1. [地质云]滑坡
催化剂-载体相互作用及电子结构对催化行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFCs)的大规模商业化要求降低催化剂成本,提高催化剂的活性、稳定性和寿命。目前阴极催化剂主要以Pt金属为主,以现有Pt地球的存储量计算,燃料电池要商业化,Pt的担载量必须降低十倍,因此需要寻找有效的替Pt催化剂。此外,燃料电池在动态负载下造成的催化剂腐蚀、流失;阴极氧还原本身较慢的反应动力学速率;以及氧还原中间物种对金属催化剂和载体的腐蚀等因素,均需要设计和制备出高活性、高稳定性和长寿命的催化剂。直接甲醇燃料电池(DMFCs)中甲醇较慢的氧化动力学速率也是制约DMFCs商业化的原因之一,如何有效提高阳极催化剂的抗CO中毒性能,提高催化剂活性是DMFCs面临的主要问题之一。
     基于上述问题,本文结合理论计算和实验方法对非铂催化剂、高稳定性催化剂、甲醇氧化结构敏感反应以及PtM阳极催化剂进行研究,了解催化剂-载体相互作用及电子结构对催化剂催化行为的影响。一方面从实验现象出发,采用量化计算探讨宏观现象背后的量子化学原因,为实验进一步改进提供理论依据;一方面则从理论计算出发,探索甲醇催化剂机理和导致催化剂活性降低的本质原因,提出设计高活性和提高催化剂稳定性的理论依据,用于指导实验,并采用实验进行验证。
     首先,针对Pt、Pd对氧气还原(ORR)催化活性随着载体从C到TiO2改变而发生变化的实验现象,采用密度泛函方法(DFT)从理论角度研究了C和TiO2载体对Pt和Pd催化氧还原活性的影响。首先,在外加电场情况下,计算了电子给体(催化剂)与受体(氧气)之间轨道对称性、能级差以及轨道重叠程度。发现与C(110)载体相比,TiO2(110)载体可以有效地增大Pd/TiO2 HOMO轨道的空间尺寸,克服了Pd/C的HOMO与O2的LUMO空间尺寸悬殊,重叠性小,因而电子转移困难。其次,计算了ORR中间物种(Oads)在不同催化剂表面的吸附能,发现Oads在Pt/TiO2上的吸附能大于Pd/TiO2。计算的差分电子密度与分态密度显示,由于Pt与TiO2(110)表面Ti的强相互作用,Pt的d带空穴值增加,增强了Oads的吸附,阻碍了ORR后续反应的进行;而Pd与TiO2表面O的强相互作用,则削弱了中间物种Oads在Pd上的吸附,使ORR后续反应顺利进行。
     其次,通过将碳纳米管巯基化,制备出Pt/SH-MWCNTs催化剂。催化剂活性和稳定性测试发现:Pt/SH-MWCNTs能较好的保持催化氧还原活性,且其Pt的电化学活性表面积(ECSA)在循环伏安(CV)扫描600圈后仅降低了15%,商业化的JM-Pt/C和Pt/FMWCNTs的ECSA均降低了35%。量化计算发现,巯基化碳管S-SWNTs具有较O-SWNTs更高的抗腐蚀性能,且能提高负载Pt催化剂的抗氧化性。主要原因是:与羟基相比,巯基不仅能提供催化剂的沉积活性位,还能有效保持碳纳米管本身的完美构型、维持碳管本身的抗腐蚀性能,并降低负载Pt催化剂上含氧物种的吸附,从而提高Pt纳米粒子的氧化电位。羟基虽然也能提供催化剂沉积的活性位,但其造成碳纳米管的缺陷容易受到含氧物种的攻击,而发生氧化腐蚀。
     再次,甲醇的电化学氧化在Pt电极上为结构敏感反应,其不仅依赖于甲醇的脱氢步骤,还依赖于欠电位沉积Hupd的脱附、水的活化和CO的氧化。据此,本节采用电势相关的DFT方法计算Pt(111)和Pt(110)-(1×1)面上Hupd的脱附、水的活化离解和CO的氧化过程。研究发现:Pt(111)上Hupd的脱附电位较Pt(110)上更负,Hupd的脱附与H原子与Pt表面的相互作用有关;Pt(111)上水的活化离解发生电位与Pt(110)-(1×1)相同,水的离解主要受到Pt表面剩余电荷的影响;在低电位下Pt(111)更利于CO的氧化;OHad的的产生能有效推动CO的氧化去除,但OHad的形成还应与CO的产生、氧化速率匹配,过剩的OHad以及产物会占据催化剂的活性位置,从而阻碍和抑制甲醇的吸附和CO的氧化。
     最后,通过理论建模计算分析,从Zn、Cd、Pb、Bi、Tl、Hg、Cu、In金属中筛选出Pb、Bi、In三种掺杂金属具有提高Pt催化甲醇活性的能力。并以Pb为例,计算比较了Pt(110)和PtPb(110)上Hupd的脱附、CO和含氧物种的吸附。理论计算发现:Pb并不利于PtPb(110)上Hupd的脱附;PtPb(110)对CO的吸附较Pt(110)略有减小;对O的吸附显著增强,且Pb为含氧物种的富集源,能有效促进邻近Pt位上CO的氧化脱附,从而提高PtPb(110)的催化活性。欠电位沉积法制备的upd-Pb/Pt电极与纯Pt电极在酸性和碱性介质中甲醇的催化活性研究进一步证实了上述计算结果,即Pb修饰增强Pt催化活性的主要原因是Pb利于含氧物种的形成和吸附。
Fuel cells have been recognized as clean energy-converting devices due to their high efficiency and low emission, which have taken great advances in recent decades. Despite these efforts, there are several scientific and technological difficulties hampering the widespread commercialization of fuel cells, such as (1) high Pt loading on the electrodes; (2) poor stability of the Pt-based electrocatalysts; (3) low dynamic reaction rate on anode and cathode fuel cells.
     Based above problems, in this dissertation, quantum chemistry and experiment method are combined to study Pt-free, highly stabile and active catalysts for oxygen reduction reaction and methanol electroxidaiton. On the one hand, based on the experiment results, theory calculation is used to establish the quantum chemistry explanation behind the experimental phenomena. On the other hand, theory calculation is performed to explore the reaction mechanisms and design the highly active catalysts. And then the results of theory calculation are validated by the experiment at last.
     Firstly, experimental phenomenon shows that catalytic activity of Pt and Pd for oxygen reduction reaction (ORR) changes with catalyst supports from C to TiO2. Based on the phenomenon, density function theory (DFT) was used to elucidate the cause behind the difference in catalysis caused by catalyst supports. At first, factors closely associated with the first electron transfer of the ORR were assessed in the light of quantum chemistry. Then intermediate (atomic oxygen, O) adsorption strength on the catalyst surface was calculated. The results show that, in terms of minimum energy difference, the best orbital symmetry match, and the maximum orbital overlap, TiO2 does bring about a very positive effect on catalysts Pd/TiO2 for the first electron transfer of the ORR. Especially, TiO2 remarkably expands the space size of Pd/TiO2 HOMO orbital and improves orbital overlap of Pd/TiO2 HOMO and O2 LUMO. The analysis of deformation density and partial density of state shows that the strong interaction between Pt and Ti leads to a strong adsorption of intermediate O on Pt/TiO2, but the strong interaction between Pd and surface O causes positive net charge of Pd and a weak adsorption of intermediate O on Pd/TiO2. Thus, the ORR can proceed more smoothly on Pd/TiO2 than Pt/TiO2 in every respect of maximum orbital overlap and rate delay by intermediate O. The research also discloses that several factors lead to less activity of TiO2 supported Pt and Pd catalysts than the C-supported ones for the ORR. These factors include the poor dispersion of Pt and Pd particles on TiO2, poor electric conduction of TiO2 carrier itself, and bigger energy difference between HOMO of TiO2 carried metallic catalysts and LUMO of O2 molecule due to electrons deeply embedded in the semiconductor TiO2 carrier.
