spectroelectrochemical methods [J]. Electrochim. Acta,1980,25(7):931-941.
    [93]周志有.厦门大学博士论文[D].2004.
    [94]C. H. Zhen, S. G. Sun, C.J. Fan, S. P. Chen, B.W. Mao, Y. J. Fan. In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions [J]. Electrochim. Acta,2004,49 (8):1249-1255.
    [95]Q. H. Wu, N.H. Li, S.G. Sun. Manipulation of electrocatalytic reaction pathways through surface chemistry:In situ Fourier transform infrared spectroscopic studies of 1,3-butanediol oxidation on a Pt surface modified with Sb and S adatoms [J]. J. Phys. Chem. B,2006,110(23):11383-11390.
    [96]S. M. Moon, C. Bock, B. MacDougall. Setup, sensitivity and application of thin electrolyte layer ATR-FTIR spectroscopy [J]. J. Electroanal. Chem.,2004,568: 225-233.
    [97]Y. G. Yan, Q. X. Li, S. J. Huo, M. Ma, W. B. Cai, M. Osawa. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B,2005,109:7900-7906.
    [98]S. J. Huo, Q. X. Li, Y. G. Yan, Y. Chen, W. B. Cai, Q. J. Xu, M. Osawa. Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles [J]. J. Phys. Chem B,2005,109: 15985-15991.
    [99]S. J. Huo, X. K. Xue, Y. G. Yan, Q. X. Li, M. Ma, W. B. Cai, Q. J. Xu, M. Osawa. Extending in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes [J]. J. Phys. Chem. B,2006,110:4162-4169.
    [100]S. J. Huo, X. K. Xue, Q. X. Li, S. F. Xu, W. B. Cai. Seed-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy [J]. J. Phys. Chem. B,2006,110: 25721-25728.
    [101]H. F. Wang, Y. G. Yan, S. J. Huo, W. B. Cai, Q. J. Xu, M. Osawa. Seed growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications [J]. Electrochim. Acta,2007,52:5950-5957.
    [102]S. G. Sun, Y. Lin. Kinetics of isopropanol oxidation on Pt(111), Pt(110), Pt(100), Pt(610) and Pt(211) single crystal electrodes -Studies of in situ time-resolved FTIR spectroscopy [J]. Electrochim. Acta,1998,44:1153-1162.
    [103]Th. Wandlowski, K. Ataka, S. Pronkin, D. Diesing. Surface enhanced infrared spectroscopy-Au(111-20 nm)/sulphuric acid:new aspects and challenges [J]. Electrochim. Acta,2004,49:1233-1247.
    [104]A. Hartstein, J. R. Kirtley, J. C. Tsang. Enhancement in the infrared absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett.,1980,45: 201-204.
    [105]R. F. Aroca, D. J. Ross, C. Domingo. Surface-enhanced infrared spectroscopy [J].Appl. Spectrosc.,2004,58(11):324A-338A.
    [106]M. Osawa. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) [J]. Bull. Chem. Soc. Jpn.,1997,70:2861-2880.
    [107]R. K. Chang, T. E. Furutak (eds). Surface enhanced Raman scattering [M]. Plenum, New York,1982, references cited therein.
    [108]A. Wakaun. Surface-enhanced electromagnetic processes in solid state physics [M]. John Wiley & Sons, New York,1973,9:1-59.
    [109]G. A. Niklasson, C. G. Granqvist. Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films [J]. J. Appl. Phys.,1984,55:3382-3410.
    [110]B. A. Maxwell-Garnett [J]. Philos. Trans. Royal. Soc. A,1904,203:385-420.
    [111]D. A. G. Bruggemann. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen [J].Ann. Phys. (Leipzig),1935,24:636-664.
    [112]M. Osawa, K. Ataka, K. Yoshii, Y. Nishikawa. Surface-enhanced infrared spectroscopy:the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles [J]. Appl. Spectrosc., 1993,47:1497-1502.
    [113]M. Osawa. In Handbook of Vibrational Spectroscopy [M]. J. M. Chalmers, P. R. Griffiths (Eds.), John Wiley & Sons:Chichester, U.K.,2002, Vol.1, pp785-799.
    [114]H. Metiu. Surface enhanced spectroscopy [J]. Prog. Surf. Sci.,1984,17: 153-320.
    [115]A. Hatta, T. Ohshima, W. Suetaka. Observation of the enhanced infrared-absorption of para-nitrobenzoate on Ag island films with an ATR technique [J].Appl. Phys. A-Mater.,1982,29(2):71-75.
    [116]A. Hatta, Y. Suzuki, W. Suetaka. Infrared-absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration-evidence for two types of enhanced surface electric-fields [J]. Appl. Phys. A-Mater.,1984, 35(3):135-140.
    [117]M. Osawa, M. Ikeda. Surface-enhanced infrared absorption of para-nitrobenzoic acid deposited on silver island films-contributions of electromagnetic and chemical mechnisms [J]. J. Phys. Chem.,1991,95(24):9914-9919.
    [118]K. Ito, K. Hayashi, Y. Hamanaka, M. Yamamoto, T. Araki, K. Iriyama. Infrared and Raman scattering spectroscopic study on the structures of Langmuir-Blodgett monolayers containing a merocyanine dye [J]. Langmuir,1992,8(1):140-147.
