1. [地质云]滑坡
不同加载路径下盐岩蠕变力学特性与盐岩储气库长期稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用深部盐岩洞穴进行能源储备是国际上广泛认可的能源储备方式,也是我国实施能源战略储备计划的重点部署方向。蠕变特性作为盐岩最重要的力学特性之一,直接关系到盐岩储存库的长期稳定性和安全性,因此对盐岩蠕变特性进行研究具有十分重要的现实意义。基于此,本文在前人研究的基础上,采用室内试验、理论分析和数值模拟相结合的方法,对不同加载路径下盐岩蠕变特性、盐岩非线性粘弹塑性蠕变模型、盐岩在循环荷载作用下的蠕变模型、盐岩非线性蠕变模型二次开发以及盐岩地下储气库的长期稳定性等进行了研究,主要研究内容和成果如下:
     ①采用RLW-2000岩石流变试验机,对不同加载路径(围压恒定、分级增加轴压;轴压恒定、分级卸除围压;轴压恒定、周期性循环围压)下盐岩的三轴蠕变特性进行了试验研究,基于试验结果,分析了不同加载路径和不同应力状态下盐岩蠕变过程的变形特性和蠕变速率随时间的变化规律;
     ②基于岩石非线性流变力学基本理论,从牛顿体粘滞系数在不同蠕变阶段随时间的变化规律入手,分别提出了非线性Kelvin模型、非线性Maxwell模型和非线性Bingham模型,并对各非线性模型的基本力学特性进行了分析。分析表明,由于非线性系数的引入,使得修正后的非线性模型在描述岩石蠕变特性时具有更好的适应性。
     ③将非线性Kelvin体、非线性Maxwell体和非线性Bingham体进行串联建立了能够反映盐岩蠕变三阶段的非线性粘弹塑性蠕变模型,并根据盐岩三轴压缩蠕变试验结果和相关文献盐岩加速蠕变阶段的试验数据,利用1stOpt优化软件,对模型参数进行了反演识别。理论曲线和试验曲线对比显示两者吻合良好,说明本文非线性粘弹塑性蠕变模型能够很好的描述盐岩的蠕变特性。
     ④以Bugrers模型为基础,推导了其在低频循环荷载作用下的蠕变方程,并根据盐岩恒轴压、循环围压加载路径下的蠕变试验结果,对循环荷载蠕变模型参数进行了反演。理论曲线和试验曲线对比表明,该模型能够较好的反映盐岩在循环荷载作用下的蠕变特性,特别是能够反映出不同围压循环周期下盐岩蠕变应变随围压升降而发生的明显的波动现象。
     ⑤基于有限差分理论,推导了盐岩非线性粘弹塑性蠕变模型的有限差分表达形式,结合FLAC3D二次开发平台,采用Mohr—Coulomb准则作为屈服判据,实现了非线性蠕变模型的二次开发,获得了该模型的动态链接程序,并通过试验模拟和算例分析验证了二次开发模型程序的正确性和合理性。
     ⑥利用非线性粘弹塑性蠕变模型二次开发计算程序,对依托工程盐岩储气库的长期稳定性进行了数值分析,探讨了洞周塑性区、围岩变形量、溶腔体积损失率及围岩扩容破坏安全系数等随蠕变时间和储气内压的变化规律,确定了储气库的最小储气内压、最大采气速率和矿柱宽度。
It is the worldwide-recognized energy reserve method and the key deploymentdirection of our country to implement energy strategic reserve plan by storing oil andnatural gas in deep salt rock caverns. As one of the most important mechanicalproperties of salt rock, creep property is closely related to the long-term stability andsecurity of salt rock underground storage. So, it has very important significance inpractice to research the creep property of salt rock.
     In view of this, researches carried out in this paper would use a combinationmethod including testing research, theoretical analysis and numerical simulation. Firstly,triaxial compression creep tests for salt rock under different loading paths were carriedout, and the impact of loading path and stress level to creep property of salt rock wasanalyzed; Secondly, the nonlinear viscoelasto-plastic creep model and the creep modelunder low-frequency cyclic load for salt rock were present based on testing results; Atlast, the nonlinear viscoelasto-plastic creep model was programmed in computer andapplied to long-term stability analysis of salt rock underground gas storage.