     Secondly, carbon nanotubes (CNTs) have large surface area, excellent conductivity, and high level of chemical stability. However, the interaction between the CNTs and Pt catalysts is still one of the main problems which induce the short lifetime of catalysts. In present work, thiol (-SH) is introduced into multiwalled carbon nanotubes (MWCNTs) to synthesize the Pt/SH-MWCNTs catalysts. It shows high durability during 600 repeated potential cycles. The platinum ECSA of the Pt/SH-MWCNTs decreases about 15% even after 600 cycles, while the JM-Pt/C and Pt/FMWCNTs catalysts have lost about 35% of their platinum ECSA. The high stability of Pt/SH-MWCNTs still has high catalytic activity for ORR. To compare the effect of thiol and hydroxyl group on stability of catalysts, and explore the stability mechanisms of Pt/SH-MWCNTs caused by thiol, density functional theory (DFT) calculations are further performed. As revealed by migration and agglomerate active energy calculation for Pt particles on O-SWNTs and S-SWNTs, the interaction between the Pt and O-SWNTs or S-SWNTs has indistinctive difference. The adsorption configurations of Oad atom on Pt5/S-SWNTs and Pt5/O-SWNTs show that S-SWNTs have stronger corrosion-resistance than that of O-SWNTs, becuase the S atom keeps the perfect structure of SWNTs. The lower-lying d-band center of Pt cluster on S-SWNTs can be considered as an indication for higher oxidation-resistance of Pt. The underlying mechanism, indicated by DFT calculations, could be ascribed to that the S atom of thiol group keeps not only the corrosion-resistance of carbon nanotubes, but also enhances the oxidation-resistance of Pt particles.
     Thirdly, methanol electrooxidation has been proven to be a surface structure sensitive reaction on platinum (Pt). It depends on desorption of underpotential deposition (upd) of hydrogen (Hupd), methanol dehydrogenation, OHad formation, and CO oxidation. The structure sensitivity of catalysts for methanol electrooxidation has hitherto not been well studied or understood. In this work, full potential-dependent periodic DFT calculations were performed to elucidate structure sensitivity and potential-dependent difference in Hupd desorption, water dissociation and CO oxidation over low Miller index planes (111) and (110)-(1×1) of platinum single-crystal electrode surface. The results show that the Hupd desorption is easier on Pt (111) than that on Pt (110)-(1×1), the water dissociation and OHad formation occur at same electrode potentials on Pt (111) as that on Pt (110)-(1×1), and the Pt (111) favors the CO oxidation at low potentials. At anodic potentials, the difference in Hupd adsorption and desorption potential on Pt surface is due to the difference in the adsorption energy on Pt surface, and the water dissociation and OHad formation deeply depend on the surface excess electrons. The relatively weak adsorption energy of OHad and CO on platinum surface would support an easy oxidation of CO on platinum electrode.
     Finally, theory calculation was performed to select the doped metal M to enhance the activity of Pt for CO and methanol oxidation. Three metals Pb, Bi and In were picked out. And then the Pb doped Pt (110) surface was calculated carefully to acquire the function of Pb on the activity of Pt (110) for methanol oxidation. The results show that the Pb dope to Pt (110) surface makes no good for Hupd desorption. The adsorption of CO on Pb doped Pt (110) surface is weakened in comparison with that on Pt (110). However, the adsorption of O on Pb doped Pt (110) surface is strengthened in comparison with that on Pt (110). What’s more, CO is hardly adsorbed on Pb but oxygen species have astrong adsorption on Pb. Thus, Pb doped Pt (110) surface would be more conducive for methanol oxidation because of oxygen species richening by Pb atoms. Underpotential deposition of Pb on Pt electrode was adopted to prepare upd-Pb/Pt electrode, on which methanol oxidation in acid and basic solution was investigated. The results were identical with the conclusions from theory calculation.
引文
[1] X. W. Yu, S. Y. Ye. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst [J]. J. Power Sources, 2007, 172: 133-144.
    [2]魏子栋,李莉,李兰兰,唐致远,郭鹤桐.氧电极催化材料的研究现状[J].电源技术, 2004, 28(2):116-120.
    [3] J. C. Ampphlett, B. A. Peppley, E. Halliop. The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell. J Power Source, 2001, 96: 204-213.
    [4] H. A. Baragan. Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell. J. Power Source, 2002, 104: 66-72.
    [5] R. F. Service. Shrinking fuel cells promise power in your pocket. Science, 2002, 296: 1222-1224.
    [6] T. Shimizu, T. Momma, M. Mohamedi. Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J. Power Source, 2004, 137: 277-283.
    [7]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社, 2002.
    [8]衣宝廉.燃料电池-原理、技术、应用[M].化学工业出版社,北京, 2003:160.
    [9]陈延禧.电解工程[M].大津:天津科一学技术出版社,1993, 197-198.
    [10] L.E.Chapman. Proc.7th Intersociety Energy Conservation Engineering Conference [J]. American Nuclear Society, 1972: 466.
    [11] M. Sossina, Haile. Fuel cell materials and components [J]. Acta Materialia, 2003, 51:5981-6000.
    [12]衣宝廉.质子交换膜燃料电池((PEMFC)—国内外状况与主要技术问题[J].电源技术, 1997, 21(2): 80.
    [13] T. R. Ralph. Proton Exchange Membrane Fuel Cell [J]. Platinum Metals Rev., 1997, 41(3): 102.
    [14] G. Q. Lu, C. Y. Wang, T. J. Yen. Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochim. Acta, 2004, 49: 821-828.
    [15] L. J. hobson, Y. Nakano, H. Ozu, S. hayase. Targeting Improve DMFC Performance [J]. J. of Power Sources, 2002, 104: 79.
    [16] H. G. Haubold, T. Vad. Nano Structure of Nafion: A SAXS study [J]. Electrochim. Acta, 2001,46:1559.
    [17] S. Hikita, K.Yamane, Y. Nakajima, Influence of Cell Perssure and Amount of Electrode Catalyst in MEA on Methanol Crossover of Direct Methanol Fuel Cell [J]. JSAE, Review, 2002, 23: 133.
    [18] J. Prakash, A. T. Donald. Kinetic investigation of oxygen reduction and evolution reaction on lead ruthenate catalysts [J]. J. Electrochem. Soc., 1999, 146(11): 4145.
    [19] S. Walch, A. Dhanada, M. Aryanpour, H. Pitsch. Mechanism of molecular oxygen reduction at the cathode of a PEM fuel cell: Non-electrochemical reactions on catalytic Pt particles [J]. J. Phys. Chem. C, 2008, 112(22): 8464-8475.
    [20] A. B. Anderson, T. V. Albu. Ab intio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction [J]. J. Am. Chem. Soc., 1999, 121: 11855-11863.
    [21] A. B. Anderson, T. V. Albu, Ab intio approach to calculating activation energies as functions of electrode potential trial application to four-electron reduction of oxygen [J]. Electrochem. Comm., 1999, 1: 203-206.
    [22] T. V. Albu, A. B. Anderson. Studies of model dependence in an ab initio approach to uncatalyzed oxygen reduction and the calculation of transfer coefficients [J]. Electrochimica Acta, 2001, 46: 3001-3013.
    [23] R. A. Sidik, A. B. Anderson. Density function theory study of O2 electroreduction when bonded to a Pt dual site [J]. J. Electroanal. Chem., 2002, 528: 69-76.
    [24] A. B. Anderson, T. V. Albu. An ab initio model including dependence on the electrode potential [J]. J. Electrochem. Soc. 2000, 147: 4229-4238.
    [25] A. B. Anderson. Theory at the electrochemical interface: reversible potentials and potential-dependent activation energies [J]. Electrochimica Acta, 2003, 48: 3743-3749.
    [26] A. B. Anderson, Y. Cai, R. A. Sidik, D. B. Kang. Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum [J]. J. Electronanl. Chem., 2005, 580: 17-22.
    [27] T. V. Albu, S. E. Mikel. Performance of hybrid density functional theory methods toward oxygen electroreduction over platinum [J]. Electrochimica Acta, 2007, 52: 3149-3159.
    [28] J. S. Filhol, M. Neurock. Elucidation of the electrochemical activation of water over Pd by first principles [J]. Angew. Chem. Int. Ed., 2006, 45(3): 402-406.