    [119]Y. Nishikawa, K. Fujiwara, T. Shima. Qualitative analysis of nanogram samples with Fourier transform infrared transmission surface electromagnetic wave spectroscopy [J].Appl. Spectrosc.,1990,44(4):691-694.
    [120]Y. Nishikawa, K. Fujiwara, T. Shima. A study on the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of silver island films [J].Appl. Spectrosc.,1991,45(5):747-751.
    [121]R. Aroca, B. Price. A new surface for surface-enhanced infrared spectroscopy: Tin island films [J].J. Phys. Chem. B,1997,101(33):6537-6540.
    [122]T. Yoshidome, T. Inoue, S. Kamata. Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films [J]. Chem. Lett.,1997,6:533-534.
    [123]R. Kellner, B. Mizaikoff, M. Jakusch, H. D. Wanzenebock, N. Weissenbacher. Surface-enhanced vibrational spectroscopy:A new tool in chemical IR sensing? [J]. Appl. Spectrosc.,1997,51(4):495-503.
    [124]T. R. Jensen, R. P. V. Duyne, S. A. Johnson, V. A. Maroni. Surface-enhanced infrared spectroscopy:A comparison of metal island films with discrete and nondiscrete surface plasmons [J].Appl. Spectrosc.,2000,54(3):371-377.
    [125]N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, J. C. A. Foss. Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene [J]. J. Phys. Chem. B,1998,102(2):361-371.
    [126]G. Q. Lu, S. G. Sun, S. P. Chen, L. R. Cai. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy [J].J. Electroanal. Chem.,1997,421(1-2):19-23.
    [127]A. E. Bjerke, P. R. Griffiths, W. Theiss. Surface-enhanced infrared absorption of CO on platinized platinum [J].Anal. Chem.,1999,71:1967-1974.
    [128]R. Ortiz, A. Cuesta, O. P. Marquez, J. Marquez, J. A. Mendez, C. Gutierrez. Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates [J]. J. Electroanal. Chem.,1999,465(2):234-238.
    [129]G. T. Merklin, P. R. Griffiths. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films [J]. Langmuir,1997,13(23):6159-6163.
    [130]H. D. Wanzenbock, B. Mizaikoff, N. Weissenbacher, R. Kellner. Multiple internal reflection in surface enhanced infrared absorption spectroscopy (SEIRA) and its significance for various analyte groups [J]. J. Mol. Struct.,1997,410-411: 535-538.
    [131]F. Maroun, F. Ozanam, J. N. Chazalviel, W. Theiss. In situ infrared investigation of metals electrodeposited for SEIRAS [J]. Vib. Spectrosc.,1999,19(2):193-198.
    [132]H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun., 2002,4(12):973-977.
    [133]H. Miyake, E. Hosono, M. Osawa. Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes [J]. Chem. Phys. Lett., 2006,428(4-6):451-456.
    [134]A. Miki, S. Ye, M. Osawa. Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions [J]. Chem. Commun.,2002,1500-1501.
    [135]Y. X. Diao, M. J. Han, L. J. Wan, K. Itaya, T. Uchida, H. Miyake, A. Yamakata, M. Osawa. Adsorbed structures of 4,4'-bipyridine on Cu(111) in acid studied by STM and IR [J]. Langmuir,2006,22(8):3640-3646.
    [136]H. Miyake, M. Osawa. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution [J]. Chem. Lett.,2004,33(3):278-279.
    [137]A. Rodes, J. M. Orts, J. M. Perez, J. M. Feliu, A. Aldaz. Sulphate adsorption at chemically deposited silver thin film electrodes:time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy [J]. Elctrochem. Commun.,2003, 5(1):56-60.
    [138]J. M. Delgado, J. M. Orts, A. Rodes. ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes [J]. Langmuir,2005, 21(19):8809-8816.
    [139]C. Wang, B. Peng, H. N. Xie, H. X. Zhang, F. F. Shi, W. B. Cai. Facile fabrication of Pt, Pd and Pt-Pd Alloy films on Si with tunable infrared internal reflection absorption and synergetic electrocatalysis [J]. J. Phys. Chem. C,2009,113: 13841-13846.
    [140]严彦刚,李巧霞,霍胜娟.铂和钌纳米电极的全湿法制备及表面增强红外效应[J].化学学报,2005,63(6):545-549.
    [141]李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J].高等学校化学学报,2006,27(12):2414-2416.
    [142]Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J]. J. Am. Chem. Soc., 2003,125(13):3680-3681.
    [143]M. H. Shao, P. Liu, R. R. Adzic, Superoxide Anion is the Intermediate in the Oxygen Reduction Reaction on Platinum Electrodes [J]. J. Am. Chem. Soc.,2006, 128(23):7408-7409.
    [144]G. Samjeske, A. Miki, S. Ye, M. Osawa. Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy [J]. J. Phys. Chem. B,2006,110: 16559-16566.
    [145]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm. Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell [J]. Angew. Chem., Int. Ed.,2006,45:981-985.
    [146]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm. Bridge-Bonded Formate:Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode? [J]. Langmuir,2006,22:10399-10408.
    [147]B. Peng, H. F. Wang, Z. P. Liu, W. B. Cai. Combined surface-enhanced infrared spectroscopy and first-principles study on electro-oxidation of formic acid at Sb-modified Pt electrodes [J]. J. Phys. Chem. C,2010,112:3102-3107.