     The main contents and research conclusions of this paper were as follows:
     ①In order to know about the creep properties of salt rock, triaxial compressioncreep experiments with salt rock specimens under different stress loading paths werecarried out on RLW-2000rock servo controlling rheology testing machine. Based ontest results, deformation properties and variation law of creep rate with time underdifferent loading paths and stress levels in creep process were discussed in detail.
     ②According to the basic nonlinear rheology theory of rock and thetime-dependence of viscosity coefficient in different creep stages, nonlinear Kelvinmodel, nonlinear Maxwell model and nonlinear Bingham model were put forward. Thenonlinear models had many special characteristics and better adaptability in describingthe rheological properties of rocks through comparing the characteristics of nonlinearmodels with common models.
     ③A new nonlinear viscoelasto-plastic creep model for salt rock was established byconnecting nonlinear Kelvin model with nonlinear Maxwell model and nonlinearBingham model in the form of series, which could describe the nonlinear creep propertyof salt rock and the primary creep, steady creep and tertiary creep perfectly. Accordingto the least squares theory and triaxial compression creep test results of salt rock, the parameters of nonlinear creep model were obtained by inversion calculation. Thentheoretical results were calculated by substituting the parameters into the model, andthrough comparing, theoretical curves were in good agreement with test curves, whichindicated that the nonlinear creep model could well describe the creep property of saltrock.
     ④The creep equation of salt rock under low-frequency cyclic load was deducedbased on Burgers model. According to the least squares theory and triaxial compressioncreep test results of salt rock under cyclic load, the parameters of the proposed modelwere obtained by inversion calculation. Through comparing theoretical curves with testcurves, it was found that the proposed creep model could well describe the creepproperty of salt rock under cyclic load, especially the fluctuation phenomenon of creepdeformation with load fluctuation.
     ⑤According to the difference theory and good redevelopment platform of FLAC3Dsoftware, the finite difference form of the nonlinear viscoelasto-plastic creep model forsalt rock was deduced. Based on which, the redevelopment of nonlinear creep modelwas carried out in FLAC3Dwith taking the Mohr-Coulomb criterion as failure criterion,and then the correctness and applicability of the redevelopment computer program wasverified by experimental simulation and engineering example analysis.
     ⑥The nonlinear viscoelasto-plastic creep model computer program was applied tolong-term stability analysis of salt rock underground gas storage. According to thesimulation results, the variation laws of plastic zones, surrounding rock massdeformation, volume closure ratio and dilation damage safety factor with time and gaspressure were analyzed, and the minimum gas pressure, maximum gas recovery velocityand reasonable pillar width were determined.
引文
[1]徐素国.层状盐岩矿床油气储库建造及稳定性基础研究[D].太原:太原理工大学,2010.
    [2]杨春和.深部岩体国家战略能源储存与高放废物地质处置工程—岩石力学发展机遇与挑战[A].香山科技会议第230次学术会议[C].北京:2004.
    [3] Fokker P A. The behavior of salt and salt caverns[C]. Proefschrift, Technische UniversiteitDdlft. Aussois, France,1998.
    [4]杨春和,李银平,陈锋.层状盐岩力学理论与工程[M].北京:科学出版社,2009.
    [5] Boucly P, Legreneur J. Hydrocarbon storage in cavities leached out of salt formations [C]. In:Proc. Int. Symp. Rock Store.[s.l.]: Pergamon,1980.251-258.
    [6] Baar C A. Applied Salt-Rock Mechanics, Part1[M]. Amsterdam: Elsevier Science,1977.
    [7]王者超.盐岩非线性蠕变损伤本构模型研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [8]吴文,杨春和,侯正猛.盐岩中能源(石油和天然气)地下储存力学问题研究现状及其发展[J].岩石力学与工程学报,2005,24(增2):5561-5568.