    [29] M. J. Janik, C. D. Taylor, M. Neurock. First-principles analysis of the initial electroreduction steps of oxygen over Pt(111) [J]. J. Electrochem. Soc., 2009, 156: 126-135.
    [30] J.K.N?rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist. Origin of the overpotential for oxygenreduction at a fuel-cell cathode [J]. J. Phys. Chem. B, 2004,108:17886-17892
    [31] G.S. Kalberg, J. Rossmeisl, J.K. N?rskov. Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory [J]. Phys. Chem. Chem. Phys., 2007, 9(37): 5158-5161
    [32] M.H. Shao, P. Liu, R.R. Adzic. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes [J], J. Am. Chem. Soc., 2006, 128: 7408-7409.
    [33] Y. X. Wang, P. B. Balbuena. Ab initio molecular dynamic simulations of the oxygen reduction on a Pt(111) surface in the presence of hydrated hydronium (H3O)+(H2O)2:direct or series pathway [J]. J. Phys. Chem. B, 2005, 109: 14896-14907.
    [34] Y. X. Wang, P. B. Balbuena. Potential energy surface profile of the oxygen reduction reaction on a Pt cluster: adsorption and decomposition of OOH and H2O2 [J]. J. Chem. Theory Comput., 2005, 1: 935-943
    [35] C. Harting, M. T. M. Koper. Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction [J]. J. Electroanal. Chem., 2002, 532: 165-170.
    [36] V. R. Stamenkovic, B. Fowler, B. J. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J]. Science, 2007, 315(26): 493-497.
    [37] V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. N?rskov. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure [J]. Angew. Chem. Int. Ed. 2006, 45(18): 2897-2901.
    [38] M. H. Shao, P. Liu, J. L. Zhang, R. Adzic. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction [J]. J. Phys. Chem. B 2007, 111 (24): 6772-6775.
    [39] V. Jalan, E. J. Taylor. Importance of interatomic spaceing in catalytic reduciton of oxygen in phosphoric acid [J]. J. Electrochem. Soc., 1983, 83(1): 1072.
    [40] S. Mulerjee, S. Srinivasan. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells [J]. J. Electroanal. Chem., 1993, 357: 201.
    [41] J. T. Glass, G. L. Cahen, G. E. Stoner. Effect of metallurgical varlables on the electrocatlaytic properties of PtCr alloys [J]. J. Electrochem Soc., 1987, 134 (1): 58.
    [42]李长志,文纲要,张颖. PtCr/C- Nafion膜氧电极的电催化活性[J].电源技术, 1998, 22(5): 201.
    [43]文纲要,李长志,孙公权.燃料电池氧阴极催化剂的研究[J].电池, 1990, 29(3):110.
    [44] M. T. Paffett. G. L. Beery, S. Gottesfeld, Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened [J]. J. Electrochem. Soc., 1988, 135(6):1431.
    [45] T. Tode, H. I. Igarash, H. Uchida. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co [J]. J. Electrochem. Soc., 1999, 146: 3750.
    [46] T. Mizukami, T. Nakamera, P. Stonehart. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells [J]. J. Electrochem. Soc., 1994, 141(10): 2659.
    [47]魏子栋,郭鹤桐,唐致远.载体上铁与钴对铂的锚定效应[J].电化学, 1998, 4(1): 42.
    [48] Z. D. Wei, H. T. Guo, Z. Y. Tang. Heat-treatment of carbon-based powers carrying Pt alloy catalysts for oxygen reduction influence on corrosion resistance and particle size [J]. J. Power Source, 1996, 62(2): 233-236.
    [49]魏子栋,郭鹤桐,唐致远.氧在Pt-Fe-Co/C合金催化剂上的还原[J].催化学报, 1995, 16(2): 142.
    [50] Z. D. Wei, F. Yin, L. L. Li, Study of catalysts Pt/C and Pt-Fe/C for oxygen reduction in the light of Quantum Chemistry [J]. J. Electroanal. Chem., 2003, 541(1): 185.
    [51] M. S. El-Deab, T. Ohsaka. Electrocatalysis by design: effect of the loading level of Au nanoparticles-MnOx nanoparticles binary catalysts on the electrochemical redution of molecular oxygen [J]. Electrochimica Acta, 2007, 52: 2166-2174.
    [52] M. S. El-Deab, T. Ohsaka. Manganese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction [J]. Angew. Chem. Int. Ed., 2006, 45(36): 5963-5966.
    [53] J. L. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, R. R. Adzic. Mixed-metal Pt monolayer electrocatlaysts for enhanced oxygen reduction kinetics [J] J. Am. Chem. Soc., 2005, 127: 12480-12481.
    [54] J. L. Zhang, K. Sasaki, E. Sutter, R. R. Adzic. Stabilization of platinum oxygen reduction electrocatalysts using gold clusters [J]. Science, 2007, 315: 220-222.
    [55] B. Hammer, J. K. N?rskov. Electronic factors determining the reactivity of metal surfaces [J]. Surf. Sci. 1995, 343, 211-22.
    [56] B.Hammer, J.K. N?rskov. Theoretical surface science and catalysis-calculation and concepts [J]. Adv. Catal., 2000, 45: 71-129.
    [57] M. H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. B. Vukmirovic, R. R. Adzic. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction [J]. Langmuir, 2006, 22: 10409-10415
    [58] M. H. Shao, P. Liu, J. L. Zhang, R. Adzic. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction [J]. J. Am. Chem. Soc., 2007, Published on Web 04/19/2007 PAGE EST: 3.8.
    [59] M. H. Shao, P. Liu, R. R. Adzic. Superoxide anion is the intermediate in the oxygen reductionreaction on Platinum electrodes [J]. J. Am. Chem. Soc. 2006, 128(23): 7408-7049.
    [60] Y. G. Suo, L. Zhuang, J. T. Lu. First-Principles considerations in the design of Pd-Alloy catalysts for oxygen reduction [J]. Angew. Chem. 2007, 119: 2920-2922.
    [61] Y. X. Wang, P. B. Balbuena. Design of oxygen reduction bimetallic catalysts: ab initio derived thermodynamic guidelines [J]. J. Phys. Chem. B, 2005, 109: 18902-18906.
    [62] W. Vielstich, X. H. Xia. Comment on“electrochemistry of methanol at low index crystal planes of platinum: an integrated voltammetric and chronoamperometric study”[J]. J. Phys. Chem. 1995, 99: 10421.
    [63] D. S. Corrigan, M. J. Weaver. Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy [J]. J. Electroanal. Chem. 1988, 241: 143-162.
    [64] E. Herrero, W. Chrzanowski, A. Wieckowski. Dual Path Mechanism in Methanol Electrooxidation on a Platinum Electrode [J]. J. Phys. Chem. 1995, 99: 10423-10424.
    [65] Z. D. Wei, H. T. Guo, Z. Y. Tang. Methanol electrooxidation on Pt and Pt-Sn/C alloy catalysts dispersed on active carbon [J]. J. Power Source, 1996, 58(2): 239.
    [66]魏子栋,李兰兰,李莉,曾少华.甲醇电化学催化氧化机理研究进展[J].化学通报, 2004, 1: 9-14.
    [67]李兰兰.甲醇氧化催化剂的量子化学研究[D].硕士学位论文,重庆大学, 2003.
    [68]李兰兰,魏子栋,李莉,孙才新.铂催化甲醇氧化开始步骤的研究[J].化学学报, 2006, 64(11): 1173-1178.
    [69] Yasuharu Okamoto, Osamu Sugino, Yuji Mochizuki, Tamio Ikeshoji, Yoshitada Morikawa. Comparative study of dehydrogenation of methanol at Pt(111)/water and Pt(111)/vacuum interfaces[J]. Chemical Physics Letters, 2003, 377: 236-242.
    [70] V. S. Bagotzky, Yu. B. Vassiliev, O.A. Khazova. Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals [J]. J. Electroanal. Chem., 1977, 81(2): 229.