    [148]S. A. Johnson, N. H. Pham, V. J. Novick, V. A. Maroni. Application of surface-enhanced infrared absorption spectroscopy as a sensor for volatile organic compounds [J].Appl. Spectrosc.,1997,51(9):1423-1426.
    [149]M. Osawa, K. Ataka, M. Ikeda, H. Uchihara, R. Namba. Surface-enhanced infrared absorption spectroscopy:mechanism and application to trace analysis [J]. Anal. Sci.,1991,7(Suppl.):503-506.
    [150]G. T. Merklin, L. T. He, P. R. Griffiths. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide [J]. Appl. Spectrosc.,1999,53 (11): 1448-1453.
    [151]J. A. Seelenbinder, C. W. Brown, P. Pivarnik, A. G. Rand. Colloidal cold filtrates as metal substrates for surface-enhanced infrared absorption spectroscopy [J]. Anal. Chem.,1999,71(10):1963-1966.
    [152]D. A. Heaps, P. R. Griffiths. Investigation of polysaccharide adsorption on protein conditioning films by attenuated total reflection infrared spectrometry [J]. Anal. Chem.,2005,77(18):5965-5972.
    [153]C. W. Brown, Y. Li, J. A. Seelenbinder, P. Pivarnik, A. G. Rand, S. V. Letcher, O. J. Gregory, M. J. Platek. Immunoassays based on surface enhanced infrared absorption spectroscopy [J].Anal. Chem.,1998,70 (14):2991-2996.
    [154]H. Y. N. Holman, D. L. Perry, J. C. Hunter-Cevera. Surface-enhanced infrared absorption-reflectance (SEIRA) microspectroscopy for bacteria localization on geologic material surfaces [J]. J. Microbiol. Methods,1998,34(1):59-71.
    [155]C. Kuhne, G. Steiner, W. B. Fischer, R. Salzer. Surface enhanced FTIR spectroscopy on membranes [J]. Fresenius'J. Anal. Chem.,1998,360(7-8):750-754.
    [156]K. P. Ishida, P. R. Griffiths. Theoretical and experimental investigation of internal-reflection at thin copper-films exposed to aqueous-solutions [J]. Anal. Chem., 1994,66(4):522-530.
    [157]K. P. Ishida, P. R. Griffiths. Investigation of polysaccharide adsorption on protein conditioning films by attenuated total reflection infrared spectrometry-Ⅱ. Thin copper films [J]. J. Colloid Interface Sci.,1999,213(2):513-524.
    [158]M. Ma, Y. G. Yan, S. J. Huo, Q. J. Xu, W. B. Cai. In situ surface-enhanced IR absorption spectroscopy on CO adducts of iron protoporphyrin Ⅸ self-assembled on an Au electrode [J]. J. Phys. Chem. B,2006,110(30):14911-14915.
    [159]B. Pettinger, M. R. Philport, J. G. Gordon Ⅱ. Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy(SERS) of Ag electrodes [J]. J. Chem. Phys.,1981,74(2):934-940.
    [160]J. E. Pemberton, S. L. Joa. Water and electrolyte structure at Ag electrodes in nonaqueous butanol solutions using surface-enhanced Raman-scattering [J]. J. Electroanal. Chem.,1994,378(1-2):149-158.
    [161]Z. Q. Tian, Y. X. Chen, B. W. Mao, C. Z. Li, Z. F. Liu. Extending surface-enhanced Raman-spectroscopic studies on water at gold electrodes [J]. Chem. Phys. Lett.,1995,240(1-3):224-229.
    [162]Y. X. Chen, K. Q. Huang, Z. Q. Tian. SERS studies of electrode/electrolyte interfacial water part Ⅱ-Librations of water correlated to hydrogen evolution reaction [J]. J. Raman Spectrosc.,1998,249(8):749-756.
    [163]T. Yajima, H. Uchida, M. Watanabe. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. J. Phys. Chem. B, 2004,108(8):2654-2659.
    [164]H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem.,2005,581(1):132-138.
    [165]C. A. Melendres. in Spectroscopic and diffraction techniques in interfacial electrochemistry [M]. (Eds. C. Gutierrez, C. Melendres), Kluwer Academic Publishers, Dordrecht,1990, pp.181-222.
    [166]C. A. Melendres. in Electrochemical and optical techniques for the study and monitoring of metallic corrosion [M]. (Eds. M. G. S. Ferreira and C. A. Melendres), NATO-ASI Ser.203, Kluwer Academic Publishers, Dordrecht,1991, pp.355-388.
    [167]J. L. Yao, H. C. Liu, P. G. Cao, B. Ren, B. W. Mao, R. A. Gu, Z. Q. Tian. Electrochemical Approach to Selected Corrosion and Corrosion Control Studies [M]. 2000,38-46.
    [168]M. E. Biggin, A. A. Gewirth. Infrared Studies of Benzotriazole on Copper Electrode Surfaces Role of Chloride in Promoting Reversibility [J]. J. Electrochem. Soc.,2001,48(5):C339-C347.