    [9] Hunsehe U. Fracture experiments on cubic rock salt samples[A]. The first Conference on theMechanics Behavior of salt[C].Trans Tech Publications,1984:169-179.
    [10] Hunsehe U, Albrieht H. Results of true triaxial strength tests on rock salt[J]. Enginneringfracture mechanics.1990,35(4):867-877.
    [11] Farmer I W, Gilbert M J. Dependent strength reduction of rock salt[A]. The first Conferenceon the Mechanies Behavior of Salt[C]. Trans Tech Publications,1984:4-18.
    [12] Hansen F D, Mellegard K D, Senseny P E. Elastieity and strength of the natural rock salt[A].The Mechanical Behavior of Salt Proc.1st Conf. Eds. H. R. Hardy, Jr. and M. Langer[C].Trans Tech Publ. Clausthal-Zellerfeld,1981,71-83.
    [13] Skrotzki W. An Estimate of the Brittle do ductile transition in salt[A]. The first Conference onthe Mechanical Behavior of salt[C]. Trans Tech Publications,1984:381-388.
    [14]刘江,杨春和,吴文,等.盐岩短期强度和变形特性试验研究[J].岩石力学与工程学报,2006,25(增1):3104-3109.
    [15]刘新荣,鲜学福,马建春.三轴应力状态下岩盐力学性质试验研究[J].地下空间,2004,24(2):153-156.
    [16]高小平,杨春和,吴文.温度效应对盐岩力学特性影响的试验研究[J].岩土力学,2005,26(11):1775-1778.
    [17]李银平,蒋卫东,刘江,等.湖北云应盐矿深部层状盐岩直剪试验研究[J].岩石力学与工程学报,2007,26(9):1767-1772.
    [18]吴文,徐松林,杨春和.盐岩冲击特性试验研究[J].岩石力学与工程学报,2004,23(21):3613-3620.
    [19] King M S. Creep in model pillars of Saskatchewan potash[J]. International Journal of RockMechanics, Mining Science&Geotechnical Abstracts,1973,10(4):363-371.
    [20] Paul E S. Creep properties of four rock salts[A]. The Mechanical Behavior of salt of the2ndConference[C]. Germany: Trans Tech Publications,1984:431-444.
    [21] Hunsche U. Result and interpretation of creep experiments on rock salt[A]. In: Hardy Jr HR,Langer M, eds. Proc.1st Conference on the Mechanics Behavior of salt[C]. Trans TechPublications,1984:159-167.
    [22] Hunsche U, Schulze O. Effect of humidity and confining pressure on creep of rock salt[A].The Mechanical Behavior of salt of the3rd Conference[C]. Germany: Trans Tech Publications,1993:237-248.
    [23] Cristescu N D. A general constitutive equation for transient and stationary creep of rock salt[J].International Journal of Rock Mechanics, Mining Science&Geotechnical Abstracts,1993,30(2):125-140.
    [24] Cristescu N D,Parasclliv I. Creep and creep damage around large rectangular-like caverns[J].Mechanics for Cohesive-Frictional Materials.1996(l):165-197.
    [25] Hampel A, Hunsche U. Description of the creep of rock salt with the compositemodel-steady-state creep[A]. In: Hardy Jr HR, Langer M, eds. Proc.4th Conference on theMechanics Behavior of salt[C]. Trans Tech Publications,1996:287-299.
    [26] Asanov V A. Deformation of salt rock joints in time[J]. Journal of Mining Science.2004(40):154-169.
    [27] Szczepanik S D. Time-dependent acoustic emission studies on potash[A]. In: Roegies D, ed.Rock Mechanics as a Multidisciplinary Science[C]. Rotterdam: A. A. Balkma,1991:471-479.
    [28] Poirier J P. High temperature creep of single-crystal sodium chloride[J]. PhilosophicalMagazine,1972,26:713-725.