    [71] G. C. Wang, Y. H. Zhou, Y. Morikawa, J. J. Nakamura, Z. S. Cai, X. Z. Zhao. Kinetic mechanism of methanol decomposition on Ni(111) surface: A theoretical study [J]. J. Phys. Chem. B, 2005, 109: 12431-12442.
    [72] Y. H. Zhou, P. H. Lv, G. C. Wang. DFT studies of methanol decomposition on Ni(100) surface: Compared with Ni(111) surface [J]. Journal of Molecular catalysis A: Chemical, 2006, 258: 203-215.
    [73] C. Hartnig, E. Spohr. The role of water in the initial steps of methanol oxidation on Pt(111) [J]. Chemical Physics, 2005, 319: 185-191.
    [74] A. Hamnett. Mechanism and electrocatalysis in the direct methanol fuel cell [J]. Catalysis Today. 1997, 38: 445.
    [75] J. Prabhuram, R. Manohara. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkal and strong acid [J]. J. Power Sources. 1998, 74: 54.
    [76] A. Kabbabi, R. Faure, R. Durand, C. Lamy. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum- ruthenium bulk alloy electrodes [J]. J. Electroanal. Chem., 1998, 444: 41.
    [77] D. Kardash, J. Huang, C. Korzeniewski. Surface electrochemistry of CO and methanol at 25-75℃Probed in Situ by Infrared Spectroscopy [J]. Langmuir, 2000, 16: 2019.
    [78] J. Munk, P. A. Christensen, A. Hamnett, E. Skou. The electrochemical oxidation of methanol on platinum and platinum+ruthenium particulate electrodes studied by in-situm FTIR spectroscopy and electrochemical mass spectrometry [J]. J. Electroanal. Chem. 1996, 401: 215.
    [79]魏子栋,三木敦史,大森唯义,大泽雅俊.甲醇在欠电位沉积Sn/Pt电极上催化氧化.物理化学学报, 2002, 18 (12): 1120-1124.
    [80] D.C.Yong. Computational chemistry: a practical guide for applying techniques to real-word problems [M]. John wiley & Sons, Inc, 2001.
    [81] J.B. Foresman, A.E. Frisch. Exploring chemistry with electronic structure methods: a guide to using Gaussian [M]. Gaussian, Inc, Pittsburge, PA.
    [82] R.G.Parr, W. Yang. Density functional theory of atoms and molecules [M]. New York, oxford university press, 1989.
    [83] A.Wieckowski, E.R.Savinova, C.G. Vayenas. Catalysis and electrocatalysis at nanoparticale surfaces [M]. New York. Basel, Marcle dekker, Inc., 2003.
    [84] C.G. Vayenas, B.E.Conway, R.E. White. Modern aspects of electrochemistry No.36, Chapter 2, Ab initio quantum-chemical calculations in electrochemistry [M]. Springer US, 2003.
    [85] E.V. Stefanovich, T.N. Truonq. A simple method for incorporating Madelung field effcets into ab inito embedded cluster calculations of crystals and macromolecules [J], J. Phys. Chem. B, 1998, 10(16)2: 3018-3022.
    [86] X. Y. Wu, K.R. Asork. A hybrid density functional clusters study of the bulk and surface electronic structures of plutonium monoxide [J]. Physica B: Condensed Matter, 2001, 293(34): 362-375.
    [87] X.Y. Wu and K.R. Asork, A hybrid density functional cluster study of the bulk and surface electronic structures of PuO2 [J]. Physica B: Condensed Matter, 2001, 301(3-4): 359-369.
    [88] Y. J. Xu, J.Q. Li, Y.F. Zhang, W.K. Chen. CO adsorption on MgO (001) surface with oxygenvacancy and its low-coordinated surface sites: embedded cluster model density functional study employing charge self-consistent technique [J]. Surface Science, 2003, 525(1-3): 13-23
    [89] J.M. Vollmer, E.V. Stefanovich, T.N. Truonq. Molecular modeling of interactions in zeolites: an ab initio embedded cluster study of NH3 adsorption in chabazite [J]. J. Phys. Chem. B, 1999, 103(4): 9415-9422.
    [90] T. Bredow, E. Apria. Cluster and periodic ab initio calculations on K/TiO2 (110) [J]. Surface Science, 1998, 418(1): 150-165.
    [91]徐昕,中迕博,江原正博.金属氧化物SPC簇模型方法——嵌入簇点电量的确定[J].中国科学(B辑),1998, 28(1): 40-46.
    [92]吕鑫,徐昕,王南钦,张乾二.簇模型选取的配位数原则——CO/ZnO吸附体系的ab initio研究[J].高等学校化学学报, 1998, 19(5): 783-788.
    [93] S. P. Bates, G. Kresse, M. J. Gillan. A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations [J]. Surf. Sci., 1997, 385: 386-394.
    [94] J. S. Guo, G. Q. Sun, Z. M. Wu, S. G. Sun, S. Y. Yan, L. Cao, Y. S. Yan, D. S. Su, Q. Xin. The durability of polyol-synthesized PtRu/C for direct methanol fuel cells [J]. J. Power Sources, 2007, 172(2): 666-675.
    [95] Z. W. Chen, M. Waje, W. Z. Li, Y. S. Yan. Supportless Pt and PtPd Nanotubes as Electrocatalysts for oxygen-reduction reactions [J]. Angew. Chem. Int. Ed. 2007, 46(22): 4060-4063.
    [96] W. M. Wang, D. Zheng, C. Du, Z. Q. Zou, X. G. Zhang, B. J. Xia, H. Yang. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction [J]. J. Power Sources, 2007, 167(2): 243-249.
    [97] D. Villers, S. H. Sun, A. M. S. Erventi, J. P. Dodelet, S. Desilets. Characterization of Pt Nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen [J]. J. Phys. Chem. B 2006, 110(51): 25916-25925.
    [98] J. Olivier-Fourcade, M. Womes, J-C. Jumas, F. L. Peltier, S. Morin, B Didillon. Investigation of redox properties of different PtSn/Al2O3 catalysts [J]. ChemPhysChem, 2004, 5(11): 1734-1744.
    [99] S. G. Neophytides, K. Murase, S. Zafeiratos, G. Papakonstantinou, F. E. Paloukis, N. V. Krstajic, M. M. Jaksic. Composite hypo-hyper-d-intermetallic and interionic phases as supported interactive electrocatalysts [J]. J. Phys. Chem. B 2006, 110(7): 3030-3042.
    [100] S. Meyer, S. Saborowski, B. Sch?fer. Photocatalytic reforming of methanol by spatially separated Pd particles on special TiO2 layers [J]. ChemPhysChem, 2006, 7(3): 572-574.
    [101] H-T. Chen, Y. M. Choi, M. Liu, M. C. Lin. A Theoretical study of surface reductionmechanisms of CeO2 (111) and (110) by H2 [J]. ChemPhysChem, 2007, 8(6): 849-855.
    [102]顾虹,许波连,周静,李远志,范以宁.负载型Pd/TiO2和Pd-Ag/TiO2催化剂的乙炔选择性加氢催化性能[J].物理化学学报(Acta Phys. Chim. Sin), 2006, 22(6):712-715.
    [103] O. S. Alexeev, S. Y. Chin, M. H. Engelhard, L. Ortiz-Soto, M. D. Amiridis. Effects of Reduction Temperature and Metal-Support Interactions on the Catalytic Activity of Pt/Al2O3 Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2 [J]. J. Phys. Chem. B, 2005, 109(49): 23430-23443.
    [104] J. L. Fernandez, V. Raghuveer, A. Manthiram, A. J. Bard. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells [J]. J. Am. Chem. Soc., 2005, 127(38):13100-13101.
    [105] D. L. S. Nieskens, D. Curulla-Ferré, J. W. Niemantsverdriet. Atom-molecule interactions on transition metal surfaces: A DFT study of CO and several atoms on Rh(100), Pd(100) and Ir(100) [J]. ChemPhysChem, 2006, 7(5): 1075-1080.
    [106] M. H. Shao, K. Sasaki, R. R. Adzic. Pd-Fe Nanoparticles as electrocatalysts for oxygen reduction [J]. J. Am. Chem. Soc., 2006, 128(11): 3526-3527.