    [169]M. R. Vogt, R. J. Nichols, O. M. Magnussen, R. J. Behm. Benzotriazole Adsorption and Inhibition of Cu(100) Corrosion in HCl:A Combined in Situ STM and in Situ FTIR Spectroscopy Study [J]. J. Phys. Chem. B,1998,102(30): 5859-5865.
    [1]K. Ataka, T. Yotsuyanagi, M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J]. J. Phys. Chem.,1996,100(25):10664-10672.
    [2]E. Kretschmann. Determination of Optical Constants of Metals by Excitation of Surface Plasmons [J]. Zeitschrift Fur Physik,1971,241(4):313.
    [1]T. Iwasita. In Handbook of Fuel Cells [M]. W. Vielstich, A. Lamm, H. A. Gasteiger, Eds., Wiley-UK:Chichester,2003, Vol.2, p 603.
    [2]W. Vielstich. In Encyclopedia of Electrochemistry [M]. A. J. Bard, M. Stratmann, Eds., Wiley-VCH:Weinheim,2003, Vol.2, p466.
    [3]S. Gilman. The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. Ⅱ. The "Reactant-Pair" Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanoll [J]. J. Phys. Chem.,1964,68(1): 70-80.
    [4]F. Maillard, M. Eikerling, O. V. Cherstiouk, S. Schreier, E. Savinova, U. Stimminga. Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility [J]. Faraday Disc.,2004,125:357-377
    [5]M. Bergelin, E. Herrero, J. M. Feliu, M. Wasberg. Oxidation of CO adlayers on Pt(111) at low potentials:an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients [J]. J. Electroanal. Chem.,1999,467: 74-84.
    [6]N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, R. A. van Santen. Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111) [J]. J. Electroanal. Chem.,2002,524-525:242-251
    [7]C. McCallum, D. Pletcher. An investigation of the mechanism of the oxidation of carbon monoxide adsorbed onto a smooth Pt electrode in aqueous acid [J]. J. Electroanal. Chem.,1976,70:277-290.
    [8]B. Love, Lipkowski, in electrochemical surface science [M]. Ed. M. Soriaga, ACS symp, ser., Washington,1988,378:474.
    [9]S. C. Chang, M. J. Weaver. Coverage-dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces:Structural and electrochemical implications [J]. J. Chem. Phys.,1990,92:4582-4594.
    [10]B. Pozniak, Y. Mo, D. A. Scherson. The electrochemical oxidation of carbon monoxide adsorbed on Pt(111) in aqueous electrolytes as monitored by in situ potential step-second harmonic generation [J]. Faraday Discuss.,2002,121:313-322.
    [11]E. Santos, E. P. M. Leiva, W. Vielstich, U. Linker. Comparative study of CO absorbates for different structures of platinum surfaces [J]. J.Electroanal. Chem., 1987,227:199-211.
    [12]N. M. Markovic, P. N. Ross. Electrocatalysts by design:from the tailored surface to a commercial catalyst [J]. Electrochim. Acta,2000,45:4101-4115.
    [13]M. J. Weaver, S. C. Chang, L. W. H. Leung, X. Jiang, M. Rubel, M. Szklarczyk, D. Zurawski, A. Wieckowski. Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes [J]. J. Electroanal. Chem.,1992,327:247-260.
    [14]N. M. Markovic, T. J. Schmidt, B. N. Grgur, H. A. Gasteiger, R. J. Behm, P. N. Ross. Effect of Temperature on Surface Processes at the Pt(111)-Liquid Interface: Hydrogen Adsorption, Oxide Formation, and CO Oxidation [J]. J. Phys. Chem. B, 1999,103:8568-8577.
    [15]A. Couto, A. Rincon, M. C. Perez, C. Gutierrez. Adsorption and electrooxidation of carbon monoxide on polycrystalline platinum at pH 0.3-13 [J]. Electrochim. Acta, 2001,46:1285-1296.
    [16]M. Arenz, V. Stamenkovic, T. J. Schmidt, K. Wandelt, P. N. Ross, N. M. Markovic. The effect of specific chloride adsorption on the electrochemical behavior of ultrathin Pd films deposited on Pt(111) in acid solution [J]. Surf. Sci.,2003,523: 199-209.
    [17]M. C. Perez, A. Rincon, C. Gutierrez. Effect of chloride ions on the electrooxidation at low potentials of dissolved carbon monoxide on platinum [J]. J. Electroanal. Chem.,2001,511:39-45.
    [18]A. L. Cudero, A. Cuesta, C. Gutierrez. The effect of chloride on the electrooxidation of adsorbed CO on polycrystalline platinum electrodes [J]. J. Electroanal. Chem.,2003,548:109-119.
    [19]A. Cuesta, A. Couto, A. Rincon, M. C. Perez, A. L. Cudero, C. Gutierrez. Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 3:Pt(poly) [J]. J. Electroanal. Chem., 2006,586:184-195.
    [20]N. M. Markovic, P. N. Ross Jr.. Surface science studies of model fuel cell electrocatalysts [J]. Surf. Sci. Rep.,2002,45:117-229.
    [21]M. Osawa, M. Tsushima, H. Mogami, G. Samjeske, A. Yamakata. Structure of Water at the Electrified Platinum-Water Interface:A Study by Surface-Enhanced Infrared Absorption Spectroscopy [J]. J. Phys. Chem. C,2008,112:4248-4256.
