1. [地质云]滑坡
镀层薄板冲压成形有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属表面镀层处理是材料表面改性的重要方法,随着环保、节能和生产成本等的新要求,逐步形成了“先对基材表面镀层处理,后对带金属表面镀层材料精密塑性成形”的加工方式。目前,有限元法已成为研究板料成形的一种重要方法,这种方法不仅可以预测板料成形过程中的应力、应变分布、成形缺陷以及分析缺陷产生原因,而且可以比较准确的分析工艺参数对成形过程的影响。
     本文首先对板料成形的研究现状进行综合评述,然后讨论镀层薄板有限元成形模拟中的关键问题,最后采用ANYSY/LS-DYNA软件模拟镍镀层薄板成形过程,研究冲压工艺参数与模具参数对镍镀层薄板成形的影响,并对部分模拟结果进行实验验证。本文的主要研究内容及结果如下:
     (1)通过对镍镀层薄板冲压成圆筒件的过程进行模拟,得到了镍镀层和基体的应力应变场、厚度变化及冲压力行程曲线。计算结果表明镀层和基体在凹模圆角处的应力应变场最大,镀层的应力分布较之基体复杂,表现为圆筒件底部分布不均匀。同时发现在凸模圆角处板料最易拉裂,基体与镀层的减薄率分别达到了4.8%与6.7%,冲压力先增后降,当冲压深度为12.62571mm时,冲压力达到最大值15.41846KN。
     (2)为了对模拟结果进行验证,对镍镀层薄板冲压圆筒件进行了实验研究,结果表明模拟得到的圆筒件形状与实验很好的吻合,模拟圆筒件深度为15.6mm,实际的深度为16mm。最后,通过扫描电镜观察了界面的结合情况,同时采用扫描电镜附带的软件测量了镀层厚度变化,发现界面未见开裂现象,镀层厚度变化趋势与模拟结果一致。
     (3)研究了压边力对镍镀层薄板成形质量的影响。发现此板料在没有加压边力的情况下会出现起皱,而施加较小的压边力(400N、800N),冲压的后期阶段会出现起皱,当压边力为1KN时,冲压件质量较好。最后为了改善板料的成形性能,设计了一条变压边力曲线,结果表明此压边力不仅能够防止起皱,而且有效的防止拉裂。
     (4)采用有限元法研究了摩擦系数、凹模半径、冲压速度等工艺参数对镍镀层薄板成形的影响。发现摩擦系数增加,冲压力随之增加,基体与镀层在最薄处的厚度均变薄,镀层变薄较之基体更严重。同时发现凹模半径减少,冲压速度增加均会增加板料的拉裂机会。
     通过本文的研究,得到了镍镀层薄板的成形特征,了解了工艺参数对镍镀层薄板成形的影响。研究结果对镍镀层薄板的工业冲压具有一定的指导意义。
Coating treatment of metal surface has been an important way of material surface modification, along with new requirement of energy-saving, environment protect and production cost, the processing method that firstly nickel was electrodeposited on the substrate and then metal plating material are plastic formed precisely has gradually formed. Recently, finite element method (FEM) has been an important method to study sheet metal forming, this method can not only forecast the distributions of stress-strain fields, discover the forming drawbacks and analyze the reason of forming drawbacks, but also it can analyze precisely the process parameter’s impact to the forming process.
     In this thesis, the synthetical review on the present situation of sheet metal forming was firstly presented. Then some attention problems during simulation of coating material were investigated. Finally, the forming process of electrodeposited nickel coating was simulatly studied by ANSYS/LS-DYNA. The effects of process and module parameters were studied during the forming process. Some simulation results were validated by experiments. The main contents and results contain the following:
     (1) Through simulating the cup-stamping of electrodeposited nickel coating, the stress-strain fields, thickness variations of nickel coating and steel substrate were obtained. The force-displacement curves were also obtained. The results of the simulation illustrated that the stress-strain fields of the coating and substrate were maximum at die fillet. It was found that the stress field of the coating was more complicated than that of the steel sheet, which showed that the stress-strain distributed non-homogeneously at the bottom of cylindrical cup. Meanwhile, it was found the punch-nose radius was the most unsubstantial part for the intensity of the entire deep-drawing part and the thinnest part. It was the danger zone for the break and at this zone. The thickness thinning-rate of the steel sheet and the nickel coating were up to 4.8% and 6.7% respectively. The punch force increase first and decrease afterwards, when the depth of stamping was 12.62571mm and the punch force reached maximum 15.41846KN.