    [107] M. Nie, P. K. Shen, Z. D. Wei. Nanocrystaline tungsten carbide supported Au–Pd electrocatalyst for oxygen reduction [J]. J. Power Sources, 2007, 167(1): 69-73.
    [108] E. J. Lamas, P. B. Balbuena. Oxygen reduction on Pd0.75Co0.25 (111) and Pt0.75Co0.25 (111) Surfaces: An ab initio comparative study [J]. J. Chem. Theory Comput., 2006, 2(5): 1388-1394.
    [109]符颖,廖超,冯永超,马兴立,魏子栋. Ni-Pd/TiO2/Ti和Pd/TiO2/Ti氧还原行为研究[C].第十四次全国电化学会议,扬州, 2007, 11, I-028.
    [110]符颖.电化学法合成Pd/TiO2/Ti和Pt/CeO2复合型催化剂及其催化性能研究[D].硕士学位论文,重庆大学, 2008.
    [111] J. F. Sanz, A. Márquez. Adsorption of Pd Atoms and dimers on the TiO2(110) surface: A first principles study [J]. J. Phys. Chem. C, 2007, 111(10): 3949-3955.
    [112] T. Bredow, G. Pacchioni. A quantum-chemical study of Pd atoms and dimers supported on TiO2(110) and their interaction with CO [J]. Surface Science, 1999, 426(1): 106-122.
    [113] Fukui Kenichi. Illustrated quantum chemistry [M]. Liao, D. W.; Ed.; Beijing, Chemical Industry Press, 1981, p34-35.
    [114] R. A. Marcus. Electron transfer reactions in chemistry theory and experiment [J]. J. Electroanal. Chem., 1997, 438(1-2): 251-259.
    [115]姜月顺,杨文胜.化学中的电子过程[M].北京,科学出版社,2004, 18-19.
    [116] B. Zhou, S. Han, R. Raja, G. A. Somorjai. Nanotechnology in catalysis Volume 3 [M]. NewYork: Springer, 2007, p13-21.
    [117] L.-L. Wang, D. D. Johnson. Shear instabilities in metallic nanoparticles: hydrogen-stabilized structure of Pt37 on Carbon [J]. J. Am. Chem. Soc., 2007, 129: 3658-3664.
    [118] Y.-T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani. Fine size control of Platinum on carbon nanotubes: from single atoms to clusters [J]. Angew. Chem., Int. Ed., 2006, 45: 407-411.
    [119] S. C. Warren, L. C. Messina, L. S. Slaughter, M. Kamperman, Q. Zhou, S. M. Gruner, F. J. DiSalvo, U. Wiesner. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly [J]. Science, 2008, 320:1748-1752.
    [120] S. Hsia-Yun Lo, Y. Y. Wang, C. C. Wan. Long-term stability of Cu/Pd nanoparticles and their feasibility for electroless copper deposition [J]. Electrochimica Acta, 2008, 54: 727-732.
    [121] Y. Sun, L. Zhuang, J. Lu, X. Hong, P. Liu. Collapse in crystalline structure and decline in catalytic activity of Pt nanoparticles on reducing particle size to 1 nm [J]. J. Am. Chem. Soc., 2007, 129(50): 15465-15467.
    [122] H. Ye, R. M. Crooks. Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles [J]. J. Am. Chem. Soc. 2005, 127(13): 4930-4934.
    [123] C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Margues, E. P. Marques, H. J. Wang, J. J. Zhang. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction [J]. J. Power Sources, 2007, 173(2): 891-908.
    [124] A. Stassi, E. Modica, V. Antonucci, A. S. Arico. A half cell study of performance and degradation of oxygen reduction catalysts for application in low temperature fuel cells [J]. Fuel Cell, 2009, 9(3): 201-208.
    [125] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169-172.
    [126] A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activiy for oxygen reduction reaction [J]. Langmuir, 2006, 22(5): 2392-2396.
    [127] S. Shanmugam, A. Gedanken. Synthesis and electrochemical oxygen reduction of platinum naoparticles supported on mescoporous TiO2 [J]. J. Phys. Chem. C, 2009, 113(43): 18707-18712.
    [128] Y. Y. Shao, G. P. Yin, Y. Z. Gao. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell [J]. J. Power Sources, 2007, 171(2): 558-566.
    [129] F. N. Büchi, M. Inaba, T. J. Schmidt. Polymer Electrolyte Fuel Cell Durability [M]. New York:Springer, 2009: 7
    [130] K. C. Neyerlin, R. Srivastava, C. F. Yu, P. Strasser. Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR) [J]. J. Power Source, 2009, 186(2): 261-267.
    [131] G. L. Lolli, L. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Q. Tan, D. E. Resasco, Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalyst [J]. J. Phys. Chem. B, 2006, 110 (5): 2108-2115.
    [132] J. J. Wang, G. P. Yin, Y. Y. Shao, Z. B. Wang, Y. Z. Gao. Investigation of further improvement of platinum catalys durability with highly graphitized carbon nanotubes supports [J]. J. Phys. Chem. C., 2008, 112(15): 5784-5789.
    [133] Y. Y. Shao, G. P. Yin, J. Zhang, Y. Z. Gao, Comparative investigation of the resistance to electronichemical oxidation of carbon balck and carbon nanotubes in aqueous sulfuric acid solution[J]. Electrochimica Acta, 2006, 51: 5853-5857..
    [134] C. Bittencourt, M. Hecq, A. Felten, J. J. Pireaux, J. Ghijsen, M. P. Felicissimo, P. Rudolf, W. Drube, X. Ke, G. Van Tendeloo, Platinum-carbon nanotube interaction [J]. Chem. Phys. Lett., 2008, 462 (4-6): 260-264.
    [135] J. M. Tang, K. Jensen, M. Waje, W. Z. Li, P. Larsen, K. Pauley, Z. W. Chen, P. Ramesh, M. E. Itkis, Y. Yan, R. C. Haddon, High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts [J]. J. Phys. Chem. C, 2007, 111(48): 17901-17904.
    [136] K.-W. Park, Y.-E. S. Han, Y. Yun, T. Hyeon. Origin of the enhaced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts [J]. J. Phys. Chem. B, 2004, 108(3): 939-944.
    [137] Y.-J. Gu, W.-T. Wong. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation, Langmuir [J]. 2006, 22(26): 11447-11452.
    [138] Y. Y. Mu, H.P. Liang, J. S. Hu, L. Jiang, L. J. Wan, Controllable Pt nanoparticle depostion on carbon nanotubes as an anode catalysts for direct methanol fuel cells [J]. J. Phys. Chem. B, 2005, 109 (47): 22212-22216.
    [139] B. Rajesh, K. R. Thampi, J. M. Bonard, N. Xanthopoulos, H. J. Mathieu, B. Viswanatha. Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the support for electrooxidation of methanol [J]. J. Phys. Chem. B, 2003, 107(12): 2701-2708.
    [140] D. J. Guo, H. L. Li. High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles [J]. J. Electroanal. Chem., 2004, 573(1): 197-202.
    [141] H. Tang, J. H. Chen, Z.P. Huang, D. Z. Wang, Z. F. Rn, L. H. Nie, Y. F. Kuang, S. Z. Yao. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotubearrays [J]. Carbon, 2004, 42(1): 191-197.
    [142] L. M. Ang, T. S. Andy Hor, G. Q. Xu, C. H. Tung, S. Zhao, J. L. S. Wang. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method [J]. Chem. Mater., 1999, 11(8): 2115-2118.
    [143] R. Q. Yu, L. W. Chem, Q. P. Liu, J. Y. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, T. S. A. Hor. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem. Mater., 1998, 10(3): 718-722.
    [144] Y. J. Park, R. J. W. E. Lahaye, Y. H. Lee. Adsorption of Pt on defective carbon nanotube walls: a DFT approach, computer physics communications [J]. 2007, 177(1-2): 46.
    [145] B. H. Morrow, A. Striolo. Morphology and diffusion mechanism of platinum nanoparticles on carbon nanotube bundles [J]. J. Phys Chem. C, 2007, 111 (48): 17905-17913.