    [29] Guillope M, Poirier J P. Dynamic recrystallization during creep of single-recrystalline halite:an experimental study[J]. Journal of Geophysical Research,1979,84:5557-5567.
    [30] Munson D E, Devries K L, Fossum A F, et al. Extension of the M-D model for treating stressdrops in salt[A]. In: Hardy Jr HR, Langer M, eds. Proc.3rd Conference on the MechanicalBehavior of salt[C]. Trans Tech Publications,1993:31-34.
    [31]邱贤德,姜永东,阎宗岭,等.岩盐的蠕变损伤破坏分析[J].重庆大学学报,2003,26(5):106-109.
    [32]邱贤德,姜永东,张兰.岩盐流变特性与卸荷损伤本构关系研究[J].中国井矿盐,2003,34(4):21-24.
    [33] Yang C H, Daemen J K, Yin J H. Experimental investigation of creep behavior of salt rock[J].International Journal of Rock Mechanics and Mining Science,1999,36(2):233-242.
    [34]杨春和,殷建华,等.盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262-265.
    [35]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270-275.
    [36]陈锋,李银平,杨春和,等.云应盐矿盐岩蠕变特性试验研究[J].岩石力学与工程学报,2006,25(增1):3022-3027.
    [37]郤保平,赵阳升,赵延林,等.含高盐份泥岩夹层的盐岩蠕变特性研究[J].地下空间与工程学报,2007,3(1):23-26.
    [38]高小平,杨春和,吴文,等.岩盐时效特性实验研究[J].岩土工程学报,2005,27(5):558-561.
    [39]刘绘新,张鹏,盖峰,等.四川地区盐岩蠕变规律研究[J].岩石力学与工程学报,2002,21(9):1290-1294.
    [40]徐素国,梁卫国,郤保平,等.钙芒硝盐岩蠕变特性的研究[J].岩石力学与工程学报,2008,27(增2):3516-3520.
    [41]张金成.盐岩地层套管蠕变荷载试验及其数值分析[J].中国石油大学学报(自然科学版),2009,33(1):115-119.
    [42]梁卫国,徐素国,刘江,等.金坛储气库岩盐蠕变特性及其实用本构研究[J].辽宁工程技术大学学报,2007,26(3):354-356.
    [43]赵延林,张英,万文.层状盐岩力学特性及蠕变破坏模型[J].矿业工程研究,2010,25(1):16-20.
    [44]李萍,邓金根,孙焱,等.川东气田盐岩、膏盐岩蠕变特性试验研究[J].岩土力学,2012,33(2):444-448.
    [45]唐明明,王芝银,丁国生,等.含夹层盐岩蠕变特性试验及其本构关系[J].煤炭学报,2010,35(1):42-45.
    [46]杨典森,陈卫忠,杨建平,等.岩盐蠕变行为的宏细观损伤特性试验研究[J].岩石力学与工程学报,2011,30(7):1363-1367.
    [47]刘江,杨春和,吴文,等.盐岩蠕变特性和本构关系研究[J].岩土力学,2006,27(8):1267-1271.
    [48]郤保平,赵阳升,赵金昌,等.层状盐岩温度应力耦合作用蠕变特性研究[J].岩石力学与工程学报,2008,27(1):90-96.
    [49]高小平,杨春和,吴文,等.盐岩蠕变特性温度效应的实验研究[J].岩石力学与工程学报,2005,24(12):2054-2059.
    [50] Lux K H, Heusermann S. Creep tests on rock salt with changing load as a basis for theverification of theoretical material laws[C]. Proc.6th Int. Symp on salt. Eds.
    [51] Munson D, Wawersik W. Constitutive modeling of salt behavior-state of the technology[A].Proc7th Int. Conger. On Rock Mechanics. Ed. W. Wittke[C]. Balkema, Rotterdam,1993(3):1797-1810.
    [52] Munson D, Devries K, Fossum A F. Extension of the M-D model for treating stress drops insalt[A]. The mechanical Behavior of salt. Proc.3rd Conf. Eds. Hardy&M.Langer[C]. TransTech Publ, Clausthal-Zellerfeld.1996,31-44.