     (2) In order to validate the results of simulation, the cup-stamping of electrodeposited nickel coating was done by experiment. The results showed that the shapes of cylindrical cup were obtained by FEM and experiment results were agreed. The depth of cylindrical cup by FEM was 15.6mm and the depth of cylindrical cup by experiment was 16mm. At last, the interface combination status of the coating was observed by scanning electron microscopy (SEM). The thickness of the coating was measured by the measurement software of SEM, which showed the interfacial delamination would not happen and the thickness variation tendency of coating was similar to the simulation results.
     (3) The influences of blankholder force (BHF) on the forming quality of the electrodeposited nickel coating were studied. It was found that the sheets would wrinkle without BHF. When BHF (400N, 800N) was too small, the sheets would wrinkle during later stage. When BHF was 1KN, the quality of stamping parts was better. In order to improve the formability of the sheet, a curve of variable BHF (VBHF) was designed by us. The results illustrated that the VBHF could not only prevent wrinkle, but also it could prevent crack.
     (4) The influences of process parameters such as friction coefficient, the radius of die and the velocity of punch were studied during stamping process of the electrodeposited nickel coating by FEM. The results showed that higher friction coefficient would increase the punch force, the thickness of the substrate and coating at thinnest parts would thinner and the thinning-rate of the coating was higher than that of the substrate. Meanwhile, it was found that decrease of the radius of die and the raise of punch velocity would increase the tendency of crack.
     Through the research work, the forming characteristics of electrodeposited nickel coating and the influences of process parameters on the forming process were obtained. The results may serve as a reference for the stamping process of electrodeposited nickel coating in industrial fields.
引文
[1] Spaepen F. Interfaces and stresses in thin films [J]. Acta Materialia, 2000, 48(1):31-42.
    [2] Ahmaniemi S, Vuoristo P, Mantyla T. Mechanical and elastic properties of modified thick thermal barrier coatings [J]. Materials Science and Engineering A, 2004, 366(1):175-182.
    [3]梁炳文,胡世光.板料成形塑性理论[M].北京:机械工业出版社, 1987.
    [4]钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用[M].北京:北京理工大学出版社, 1998.
    [5]李尚健,董湘怀.金属塑性成形过程模拟[M].北京:机械工业出版社, 1999.
    [6]陈中奎.金属板料冲压成形过程有限元数值模拟的研究与开发[D].北京:北京航空航天大学博士学位论文, 2000, 10-12.
    [7]刘斐. TC1钛合金薄板深拉热成形失效分析与对策研究[D].湘潭:湘潭大学硕士论文, 2004:3-4.
    [8] Clough R W. The finite element method in plane stress analysis, Proc. of 2nd conf Electronic Computation, Pittsburgh, 1960.
    [9]刘斐. TC1钛合金薄板深拉热成形失效分析与对策研究[D].湘潭:湘潭大学硕士论文, 2004:13-14.
    [10]李奇涵,王科飞,王立威.基于数值模拟技术的板料冲压成形模具开发[J].新技术新工艺, 2005, 8:6-8.
    [11]张峻.汽车覆盖件成形过程数值模拟与优化技术研究[D].浙江:浙江大学博士论文, 2005:6-7.
    [12]张铁山.板料冲压成形中的摩擦与回弹研究[D].南京:南京理工大学博士论文, 2004:8-9.
    [13] Zhou D, Wagoner R H. Development and application of sheet-forming simulation, Proc. of NUMISHEET'93, Isehara, Japan, 1993:1-16.
    [14]胡平,李运兴,柳玉启.冲压件成形与模具设计数值仿真一体化技术.全国塑性力学及其应用学术研讨会论文集,长春, 1997:253-264.