    [146] Z. D. Wei, C. Yan, Y. Tan, L. Li, C. X. Sun, Z. G. Shao, P. K. Shen, H. W. Dong. Spontaneous reduction of Pt(IV) onto the sidewalls of functionalized multiwalled carbon nanotubes as catalysts for oxygen reduction reaction in PEMFCs [J]. J. Phys. Chem. C, 2008, 112(7): 2671-2677.
    [147] X. Wang, W. Z. Li, Z. W. Chen, M. Waje, Y. S. Yan. Durability investigation of carbon nanotubes as catalyst support for proton exchange membrane fuel cell [J]. J. Power Sources, 2006, 158(1): 154-159.
    [148] C. K. Acharya and C. H. Turner, Effect of an electric field on the adsorption of metal clusters on boron-doped carbon surfaces[J]. J. Phys. Chem. C, 2007, 111(40): 14804-14812.
    [149] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley. Fullerene pipes [J]. Science, 1998, 280(5367): 1253-1256.
    [150] Y. T. Kim, T. Uruga, T. Mitani. Formation of single Pt atoms on thiolated carbon nanotubes using a moderate and large-scale chemical approach [J]. Adv. Mater., 2006, 18(19): 2634-2638.
    [151] Y. T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani. Fine size control of platinum on carbon nanotubes: From single atoms to clusters [J]. Angew. Chem. Int. Ed., 2006, 45: 407-411.
    [152] Y. T. Kim, T. Mitani. Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts [J]. J. Catal. 2006, 238: 394-401.
    [153] D.-Q. Yang, B. Hennequin, E. Sacher. XPS demonstration ofπ-πinteraction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhension of Ptnanoparticles [J]. Chem. Mater., 2006, 18(21): 5033-5038.
    [154] G. W. Yang, G. Y Gao, G. Y. Zhao, H. L. Li. Effective adhension of Pt nanoparticles on thiolated multi-walled carbon nanotubes and their use for fabricating electrocatalysts [J]. Carbon, 2007, 45(15): 30363041.
    [155]冯永成,董守安,唐春.一维金纳米线的自组装研究[J].贵金属, 2007, 28(4): 1-4.
    [156]严灿.碳纳米管为载体的燃料电池催化剂研究[D].硕士学位论文,重庆大学, 2008.
    [157]谭瑶.碳纳米管上贵金属催化剂稳定化方法研究[D].硕士学位论文,重庆大学, 2009.
    [158] B. Delley. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. J. Chem. Phys. 1990, 92(1): 508.
    [159] B. Delley. From molecules to solids with the Dmol3 approach [J]. J. Chem. Phys., 2000, 113(18): 7756.
    [160] C. Y. Li, T.-W. Chou. Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces [J]. Compos. Sci. Technol., 2003, 63(11): 1517-1524.
    [161] M. F. Yu, B. I. Yakobson, R. S. Ruoff. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes [J]. J. Phys. Chem. B, 2000, 104(27): 8764-8767.
    [162] J. Cumings, A. Zettl. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes [J]. Science, 2000, 289(5479): 602-604.
    [163] D. H. Chi, N. T. Cuong, N. A. Tuan, Y. T. Kim, H. T. Bao, T. Mitani, T. Ozaki, H. Nagao. Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube [J]. Chem. Phys. Lett., 2006, 432(1-3): 213-217.
    [164] N. T. Cuong, D. H. Chi, Y. T. Kim, T. Mitani. Structural and electronic properties of Ptn (n=3, 7, 13) clusters on metallic single wall carbon nanotube [J]. Phys. Stat. Sol. (b), 2006, 243(13): 3472-3475.
    [165] J. H. Chen, M. Y. Wang, B. Liu, Z. Fan, K. Z. Cui, Y. F. Kuang. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation [J]. J. Phys. Chem. B, 2006, 110 (24): 11775-11779.
    [166] J. X. Zhao, Y. H. Ding. Fictionalization of single-walled carbon nanotubes with metalloporphyrin complexes: A theoretical study [J]. J. Phys. Chem. C, 2008, 112(30): 11130-11134.
    [167] P. A. Denis. Theoretical investigation of the stability, electronic and magnetic properties of thiolated single-wall carbon nanotubes [J]. Int. J. Quantum Chem. 2009, 109(4): 772-781.
    [168] J. J. Baschuk, X. G. Li. Carbon monoxide poisoning of proton exchange membrane fuel cells [J]. Int. J. Energy Res., 2001, 25(8): 695-713.
    [169] B. Kanawati, S. Joniec, R. Winterhalter, G. K. Moortgate. Rapid Communication in MassSpectrometry, 2008, 22, 2269.
    [170] J. A. Pople, H. B. Schegal, R. Krishnan, D. J. DeFrees, J. C. Brinkley, M. J. Frisch, R. A. Whiteside, R. F. Hout, W. J. Hehre. Int. J. Quantum Chem. Symp. 15, 1981, 269.
    [171] H. Lee, S. E. Habas, G. A. Somorjai, P. D. Yang. Localized Pd overgrowth on cubic Pt naocrystals for enhanced electrocatalytic oxidation of formic acid [J]. J. Am. Chem. Soc., 2008, 130(16): 5406-5407.
    [172] M. Subhramannia, K. Ramaiyan, V. K. Pillai. Comparative study of the shape-dependent electrocatalytic acivity of platinum multipods, discs, and hexagons: application for fuel cells [J]. Langmuir, 2008, 24(7): 3576-3583.
    [173] D. S. Geng, G. X. Lu. Dependence of onset potential for methanol electrocatlaytic oxidation on steric location of active center in multicomponet electrocatalysts [J]. J. Phys. Chem C 2007, 111: 11897-11902.
    [174] H. Wang, H. Baltruschat. DEMS study on methanol oxidation at Poly- and monocrystalline platinum electrodes: the effect of anion, temperature, surface structure, Ru adatom, and potential [J]. J. Phys. Chem. C, 2007, 111: 7038-7048.
    [175] S-C. Chang, L. W. H. Leung, M. J. Weaver. Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces [J]. J. Phys. Chem., 1990, 94(15): 6013-6021.
    [176] X. H. Xia, T. Iwasita, F. Ge, W. Vielstich. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum [J]. Electrochim. Acta, 1996, 41(5): 711-718.
    [177] Kuzume, Y. Mochiduki, T. Tsuchida, M. Ito. Methanol oxidaiton on a Pt(111)-OH/O surface [J]. Phys. Chem. Chem. Phys., 2008, 10: 2175-2179.
    [178] K. Scott, W. M. Taama, P. Argyropoulos. Engineering aspects of the direct methanol fuel cell system [J]. J. Power Sources, 1999, 79: 43-59.
    [179] J. S. Spendelow, J. D. Goodpaster, P. J. A. Kenis, A. Wieckowski. UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts [J]. J. Phys. Chem. B, 2006, 110(37): 9545-9555.
    [180] M. C. Perez, A. Rincon, C. J. Gutierrez. Effect of chloride ions on the electrooxidation at low potentials of dissoved carbon monoxide on platinum [J]. J. Electroanal. Chem., 2001, 511(1-2): 39-45.
    [181] M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, B. B. Blizanac, T. Tomoyuki, P. N. Ross, N. Markovic. The effect of particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts [J]. J. Am. Chem. Soc., 2005, 127(18): 6819-6829.
    [182] A. R. Kucernak, G. J. Offer. The role of adsorbed hydroxyl species in the electrocatlytic carbon monoxide oxidation reaction on platinum [J]. Phys. Chem. Chem. Phys., 2008, 10: 3699-3711.
    [183] K. J. J. Mayrhofer, M. Arenz, B. B. Blizanac, V. Stamenkovic, P. N. Ross, N. M. Markovi?. CO surface electrochemistry on Pt-nanoparticles: a selective review [J]. Electrochim. Acta, 2005, 50(25-26): 5144-5154.
    [184] J. Clavilier, C. Lamy, J. M. Leger. Electrocatalytic oxidation of methanol on single-crystal platinum electrodes, comparision with polycrystalline platinum [J]. J. Electroanal. Chem., 1981, 125(1): 249-254.