    [22]M. Futamata, L. Q. Luo, C. Nishihara. ATR-SEIR study of anions and water adsorbed on platinum electrode [J]. Surf. Sci.,2005,590:196-211.
    [23]H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem.,2005,581:132-138.
    [24]Y. G. Yan, Q. X. Li, S. J. Huo, M. Ma, W. B. Cai, M. Osawa. Ubiquitous strategy for probing ATR-surface-enchanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B,2005,109:7900-7906.
    [25]A. Miki, S. Ye, M. Osawa. Srurface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions [J]. Chem. Commun.,2002,1500-1501.
    [26]S. Pronkin, T. Wandlowski. ATR-SEIRAS—an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes [J]. Surf. Sci.,2004,573: 109-127.
    [27]Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode [J]. J. Am. Chem. Soc.,2003,125: 3680-3681.
    [28]Y. G. Yan, B. Peng, W. B. Cai, submitted.
    [29]A. Cuesta. Comments on the paper by H. Shiroishi, Y. Ayato, K. Kunimatsu and T. Okada entitled "Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy)" [J. Electroanal. Chem.581 (2005) 132] [J]. J. Electroanal. Chem.,2006,587:329-330.
    [30]T. Sato, K. Kunimatsu, H. Uchida, M. Watanabe. Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods:Part 1. ATR-FTIRAS spectra of CO adsorbed on highly dispersed Pt catalyst on carbon black and carbon un-supported Pt black [J]. Electrochim. Acta,2007,53: 1265-1278.
    [31]M. Watanabe, T. Sato, K. Kunimatsu, H. Uchida. Temperature dependence of co-adsorption of carbon monoxide and water on highly dispersed Pt/C and PtRu/C electrodes studied by in-situ ATR-FTIRAS [J]. Electrochim. Acta,2008,53: 6928-6937.
    [32]J. A. Santana, Y. Ishikawa. Density-functional theory study of interactions between water and carbon monoxide adsorbed on platinum under electrochemical conditions [J]. Chem. Phys. Lett.,2009,478:110-114.
    [33]S. Park, A. Wieckowski, M. J. Weaver. Electrochemical Infrared Characterization of CO Domains on Ruthenium-Decorated Platinum Nanoparticles [J]. J. Am. Chem. Soc.,2003,125:2282-2290.
    [34]M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, B. B. Blizanac, T. Tomoyuki, P. N. Ross, N. M. Markovic. The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts [J]. J. Am. Chem. Soc.,2005,127: 6819-6829.
    [35]A. R. Kucernak, G. J. Offer. The role of adsorbed hydroxyl species in the electrocatalytic carbonmonoxide oxidation reaction on platinum [J]. Phys. Chem. Chem. Phys.,2008,10:3699-3711.
    [36]M. Arenz, V. Stamenkovic, P.N. Ross, N.M. Markovic. Preferential oxidation of carbon monoxide adsorbed on Pd submonolayer films deposited on Pt(100) [J]. Electrochem. Commun.,2003,5:809-813.
    [37]G. Samjeske, K. Komatsu, M. Osawa. Dynamics of CO Oxidation on a Polycrystalline Platinum Electrode:A Time-Resolved Infrared Study [J]. J. Phys. Chem. C,2009,113:10222-10228.
    [38]H. Hanawa, K. Kunimatsu, H. Uchida, M. Watanabe. In situ ATR-FTIR study of bulk CO oxidation on a polycrystalline Pt electrode [J]. Electrochim. Acta,2009,54: 6276-6285.
    [39]K. D. Wang, F. F. Ming, Q. Huang, X. Q. Zhang, X. D. Xiao. Study of CO diffusion on stepped Pt(111) surface by scanning tunneling microscopy [J]. Surf.Sci., 2010,604:322-326.
    [40]H. Kita, H. Naohara, T. Nakato, S. Taguchi, A. Aramata. Effects of adsorbed CO on hydrogen ionization and CO oxidation reactions at Pt single-crystal electrodes in acidic solution [J]. J. Electroanal. Chem.,1995,386:197-206.
    [41]A. Wieckowski, M. Rubel, C. Cutierrez. Reactive sites in bulk carbon monoxide electro-oxidation on oxide-free platinum(111) [J] J. Electroanal. Chem.,1995,382: 97-101.
    [42]N. M. Markovic, B. N. Grgur, C. A. Lucas, P. N. Ross. Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions [J]. J. Phys. Chem. B,1999,103: 487-495.
    [43]N. M. Markovic, C. A. Lucas, B. N. Grgur, P. N. Ross. Surface Electrochemistry of CO and H2/CO Mixtures at Pt(100) Interface:Electrode Kinetics and Interfacial Structures [J]. J. Phys. Chem. B,1999,103:9616-9623.
    [44]A. L. Cudero, A. Cuesta, C. Gutierrze. Potential dependence of the saturation CO coverage of Pt electrodes:The origin of the pre-peak in CO-stripping voltammograms. Part 1:Pt(111) [J]. J. Electroanal. Chem.,2005,579:1-12.
    [45]A. L. Cudero, A. Cuesta, C. Gutierrze. Potential dependence of the saturation CO coverage of Pt electrodes:The origin of the pre-peak in CO-stripping voltammograms. Part 2:Pt(100) [J]. J. Electroanal. Chem.,2006,586:204-216.