    [15]金朝海.板料成形动力显式弹塑性有限元仿真技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2001:1-16.
    [16]金淼.板料成形中拉深筋的力学性能及影响因素研究[D].燕山大学博士论文, 2000:10-15.
    [17] Marcal P V. Elastic-plastic anslysis of two-dimensional stress systems by finite element method [J]. International Journal of Mechanical Sciences, 1967, 9:143-147.
    [18] Marciniak Z, Kuczynski K. Limit strains in processing of stretch forming sheet metal [J]. International Journal of Mechanical Sciences, 1967, 9:609-620.
    [19] Wifi A S. An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch [J]. International Journal of Mechanical Sciences, 1976, 18:23-31.
    [20] Yamada Y, Yoshimura N, Sakurai T. Plastic stress-strain matrix and its application for the solution of the elastic-plastic problem by the finite element method [J]. International Journal of Mechanical Sciences, 1968, 10:343-348.
    [21] Hibbit H D. A finite element formulation for problems of large strain and large displacement [J]. International Journal of Solids & Structures, 1970, 6:156-178.
    [22] Lee, Kobayashi. New solution to rigid plastic deformation problems using a matrix method [J]. Journal of Engineering for industry, 1973, 95:865-873.
    [23] Wang N M, Budiansky B. Analysis of sheet metal stamping by a finite element method [J]. Journal of Applied Mechanics, 1978, 45:73-82.
    [24] Tang S C. Thin Shell Element Simulation of the Sheet Metal Forming, Process. E.Nakamachi, ICTP, Japan, 1990,1757-1762.
    [25] Oh S I, Kobayashi S. Finite element analysis of plane strain sheet bending [J]. International Journal of Mechanical Sciences, 1980, 22:583-594.
    [26] Onate E, Zienkiewicz O C. A viscous formulation for the analysis of thin sheet forming [J]. International Journal of Mechanical Sciences, 1983, 25:305-335.
    [27] Makinouchi A. Elastic-plastic stress analysis of bending and hemming of sheet metal, In: Wang N M, Tang S C, Computer Models in sheet Metal Forming Processes,1985, 161-176.
    [28] Nonecker A, Mattiasson K. Finite element procedures for 3D sheet forming simulation, In: Thompson E G, Wood R D, Zienkiewicz O C, UMIFORM’89, Balkema, Rotterdam, Netherlands, 1989, 457-467.
    [29] Makinonchi A, Nakamachi E, Onata E, NUMISHEET'93, 2nd International Conference on Numerical Simulation of 3-D Sheet Metal Forming Processes, Isehara, Japan, August 31-September 2,1993.
    [30] Lee J K, Kinzel G L, Wagoner R H, NUMISHEET'96, 3rd International Conference on Numerical Simulation of 3-D Sheet Metal Forming Processes, Dearborn, Michigan, September29-October 3,1996.
    [31]邓陟.金属板料压延过程的数值计算分析[J].机械工程学报, 1989, 29:33-40.
    [32]熊火轮.计算机辅助材料成形分析模拟系统[D].北京:北京航空航天大学博士学位论文, 1990:45-49.
    [33]张凯峰.超塑性成形的有限元分析及模具型腔超塑性成形的研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 1990:32-24.
    [34]李顺平.方盒形件拉深成形数值模拟及工艺参数的确定[D].哈尔滨:哈尔滨工业大学博士学位论文, 1991:40-41.
    [35]胡平,连建设,李运兴.弹塑性有限变形的拟流动理论[J].力学学报, 1994, 26:275-283.
    [36]徐康聪.汽车车身覆盖件成形过程计算机数值分析与应用研究[D].长沙:湖南大学博士学位论文, 1995:51-52.
    [37]李尧臣.金属板料冲压成型过程的有限单元法模拟[J].力学学报, 1995, 27(3):351-364.
    [38]柳玉起,胡平,郭威等.板材成形局部塑性失稳与起皱的数值模拟[J].机械工程学报, 1997, 133(2):88-92.
    [39]李光耀,钟志华.显式有限元方法求解二维壳体塑性大变形接触问题[J].工程力学, 1997, 3:78-87.