    [185] B. Beden, S. Bilmes, C. Lamy, J. M. Leger. Electrosorption of carbon monoxide on platinum single crystals in perchloric acid medium [J]. J. Electroanal. Chem., 1983, 149(1-2): 295-302.
    [186] S. C. S. Lai, N. P. Lebedeva, T. H. M. Housmans, M. T. M. Koper. Mechanism of carbon monoxide and methnaol oxidation at single-crystal electrodes [J]. Top Catal., 2007, 46(3-4): 320-333.
    [187] E. Herrero, K. Franaszczuk, A. Wieckowski. Electrochemistry of methanol at low index crystal planes of platinum: an integrated voltammetric and chronoamperometric study [J]. J. Phys. Chem., 1994, 98(19): 5074-5083.
    [188] T. H. M. Housmans, M. T. M. Koper. Methanol oxidation on stepped Pt[n(111)×(110)] electrodes: a chronoamperometric study [J]. J. Phys. Chem. B, 2003, 107(33): 8557-8567.
    [189] M. Nakamura, K. Shibutani, N. Hoshi. In-situ flow-cell IRAS observation of intermediates during methanol oxidation on low-index platinum surfaces [J]. ChemPhysChem, 2007, 8(12): 1846-1849.
    [190] T. D. Jarvi, S. Sriramulu, E. M. Stuve. Reactivity and extent of poisoning during methnaol electrooxidaiton on platinum (100) and (111): comparative study [J]. Colloid Surf. A: Physicochem. Eng. Aspect, 1998, 134(1-2): 145-153.
    [191] R. R. Adzic, A. V. Tripkovic. Structure effects in electrocatalysis [J]. Nature, 1982, 296: 137-138.
    [192] R. R. Adzic. Modern aspects of electrochemistry [M]. NY: Plenum Press, 1990, Vol. 21.
    [193] S.C.S. Lai, N.P. Lebedeva, T.H.M. Housmans, M.T.M. Koper. Mechanisms of carbon monoxide and methanol oxidation at single crystal electrodes [J]. Top Catal., 2007, 46 (3-4): 320-333.
    [194] N. M. Markovic, P. N. Ross. Surface science studies of model fuel cell electrocatalysts [J]. Surf. Sci. Rep., 2002, 45 (4-6) :117-229.
    [195] R. Parsons, T. Vandernoot. The oxidation of small organic molecules: A survey of recent fuelcell related research [J]. J. Electroanal. Chem., 1988, 257 (1-2): 9-45
    [196] D. Cao, G.-Q. Lu, A. Wieckowski, S. A. Wasileski, M. Neurock. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach [J]. J. Phys. Chem. B, 2005, 109 (23): 11622-11633.
    [197] A. Cuesta. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum [J]. J. Am. Chem. Soc., 2006, 128 (41): 13332-13333.
    [198] N. M. Markovic, T. J. Schmidt, B. N. Grgur, H. A. Gasteiger, R. J. Behm, P. N. Ross. Effect of temperature on surface processes at the Pt(111)-liquid interface: hydrogen adsorption, oxide formation, and CO oxidation [J]. J. Phys. Chem. B, 1999, 103 (40): 8568-8577.
    [199] H. Kita, H. Naohara, T. Nakato, S. Taguchi, A. Aramata. Effects of adsorbed CO on hydrogen ionization and CO oxidation reaction at Pt single-crystal electrodes in acidic solution [J]. J. Electroanal. Chem., 1995, 386 (1-2): 197-206.
    [200] T. J. Schmidt, P. N. Ross, N. M. Markovic. Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: Part 1: CO oxidation [J]. J. Phys. Chem. B, 2001, 105 (48): 12082-12086.
    [201] N. M. Markovic, B. N. Grgur, C. A. Lucas, P. N. Ross. Suface electrochemistry of CO on Pt(110)-(1×2) and Pt(110)-(1×1) surface [J]. Surf. Sci., 1997, 384(1-3): L805-L814.
    [202] N. M. Markovic, C. A. Lucas, B. N. Grgur, P. N. Ross. Surface electrochemistry of CO and H2/CO mixtures at Pt(100) interface: electrode kinetics and interfacial structures [J]. J. Phys. Chem. B, 1999, 103 (44): 9616-9623.
    [203] B. N. Grgur, N. M. Markovic, C. A. Lucas, P. N. Ross. Electrochemical oxiation of carbon monoxide: from platinum single crystals to low temperature fuel cells catalysts. Part I: Carbon monoxide oxidation onto low index platinum single crystals [J]. J. Serb. Chem. Soc., 2001, 66 (11-12): 785-797.
    [204] C. Lamy, J. M. Léger, J. Clavilier, R. Parsons. A comparative study of the oxidation of CO, HCOOH and CH3 on single crystal platinum electrodes [J]. J. Electroanal. Chem. Interfacial Electrochem., 1983, 150(1-2): 71-77.
    [205] J. S. Spendelow, Q. Q. Xu, J. D. Goodpaster, P. J. A. Kenis, A. Wieckowski. The role of surface defects in CO oxidaiton, methanol oxidation, and oxygen reduction on Pt(111) [J]. J. Electrochem. Soc., 2007, 154(12): F238-F242.
    [206] N. P. Lebedeva, M. T. M. Koper, E. Herrero, J. M. Feliu, R. A. Van Santen. CO oxidation on stepped Pt[n(111)×(111)] electrodes [J]. J. Electroanal. Chem., 2000, 487(1): 37-44.
    [207] C. Hartnig, E. Spohr. The role of water in the initial steps of methanol oxidation on Pt(111) [J]. Chem. Phys., 2005, 319(1-3): 185-191.
    [208] C. Hartnig, J. Grimminger, E. Spohr. Adsorption of formic acid on Pt(111) in the presence of water [J]. J. Electroanal. Chem., 2007, 607(1-2): 133-139.
    [209] Y. Okamoto, O. Sugino, Y. Mochizuki, T. Ikeshoji, Y. Morikawa. Comparative study of dehydrogenation of methanol at Pt(111)/water and Pt(111)/vacuum interfaces [J]. Chem. Phys. Lett., 2003, 377(1-2): 236-242.
    [210] O. Skoplyak, C. A. Menning, M. A. Barteau, J. G. Chen. Experimental and theoretical study of reactivity trends for methnaol on Co/Pt(111) and Ni/Pt(111) bimetallic surfaces [J]. J. Chem. Phys., 2007, 127(11): 114707.
    [211] W. Gao, M. Zhao, Q. Jiang. Pathways for the non-CO-involved oxidation of methanol on Pt(111) [J]. ChemPhysChem, 2008, 9: 2092-2098.
    [212] Y. Wang, P. B. Balbuena. Roles of proton and electric field in the electroreduction of O2 on Pt(111) surfaces: results of an ab initio molecular dynamic study [J]. J. Phys. Chem. B, 2004, 108: 4376-4384.
    [213] C. Hartnig, J. Grimminger, E. Spohr. The role water in the initial steps of methanol oxidation on Pt(211) [J]. Electrochimca Acta, 2007, 52(6): 2236-2243.
    [214] M. P. Hyman, J. W. J. Medlin. Theoretical study of the adsorption and dissociation of oxygen on Pt(111) in the presence of homogeneous electric fields [J]. J. Phys. Chem. B, 2006, 110(13): 15338-15344.
    [215] L. Wang, J. J. Zhao, F. Y. Li, H. P. Fang, J. P. Lu. First-principles study of water chains encapsulated in single-walls carbon nanotube [J]. J. Phys. Chem. C, 2009, 113(14): 5368-5375.
    [216] M. J. Janik, C. D. Taylor, M. Neurock. Oxygen reduction mechanism over Pt(111) from periodic density functional theory: potential dependence of the activation barrier for the first reduction step [J]. J. Electrochem. Soc., 2009, 156(1): B126-B135.
    [217] H. Y. Su, M. M. Yang, X. H. Bao, W. X. Li. The effect of water on the CO oxidaiton on Ag(111) and Au(111) surfaces: a first-principle study [J]. J. Phys. Chem. C, 2008, 112(44): 17303-17310.
    [218] L. Zhuang, J. Jin, H. D. Abru?a. Direct observation of electrocatalytic synergy [J]. J. Am. Chem. Soc., 2007, 129(36): 11033-11035.