    [46]K. Kunimatsu, H. Seki, W. G. Golden, J. G. Gordon Ⅱ, M. R. Philpott. Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FT-IR reflection-absorption spectroscopy:Ⅱ. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids [J]. Langmuir,1986,2: 464-468.
    [47]S. P. Mehandru, A. B. Anderson. Potential-induced variations in properties for carbon monoxide adsorbed on a platinum electrode [J]. J. Phys. Chem.,1989,93(5): 2044-2047.
    [1]X. W. Yu, P. G. Pickup. Recent advances in direct formic acid fuel cells [J]. J. Power Sources,2008,182:124-132.
    [2]Y. Zhu, Y. Y. Kang, Z. Q. Zou, Q. Zhou, J. W. Zheng, B. J. Xia, H. Yang. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid [J]. Electrochem. Commun.,2008,10:802-805.
    [3]J. Zhang. PEM Fuel Cell Electrocatalysts and Catalyst Layers-Fundamentals and Applications [M]. London:Springer,2008.
    [4]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社,2002.
    [5]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [6]衣宝廉.燃料电池——原理技术应用[M].北京:化学工业出版社,2003.
    [7]N. M. Markovic, H. A. Gasteiger, P. N. Ross Jr., X. D. Jiang, I. Villegas, M. J. Weaver. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces [J]. Electrochim. Acta,1995,40:91-98.
    [8]R. Parsons, T. VanderNoot. The oxidation of small organic molecules:A survey of recent fuel cell related research [J]. J. Electroanal. Chem.,1988,257:9-45.
    [9]N. Kizhakevariam, M. J. Weaver. Structure and reactivity of bimetallic electrochemical interfaces:infrared spectroscopic studies of carbon monoxide adsorption and formic acid electrooxidation on antimony-modified Pt(100) and Pt(111) [J]. Surf. Sci.,1994,310:183-197.
    [10]A. Miki, S. Ye, M. Osawa. Srurface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions [J]. Chem. Commun.,2002,1500-1501.
    [11]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm. Bridge-bonded formate:active intermediate or spectator species in formic acid oxidation on a Pt film electrode? [J]. Langmuir,2006,22:10399-10408.
    [12]M. Watanabe, M. Horiuchi, S. Motoo. Electrocatalysis by ad-atoms Part ⅩⅩⅢ. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the Ⅳth and the Vth groups [J]. J. Electroanal. Chem.,1988,250:117-125.
    [13]Y. Y. Yang, S. G. Sun, Y. J. Gu, Z. Y. Zhou, C. H. Zhen. Surface modification and electrocatalytic properties of Pt(100), Pt(110), Pt(320), Pt(331) electrodes with Sb towards HCOOH oxidation [J]. Electrochim. Acta,2001,46:4339-4348
    [14]A. Fernandez-Vega, J. M. Feliu, A. Aldaz, J. Claviller. Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms [J]. J. Electroanal. Chem.,1989,258:101-113.
    [15]J. K. Lee, H. Jeon, S. Uhm, J. Lee. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells [J]. Electrochim. Acta,2008,53:6089-6092.
    [16]J. M. Feliu, A. Fernandez-Vega, A. Aldaz. New observations of a structure sensitive electrochemical behaviour of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt (111) and Pt (100) orientations [J]. J. Electroanal. Chem., 1988,256:149-163.
    [17]F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian. Epitaxial Growth of Heterogeneous Metal Nanocrystals:From Gold Nano-octahedra to Palladium and Silver Nanocubes [J]. J. Am. Chem. Soc.,2008,130:6949-6951.
    [18]E. Leiva, T. Iwasita, E. Herrero, J. M. Feliu. Effect of adatoms in the electrocatalysis of HCOOH oxidaton. A theoretical model [J]. Langmuir,1997,13: 6287-6293.
    [19]H. W. Lei, H. Hattori, H. Kita. Electrocatalysis by Pb adatoms of HCOOH oxidation at Pt(111) in acidic solution [J]. Electrochim. Acta,1996,41:1619-1628.
    [20]X. H. Xia, T. Iwasita. Influence of underpotential deposited lead upon the oxidation of HCOOH in HClO4 at platinum electrodes [J]. J. Electrochem. Soc.,1993, 140:2559-2565.
    [1]M. W. Breiter. A study of intermediates adsorbed on platinized-platinum during the stedy-state oxidation of methanol, formic acid and formaldehyde [J]. J. Electroanal. Chem.,1967,14:407-413.
    [2]A. Capon, R. Parsons. The oxidation of formic acid at noble metal electrodes:I. Review of previous work [J]. J. Electroanal. Chem.,1973,44:1-7.
    [3]R. Parsons, T. VanderNoot. The oxidation of small organic molecules:A survey of recent fuel cell related research [J]. J. Electroanal. Chem.,1988,257:9-45.
    [4]S. C. Chang, L. W. H. Leung, M. J. Weaver. Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy:electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces [J]. J. Phys. Chem.,1990,94:6013-6021.
    [5]N. M. Markovic, H. A. Gasteiger, P. N. Ross, X. D. Jiang, I. Villegas, M. J. Weaver. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces [J]. Electrochim. Acta,1995,40:91-98.