    [40]王晓林.蒙皮拉形过程有限元数值模拟技术研究[D].北京:北京航空航天大学博士论文, 1999:65-68.
    [41]李广权.板材无模多点成形过程数值模拟研究[D].吉林:吉林工业大学博士学位论文, 1997:20-23.
    [42]陈中奎,施法中.板料冲压成形过程的一种数值模拟方法[J].北京航空航天大学学报, 2001, 27(3):340-343.
    [43] Zhang S H, Nielsen K B, Danckert J. Numerical simulation of the integral hydro-bulge forming of non-clearance double-layer spherical vessels: deformation analysis [J]. Computers and Structures, 1999, 70(7):243-256.
    [44]王立东,阮雪榆.双金属板拉延成形的有限元分析[J].计算力学学报, 1998, 15(4): 503 -507.
    [45]蒋浩民,俞宁峰.温模条件下镀锌钢板摩擦行为研究[J].塑性工程学报, 2006, 13(1):40 -42.
    [46] Hauw B, Dubar L, Oudin J. Improvement of stamping computations by means of the identification of the bulk behavior of coatings: application to galvanized sheets [J]. Journal of Materials Processing Technology, 1999, 94:23-29.
    [47] Parisot R, Forest S, Gourgues A F. Modeling the mechanical behavior of a multicrystalline zinc coating on a hot-dip galvanized steel sheet [J]. Computational Materials Science, 2000, 19:189-204.
    [48] Oyane M, Sato T, Okimoto K, Shima S. Criteria for ductile fracture and their applications [J]. Journal of Mechanical Working Technology, 1980, 4:65-81.
    [49] Takuda H, Fujimoto K, Hatta N. Prediction of forming limit in deep drawing of Fe/Al laminated composite sheets using ductile fracture criteria [J]. Journal of Materials Processing Technology, 1996, 60:291-296.
    [50] Kim K J, Kim D, Chi S H. Formability of AA5182 /polypropylene/AA5182 sandwich sheets [J]. Journal of Materials Processing Technology, 2003, 139:1-7.
    [51] Rice J R. Elastic fracture mechanics concepts for interfacial cracks [J]. Journal of Applied Mechanics, 1988, 55-58.
    [52] Liechti K M, Hanson E C. Nonlinear effects in mixed-mode interfacial delamination [J]. International Journal of Fracture, 1988, 36:199-217.
    [53] Audoly B. Mode-dependent toughness and the delamination of compressed thin films [J]. Journal of Mechanics and Physics of Solids, 2000, 48:2315-2332.
    [54] Bao G, Cai H. Delamination cracking in functionally graded coating/metal substrate systems [J]. Acta Materialia, 1997, 45(3):1055-1066.
    [55]李晓星.板材成形模拟的研究和应用[J].金属成形工艺, 2003, 21(2):6-9.
    [56]张兰.数值模拟技术在汽车覆盖件拉深成形质量控制中的应用研究[D].成都:四川大学硕士论文, 2006:5-6.
    [57]周里群.电沉积镍镀层的冲击性能与冲压成形过程分析[D].湘潭:湘潭大学博士论文,2004, 56-58.
    [58]黄庆宝.板料成形及模具数值模拟分析[D].哈尔滨理工大学硕士论文, 2007:29-32.
    [59] ANSYS/LS-DYNA中国技术支持中心,ANSYS/LS-DYNA算法基础和使用方法, 1999, 54-60.
    [60]孙希延,李泉永,杨连发.板料拉伸成形数值模拟中动态接触的处理[J].模具工业, 2002, 8:11-13.
    [61]尚晓江,苏建宇. ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社, 2005.
    [62]李奇涵,王科飞,王立威.基于数值模拟技术的板料冲压成形模具开发[J].新技术新工艺, 2005, 8:6-8.
    [63] L. F. Menezes, C. Teodosin. Three-dimensional numerical simulation of the deep-drawing process using solid finite elements [J]. Journal of Materials processing Technology, 2000, 97:100-106.
    [64]杜平安.有限元网格划分的基本原则[J].机械设计与制造, 2001, 1:34-36.