    [53] Aubertin M. On the physical origin and modeling of kinematic and isotropic hardening ofsalt[A]. The Mechanical Behavior of salt. Proc.3rd Conf. Eds. M. Ghoreychi, P.Berest,H.R.Hardy, Jr.and M. Langer[C]. Trans Tech Publ, Clausthal-Zellerfeld.1996:3-17.
    [54] Aubertin M, Gill D E, Ladanyi B. Constitutive equations with internal state variables for theinelastic behavior of soft rocks[C]. Appl. Mech. Reviews. ASME.1994,47(6-2):97-101.
    [55] Aubertin M, Gill D E, Ladayi B. An internal variable model for the creep of rock salt[J]. RockMech and Rock Engin,1991,24:81–97.
    [56] Hunsche U. Result and interpretation of creep experiments on rock salt[A]. The MechanicalBehavior of salt. Proc.1st Conf. Eds. H.R. Hardy, Jr, and M.Langer[C]. Trans Tech Publ,Clausthal-Zellerfeld,1981,159-167.
    [57] Hunsche U. Uniaxial and triaxial creep and failure tests on rock: experimental technique andinterpretation[A]. Visco-Plastic Behavior of Geomaterials. Eds. N.D. Cristescu, and G.Gioda[C]. Springer-verlag, Wien-New York,1994, l-53.
    [58] Sgaoula J, Aubertin M, Gill D E. Using internal state variables for modeling the viscoplasticbehavior of rock salt in the semi-brittle regime[J]. Rock Mechanics, Diemen&Schultz(eds)Balkema, Rotterdam,1995,749-754.
    [59] Yahya O M L, Aubertin M, Julien M R. A unified representation of plasticity, creep andrelaxation behavior of rock salt[J]. Int J Rock Mech Min Sci and Geomech Abstr,2000,37:787-800.
    [60] Weidinger P, Hampel a, Blum W, et al. Creep behavior of natural rock salt and its descriptionwith the composite model[J], Materials Science and Engineering, A234-236(1997):646-648.
    [61] Fokker. Elasticity and strength of natural rock salts[A]. Proc.1st Conf. Eds. Hardy. M.Langer[C]. Trans Tech Publ. Clausthal-Zellerfeld.1981:271-283.
    [62] Chan K S, Bodner S R, Fossum A F, et al. A constitutive model for inelastic flow and damageevolution in solids under triaxial compression[J]. Mechanics of Materials, Volume14, Issue l,November1992, Pages1-14.
    [63] Chan K S, Brodsky N S, Fossum A F, et al. Damage-induced nonassociated inelastic flow inrock salt[J]. International Journal of plasticity, Volume10, Issue6,1994, Pages623-642.
    [64] Fossum A F, et al. Constitutive basis of the MDCF model for rock salt[A]. The mechanicalbehavior of salt Proc.4th Conf. Eds. Michel Aubertin&Hardy[C]. Trans Tech Publ,Clausthal-Zellerfeld1996,235-248.
    [65] Chan K S, Bodner S R, Fossum A F, et al. A damage mechanics treatment of creep failure inrock salt[J]. International Journal of Damage Mechanics,1997,6(l):121-152.
    [66] Chan K S, Bodner S R. Application of isochronous healing curves in predicting damageevolution in a salt structure[J]. International journal of damage mechanics,2000,(9):130-153.
    [67] Chan K S. Permeability of WIPP salt during damage evolution and healing[J]. Internationaljournal of damage mechanizes,2001,(10):347-375.
    [68] Lux K H, Hou Z M. New developments in mechanical safety analysis of repositories in rocksalt[A].In: Proc. Int. Conf. On radioactive waste disposal, disposal technologies&concepts[C].Berlin: Springer Verlag,2000:281-286.
    [69] Passaris E K S. The rheological behavior of rock salt as determined in an in situ pressured testcavity[J]. International society for rock mechanics.5th congress l,1979,257-264.