    [6]N. Kizhakevariam, M. J. Weaver. Structure and reactivity of bimetallic electrochemical interfaces:infrared spectroscopic studies of carbon monoxide adsorption and formic acid electrooxidation on antimony-modified Pt(100) and Pt(111) [J]. Surf. Sci.,1994,310:183-197.
    [7]T. Iwasita, X. H. Xia, E. Herrero, H. D. Leiss. Early Stages during the Oxidation of HCOOH on Single-Crystal Pt Electrodes As Characterized by Infrared Spectroscopy [J]. Langmuir,1996,12:4260-4265.
    [8]G. Q. Lu, A. Crown, A. Wieckowski. Formic Acid Decomposition on Polycrystalline Platinum and Palladized Platinum Electrodes [J]. J. Phys. Chem. B, 1999,103:9700-9711.
    [9]H. Okamoto, W. Kon, Y. Mukouyama. Stationary Voltammogram for Oxidation of Formic Acid on Polycrystalline Platinum [J]. J. Phys. Chem. B,2004,108: 4432-4438.
    [10]Y. X. Chen, S. Ye, M. Heinen, Z. Jusys, M. Osawa, R. J. Behm. Application of In-situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy for the Understanding of Complex Reaction Mechanism and Kinetics:Formic Acid Oxidation on a Pt Film Electrode at Elevated Temperatures [J]. J. Phys. Chem. B, 2006,110:9534-9544.
    [11]G. Samjeske, A. Miki, S. Ye, M. Osawa. Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy [J]. J. Phys. Chem. B,2006,110: 16559-16566.
    [12]G. Samjeske, M. Osawa. Current Oscillations during Formic Acid Oxidation on a Pt Electrode:Insight into the Mechanism by Time-Resolved IR Spectroscopy [J]. Angew. Chem., Int. Ed.,2005,44:5694-5698.
    [13]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm. Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell [J]. Angew. Chem., Int. Ed.,2006,45:981-985.
    [14]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm. Bridge-Bonded Formate:Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode? [J]. Langmuir,2006,22:10399-10408.
    [15]S. Uhm, H. J. Lee, J. Lee. Understanding underlying processes in formic acid fuel cells [J]. Phys. Chem. Chem. Phys.,2009,11:9326-9336.
    [16]M. Watanabe, M. Horiuchi, S. Motoo. Electrocatalysis by ad-atoms:Part ⅩⅩⅢ. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups [J]. J. Electroanal. Chem.,1988,250:117-125.
    [17]Y. Y. Yang, Z. Y. Zhou, S. G. Sun. In situ FTIRS studies of kinetics of HCOOH oxidation on Pt(110) electrode modified with antimony adatoms [J]. J. Electroanal. Chem.,2001,500:233-240.
    [18]A. Fernandez-Vega, J. M. Feliu, A. Aldaz, J. Claviller. Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part Ⅱ. Formic acid oxidation on the Pt (100)-Sb system [J]. J. Electroanal. Chem.,1989,258:101-113.
    [19]B. Peng, J. Y. Wang, H. X. Zhang, Y. H. Lin, W. B. Cai. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid [J]. Electrochem. Commun.,2009,11:831-833.
    [20]E. Leiva, T. Iwasita, E. Herrero, J. M. Feliu. Effect of Adatoms in the Electrocatalysis of HCOOH Oxidation. A Theoretical Model [J]. Langmuir,1997,13: 6287-6293.
    [21]J. K. Lee, H. Jeon, S. Uhm, J. Lee. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells [J]. Electrochim. Acta,2008,53:6089-6092.
    [22]A. V. Tripkovic, K. Dj. Popovic, R. M. Stevanovic, R. Socha, A. Kowal. Activity of a PtBi alloy in the electrochemical oxidation of formic acid [J]. Electrochem. Commun.,2006,8:1492-1498.
    [23]J. C. Bauer, X. L. Chen, Q. S. Liu, T. H. Phan, R. E. Schaak. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis [J]. J. Mater. Chem.,2008,18:275-282.
    [24]F. Matsumoto, C. Roychowdhury, F. J. DiSalvo, H. D. Abruna. Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation [J]. J. Electrochem. Soc.,2008,155:B148-B154.
    [25]A. Miura, H. S. Wang, B. M. Leonard, H. D. Abruna, F. J. DiSalvo. Synthesis of Intermetallic PtZn Nanoparticles by Reaction of Pt Nanoparticles with Zn Vapor and Their Application as Fuel Cell Catalysts [J]. Chem. Mater.,2009,21:2661-2667.
    [26]B. Beden, A. Bewick, C. Lamy. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode [J]. J. Electroanal. Chem.,1983,148:147-160.
    [27]K. Kunimatsu. Infrared spectroscopic study of methanol and formic acid adsorbates on a platinum electrode:Part Ⅰ. Comparison of the infrared absorption intensities of linear CO(a) derived from CO, CH3OH and HCOOH [J]. J. Electroanal. Chem.,1986,213:149-157.
    [28]S. G. Sun, J. Clavilier, A. Bewick. The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution:an emirs study [J]. J. Electroanal. Chem.,1988,240:147-159.
    [29]F. Kitamura, M. Takahashi, M. Ito. Carbon monoxide adsorption on platinum (111) single-crystal electrode surface studied by infrared reflection-absorption spectroscopy [J]. Surf. Sci.,1989,223:493-508.