    [65]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:中国科学出版社,2005.
    [66]张进国,王强.板料冲压成形动力显式有限元法计算效率影响因素分析[J].机械设计, 2006, 23(6):58-60.
    [67] Hutchinson J W, Suo Z. Mixed mode cracking in layered materials [J]. Advances in Applied Mechanics, 1992, 29:163-191.
    [68] Peled A, Rubin M B, Tirosh J. Analysis of blank thickening in deep drawing processes using the theory of a cosserat generalized membrane [J]. Journal of the Mechanics and Physics of Solids, 2004, 52:317-340.
    [69]周里群.电沉积镍镀层的冲击性能与冲压成形过程分析[D].湘潭:湘潭大学博士论文, 2004, 60-61.
    [70]胡传炘,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社, 2000.
    [71] Livermore Software Technology Corporation, LS-DYNA Keyword User’s Manual, Volume I, 2001, 619-621.
    [72]牟林,魏峥.冲压工艺及模具设计教程[M].北京:清华大学出版社, 2005.
    [73] Mamalis A G, Manolakos D E, Baldoukas A K. On the finite-element modeling of the deep-drawing of square sections of coated steels [J]. Journal of Materials processing Technology, 1996, 58:153-159.
    [74]林启权,宁智群,赵雄.椭圆盒拉深成形的数值模拟[J].湘潭大学自然科学学报, 2005, 27(4):136-141.
    [75] Doege E, Sommer N. Blank-holder pressure and blank-holder layout in deep drawing of thin sheet metal, Advanced Technology of Plasticity: Proceeding of the Second International Conference on Technology of Plasticity, 1987, 1305-1314.
    [76] Siegert K. CNC-hydraulic multipoint blank-holder system for sheet metal forming presses. [J]. Ann. CIRP, 1993, 42(1):319-322.
    [77] Siegert K, Ziegler M, Wagner S. Closed loop control of the friction force deep drawing process [J]. Journal of Materials Processing Technology, 1997, 71:126-133.
    [78] Murata A, Matsui M. Effects of control of local blank-holding forces on deep drawability of square sheet, Proceeding of 18th biennial Congress IDDRG, International Deep Research Group, Lisbon, Portugal, 1994:503-512.
    [79] Wang Y, Majlessi S A. The design of an optimum binder force system for improving sheet metal formability, Proceedings of the 18th Biennial Congress IDDRG, International Deep Drawing Research Group, Lisbon, Portugal, 1994, 491-502.
    [80]孙成智,陈关龙,李淑惠等.变压边力对矩形件成形性能的影响[J].塑性工程学报,2003, 8 (4):6-9.
    [81] Kubli W, Reissner J. Optimization of sheet-metal forming processes using the special purpose program autoform [J]. Journal of Materials Processing Technology, 1995, 50: 292-305.
    [82]王远钟,董定福,俞芙芳.数值模拟波动压边力对拉深件成形质量的影响[J].塑性工程学报, 2005, 12( 3):46-50.
    [83]孙成智.变压边力对铝合金板冲压成形的影响研究[J].塑性工程学报, 2005, 12(3): 41- 45.
    [84] Gunnarsson L, Asnafi N, Schedin E. In-process control of blank holder force in axi-symmetric deep drawing with degressive gas springs [J]. Journal of Materials Processing Technology, 1998, 73:89-96.
    [85] Michael, Saran J, Mahmoud. Formability improvements via variable binder pressure [J]. Automotive Engineering, 1998, 2:101-103.
    [86] Sim H B, Boyce M C. Finite element analyses of real-time stability control in sheet forming processes [J]. Materials Science and Engineering A, 1992, 114:180-188.
    [87] Sheng Z Q. Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing [J]. International Journal of Machine Tools & Manufacture, 2004, 44:187-194.
    [88] Chang Q F, Li D Y, Peng Y H. Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet [J]. International Journal of Machine Tools & Manufacture, 2006, 1-7.
    [89] Chen F K, Huang T B. Formability of stamping magnesium-alloy AZ31 sheets [J]. Journal of Materials Processing Technology, 2003, 142:643-647.