    [219] Y. Ishikawa, J. J. Mateo, D. A. Tryk, C. R. Cabrera. Direct molecular dynamics and density-functional theoretical study of electrochemical hydogen oxidaiton reaction and underpotential deposition of H on Pt(111) [J]. J. Electroanal. Chem., 2007, 607(1-2): 37-46.
    [220] M. J. Weaver. Potential of zero charge for platinum (111)-aqueous interfaces: a combined assessment from in-situ and ultrahigh-vacuum measurements [J]. Langmuir, 1998, 14 (14):3932-3936.
    [221] R. Gomez, V. Climent, J. M. Feliu, M. J. Weaver. Dependence of potential of zero charge of stepped platinum (111) electrodes on the oriented step-edge density: electrochemical implications and comparison with work function behavior [J]. J. Phys. Chem. B, 2000, 104 (3): 597-605.
    [222] N. R. Elezovi?, B. M. Babi?, N. V. Krstaji?, L. M. Gaji-Krstaji?, Lj. M. Vra?ar. Specificity of the UPD of H to the structure of highly dispersed Pt on carbon support [J]. Int. J. Hydrogen. Energy, 2007, 32(12): 1991-1998.
    [223] G. Jerkiewicz, M. Deblois, Z. Radoic-Hrapovic, J. P. Tessier, F. Perreault, J. Lessard. Underpotential deposition of hydrogen on benzene-modified Pt(111) in aqueous H2SO4 [J]. Langmuir, 2005, 21(8): 3511-3520.
    [224] T. Bligaard, J. K. N?rskov. Ligand effects in heterogeneous catalysis and electrochemisty [J]. Electrochim. Acta, 2007, 52(18): 5512-5516.
    [225] N. M. Markovi?, P. N. Ross. Surface science studies of model fuel cell electrocatalysts [J]. Surf. Sci. Rep., 2002, 45(4-6): 117-229.
    [226] K. Mikita, M. Nakamura, N.Hoshi. In situ infrared reflection adsorption spectroscopy of carbon monoxide adsorbed on Pt(S)-[n(100)×(110)] electrodes [J]. Langmuir, 2007, 23(17): 9092-9097.
    [227] I. Villegas, M. J. Weaver. Carbon monoxide adlayer structures on platinum (111) electrodes: a synergy between in situ scanning tunneling microscopy and infrared spectroscopy [J]. J. Chem. Phys., 1994, 101(2): 1648-1660.
    [228] S.-C. Chang, M. J. Weaver. In-situ infrared spectroscopy of CO adsorbed at ordered Pt (110)-aqueous interfaces [J]. Surf. Sci., 1990, 230(1-3): 222-236.
    [229] M. J. Janik, M. Neurock. A first principles analysis of the electro-oxidation of CO over Pt(111) [J]. Electrochim. Acta, 2007, 52(18): 5517-5528.
    [230] M. Watanabe, S. Motoo. Electrocatalysis by adatoms Part II: Eancement of the oxidation of methanol on platinum by ruthenium adatoms [J]. J. Electroanal. Chem. Interfacial Electrochem., 1975, 60: 267-273.
    [231] Y. Ishikawa, M. S. Liao, C. R. Cabrera. Energetics of H2O dissociation and COads + OHads reaction on a series of Pt-M mixed metal clusters: a relativistic density-functional study [J]. Surf. Sci., 2002, 513: 98-110.
    [232] W. Sugimoto, T. Saida, Y. Takasu. Co-catalytic effect of nanostructure ruthenium oxide towards electro-oxidation of methanol and carbon monoxide [J]. Electrochem. Comm., 2006, 8: 411-415.
    [233] H. Nitani, T. Nakagawa, H. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, T. A. Yamamoto. Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles [J]. Applied Catalysis A: General, 2007, 326: 194-201.
    [234] T. H. M. Housmans, J. M. Feliu, R. Gómez, M. T. M. Koper. CO oxidation on Pt-modified Rh(111) electrodes [J]. ChemPhysChem, 2005, 6: 1522-1529.
    [235] W. Tokarz, H. Siwek, P. Piela, A. Czerwiński. Electro-oxidation of methanol on Pt-Ru alloys [J]. Electrochimica Acta, 2007, 52: 5565-5573.
    [236] E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. Disalvo, H. D. Abruna. J. Am. Chem. Soc., 2004, 126: 4043.
    [237] J. Jin, M. Prochaska, D. Rochefort, D. K. Kim, L. Zhuang, F. J. DiSalvo, R. B. Van Dover, H. D. Abruńa. A high-throughput search for direct methanol fuel cell anode electrocatalysts of type PtxBiyPbz [J]. App. Surf. Sci., 2007, 254: 653-661.
    [238] S. Biallozor, A. Kupniewska, V. Jasulaitene. Electro-oxidation of methanol and ethanol on poly (3,4-ethylenedioxythiophene) with dispersed Pt, Pt+Sn, and Pt+Pb particles [J]. Fuel Cells, 2003, 3(1-2): 8-14.
    [239] L. J. Zhang, Z. Y. Wang, D. G. Xia. Bimetallic PtPb for formic acid electro-oxidation [J]. J. Alloys and Compounds, 2006, 426: 268-271.
    [240] S. Uhm, S. T. Chung, J. Lee. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell [J]. Electrochem. Comm., 2007, 9: 2027-2031.
    [241] B. D. McNicol, D. A. J. Rand, K. R. Williams. Direct methanol-air fuel cells for road transportation [J]. J. Power Sources, 1999, 83(1-2): 15-31.
    [242] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J]. Nature Materials, 2007, 6: 241-247.
    [243] A. U. Nilekar, Y. Xu, J. Zhang, M. B. Vukmirovic, K. Sasaki, R. R. Adzic, M. Mavrikakis. Bimetallic and ternary alloys for improved oxygen reduction catalysis [J]. Topics in Catal., 2007, 46(3-4): 276-284.
    [244] W. Tang, G. Henkelman. Charge redistribution in core-shell nanoparticles to promote oxygen reduction [J]. J. Chem. Phys., 2009, 130(19):194504.
    [245] A. V. Ruban, H. L. Skriver, J. K. N?rskov. Surface segregation energies in transition-metal alloys [J]. Phys. Rev. B, 1999, 59(24): 15990-16000.
    [246] B. Hammer, Y. Morikawa, J. K. N?rskov. CO chemisorption at metal surface and overlayers [J]. Phys. Rev. Lett., 1996, 76(12): 2141-2144.
    [247] M. Mavrikakis, B. Hammer, J. K. N?rskov. Effect of strain on the reactivity of metal surfaces[J]. Phys. Rev. lett., 1998, 81(13): 2819-2822.
    [248] F. Abild-Pedersen, J. Greeley, J. K. N?rskov. Understanding the effect of steps, strain, poisons, and alloying: Methane activation on Ni surface [J]. Catal. Lett., 2005, 105(1-2): 9-13.
    [249] S. F. Lu, J. Pan, A. B. Huang, L. Zhuang, J. T. Lu. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts [J]. PNAS, 2008, 105(52): 20611-20614.
    [250] J. A. Dean. Lange's Handbook of Chemistry - 15th Ed. [M]. NY: McGraw-Hill, 1999: 4.41.
    [251] J. A. Dean. Lange's Handbook of Chemistry - 15th Ed. [M]. NY: McGraw-Hill, 1999: 8.124.
    [252] J. A. Dean. Lange's Handbook of Chemistry - 15th Ed. [M]. NY: McGraw-Hill, 1999: 4.29.
    [253]李兰兰.甲醇电化学氧化及其非线性动力学过程模拟[D].博士学位论文,重庆大学, 2007.
    [254] Z. D. Wei, L. L. Li, Y. H. Luo, C. Yan, C. X. Sun, G. Z. Yin, P. K. Shen. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes [J]. J. Phys. Chem. B., 2006, 110(51): 26055-26061.
    [255] Z. D. Wei, S. H. Chan. Electrochemical depostion of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation [J]. J. Electroanal. Chem., 2004, 569(1): 23-33.