    [70] Musso J, Vouille G. A comparative study of creep, relaxation, cycle loading tests to determinethe rheological model of marl and salt[J]. International society for rock mechanics,3rdcongress IIA,1974,348-353.
    [71] Bergeron W J. The finite analysis of salt pillar model[D]. Luisiana state university, BatonRouge,1968,165.
    [72] Cundall P. Explicit finite difference method in aeromechanics[J]. Numerical methods ingeomichanics, edited by Desai, C,1978,132-150.
    [73]吴文.盐岩的静、动力学特性实验研究与理论分析[D].武汉:中国科学院武汉岩土力学研究所,2003.
    [74]胡其志,冯夏庭,周辉,等.考虑温度损伤的盐岩蠕变本构关系研究[J].岩土力学,2009,30(8):2245-2248.
    [75]熊良宵,杨林德,张尧,等.锦屏二级水电站绿片岩双轴压缩蠕变特性试验研究[J].岩石力学与工程学报,2008,27(增2):3928-3934.
    [76]张明,毕忠伟,杨强,等.锦屏一级水电站大理岩蠕变试验与流变模型选择[J].岩石力学与工程学报,2010,29(8):1530-1537.
    [77]姜永东,鲜学福,熊德国,等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报,2005,27(12):1478-1481.
    [78]张强勇,陈芳,杨文东,等.大岗山坝区岩体现场剪切蠕变试验及参数反演[J].岩土力学,2011,32(9):2584-2590.
    [79]赵宝云,刘东燕,郑志明,等.砂岩短时单轴直接拉伸蠕变特性试验研究[J].实验力学,2011,26(2):190-195.
    [80] Vyalov S S. Rheological Fundamentals of Soil Mechanics[M]. London: Elsevier AppliedScience Publishingers,1986:231-232.
    [81]邓荣贵,周德培,张悼元,等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784.
    [82]陈沅江,潘长良,曹平,等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [83]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [84]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报,2005,24(15):2659-2664.
    [85]赵延林,曹平,文有道,等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486.
    [86]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839.
    [87]杨文东,张强勇,陈芳,等.辉绿岩非线性流变模型及蠕变加载历史的处理方法研究[J].岩石力学与工程学报,2011,30(7):1405-1413.
    [88]康永刚,张秀娥.基于Burgers模型的岩石非定常蠕变模型[J].岩土力学,2011,32(增1):424-427.
    [89]朱珍德,朱明礼,阮怀宁,等.深埋长大隧洞围岩非线性蠕变模型研究[J].岩土力学,2011,32(增2):27-35.
    [90]曹平,刘业科,蒲成志,等.一种改进的岩石黏弹塑性加速蠕变力学模型[J].中南大学学报(自然科学版),2011,42(1):142-146.
    [91]杨圣奇,朱运华,于世海.考虑黏聚力与内摩擦系数的岩石黏弹塑性流变模型[J].河海大学学报(自然科学版),2007,35(3):291-297.
    [92]王维忠,尹光志,王登科,等.三轴压缩下突出煤粘弹塑性蠕变模型[J].重庆大学学报,2010,33(1):99-103.
    [93]周家文,徐卫亚,杨圣奇.改进的广义Bingham岩石蠕变模型[J].水利学报,2006,(7):827-830.
    [94]陈晓斌,张家生,封志鹏.红砂岩粗粒土流变工程特性试验研究[J].岩石力学与工程学报,2007,26(3):601-607.
    [95]李良权,徐卫亚,王伟.基于西原模型的非线性黏弹塑性流变模型[J].力学学报,2009,41(5):671-680.
    [96]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(II):模型分析[J].岩土力学,2005,26(5):693-698.
    [97]熊良霄,杨林德.硬脆岩的非线性粘弹塑性流变模型[J].同济大学学报(自然科学版),2010,38(2):188-193.
    [98] Zhou H W, Wang C P, Han B B, et al. A creep constitutive model for salt rock based onfractional derivatives[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(1):116-121.
    [99]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报,2000,1(3):1-5.