    [30]C. Lamy, J. M. Leger. [J]. J. Chim. Phys.,1991,88:1649.
    [31]R. Gomez, M. J. Weaver. Electrochemical infrared studies of monocrystalline iridium surfaces Part I:Electrooxidation of formic acid and methanol [J]. J. Electroanal. Chem.,1997,435:205-215.
    [32]J. M. Delgado, A. Rodes, J. M. Orts. B3LYP and in Situ ATR-SEIRAS Study of the Infrared Behavior and Bonding Mode of Adsorbed Acetate Anions on Silver Thin-Film Electrodes [J]. J. Phys. Chem. C,2007,111:14476-14483.
    [33]J. M. Delgado, R. Blanco, J. M. Orts, J. M. Perez, A. Rodes. DFT and In-Situ Spectroelectrochemical Study of the Adsorption of Fluoroacetate Anions at Gold Electrodes [J]. J. Phys. Chem. C,2009,113:989-1000.
    [34]M. Neurock, M. Janik, A. Wieckowski. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt [J]. Faraday Discuss.,2008,140:363-378.
    [35]H. F. Wang, Z. P. Liu. Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model [J]. J. Phys. Chem. C, 2009,113:17502-17508.
    [36]Y. G. Yan, Q. X. Li, S. J. Huo, M. Ma, W. B. Cai, M. Osawa. Ubiquitous Strategy for Probing ATR Surface-Enhanced Infrared Absorption at Platinum Group Metal-Electrolyte Interfaces [J]. J. Phys. Chem. B,2005,109:7900-7906.
    [37]G. Jung, H. Park, C. K. Rhee. Contrasting electrochemical behavior of irreversibly adsorbed Sb monolayer on Pt(100) and Pt(111) single crystal electrode surfaces [J]. J. Electroanal. Chem.,1998,453:243-247.
    [38]D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41:7892-7895.
    [39]G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.:Condens. Matter,1994,6:8245-8257.
    [40]G. Kresse, J. Hafner Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium [J]. Phys. Rev. B, 1994,49:14251-14269.
    [41]X. K. Xue, J. Y. Wang, Q. X. Li, Y. G. Yan, J. H. Liu, W. B. Cai. Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes [J]. Anal. Chem.,2008,80:166-171.
    [42]H. Miyake, T. Okada, G. Samjeske, M. Osawa. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy [J]. Phys. Chem. Chem. Phys.,2008,10:3662-3669.
    [43]N. M. Markovic, P. N. Ross. Surface science studies of model fuel cell electrocatalysts [J]. Surf. Sci. Rep.,2002,45:117-229.
    [44]P. Waszczuk, T. M. Barnard, C. Rice, R. I. Masel, A. Wieckowski. A nanoparticle catalyst with superior activity for electrooxidation of formic acid [J]. Electrochem. Commun.,2002,4:599-603.
    [45]R. Bader. Atoms in Molecules:A Quantum Theory; [M]. Oxford University Press: New York,1999.
    [46]E. Sanville, S. D. Kenny, R. Smith, G. Henkelman. Improved grid-based algorithm for Bader charge allocation [J]. J. Comput. Chem.,2007,28:899-908.
    [1]E. Antolini. Catalysts for direct ethanol fuel cells [J].J. Power Sources,2007,170: 1-12.
    [2]Q. Wang, G. Q. Sun, L. H. Jiang, Q. Xin, S. G. Sun, Y. X. Jiang, S. P. Chen, Z. Jusys, R. J. Behm. Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: in situ FTIR spectroscopy and on-line DEMS studies [J]. Phys. Chem. Chem. Phys.,2007,9:2686-2696.
    [3]K. S. Lee, I. S. Park, Y. H. Cho, D. S. Jung, N. Jung, H. Y. Park, Y. E. Sung. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells [J]. J. Catal.,2008,258:143-152.
    [4]M. J. Giz, G. A. Camara. The ethanol electrooxidation reaction at Pt(111):The effect of ethanol concentration [J]. J. Electroanal. Chem.,2009,625:117-122.
    [5]J. Wang, S. Wasmus, R. F. Savinell. Evaluation of ehanol,1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell [J]. J. Electrochem. Soc., 1995,142:4218-4224.
    [6]G. A. Camara, R. B. de Lima, T. Iwasita. The influence of PtRu atomic composition on the yields of ethanol oxidation:A study by in situ FTIR spectroscopy [J].J. Electroanal Chem.,2006,585:128-131.
    [7]G. A. Camara, T. Iwasita. Parallel pathways of ethanol oxidation:The effect of ethanol concentration [J]. J. Electroanal. Chem.,2005,578:315-321.
    [8]J. M. Leger. Preparation and activity of mono- or bi-metallic nanoparticles for electrocatalytic reactions [J]. Electrochim. Acta,2007,50:3123-3129.
    [9]S. S Gupta, S. Singh, J. Datta. Promoting role of unalloyed Sn in PtSn binary catalysts for ethanol electro-oxidation [J]. Mater. Chem. Phys.,2009,116:223-228.
    [10]A. Kowal, M. Li, M. Shao, K. Sasaki, M. B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, R. R. Adzic. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2 [J]. Nature Materials,2009,8:325-330.
    [11]S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos, P. Tsiakaras. The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs [J]. Appl. Catal. B:Environ.,2005,55:65-72.