    [100]徐卫亚,周家文,杨圣奇,等.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报,2006,25(增1):3093-3097.
    [101]朱昌星,阮怀宁,朱珍德,等.岩石非线性蠕变损伤模型的研究[J].岩土工程学报,2008,30(10):1510-1513.
    [102]伍国军,陈卫忠,曹俊杰,等.工程岩体非线性蠕变损伤力学模型及其应用[J].岩石力学与工程学报,2010,29(6):1184-1191.
    [103]张强勇,杨文东,张建国,等.变参数蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2009,28(4):732-739.
    [104]佘成学.岩石非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报,2009,28(10):2006-2011.
    [105]蒋昱州,徐卫亚,王瑞红,等.岩石非线性蠕变损伤模型研究[J].中国矿业大学学报,2009,38(3):331-335.
    [106] Wang G J. A new constitutive creep-damage model for salt rock and its characteristics[J].International Journal of Rock Mechanic and Mining Science,2004,41(Supp.1):61-67.
    [107]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报,2005,24(23):4253-4258.
    [108]任中俊,彭向和,万玲,等.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报,2008,25(2):212-217.
    [109]陈卫忠,王者超,伍国军,等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2007,26(3):467-472.
    [110]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,22(11):1602-1604.
    [111]王贵君.一种盐岩流变损伤模型[J].岩土力学,2003,24(增):81-84.
    [112]陈锋,杨春和,白世伟.盐岩储气库蠕变损伤分析[J].岩土力学,2006,27(6):945-949.
    [113]陈锋.盐岩力学特性及其在储气库建设中的应用[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [114]黄明.含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究[D].重庆:重庆大学,2010.
    [115]朱杰兵,汪斌,邬爱清.锦屏水电站绿砂岩三轴卸荷流变试验及非线性损伤蠕变本构模型研究[J].岩石力学与工程学报,2010,29(3):528-534.
    [116]朱杰兵,汪斌,邬爱清,等.锦屏水电站大理岩卸荷条件下的流变试验及本构模型研究[J].固体力学学报,2008,29(12):99-106.
    [117]夏才初,闫子舰,王晓东,等.大理岩卸荷条件下弹黏塑性本构关系研究[J].岩石力学与工程学报,2009,28(3):459-466.
    [118]刘国彬,贾付波.基坑回弹时间效应的试验研究[J].岩石力学与工程学报,2007,26(增1):3040-3044.
    [119]闫子舰,夏才初,李宏哲,等.分级卸荷条件下锦屏大理岩流变规律研究[J].岩石力学与工程学报,2008,27(10):2153-2159.
    [120]闫子舰,夏才初.锦屏大理岩卸荷流变变形特性试验[J].长江科学院院报,2008,25(5):11-15.
    [121]胡其志,周辉,庄心善.分级卸荷条件下软土蠕变特性的试验研究[J].长沙大学学报,2010,24(5):24-27.
    [122]胡其志,何世秀,杨雪强.基坑开挖软土流变特性的试验研究[J].湖北工学院学报,2003,18(3):1-3.
    [123]石振明,张力.锦屏绿片岩分级卸荷流变规律研究[J].地下空间与工程学报,2010,6(4):756-762.
    [124]徐平,周火明.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481-485.
    [125] Tutuncu A N, Podio A L, Sharma M N. Nonlinear viscoelastic behavior of sedimentary rocks,Part II: Hysteresis effect and influence of type of fluid on elastic moduli[J]. Geophysics,1998,63(l):184-190.
    [126] Yoshinaka R, Tran T V, Osada M. Non-linear stress and strain dependent behavior of soft rocksunder cyclic triaxial conditions[J]. International Journal of Rock Mechanics and MiningSciences,1998,35(7):941-955.
    [127]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
    [128]郭印同,赵克烈,孙冠华,等.周期荷载下盐岩的疲劳变形及损伤特性研究[J].岩土力学,2011,32(5):1353-1359.
    [129]赵克烈.注采气过程中地下盐岩储气库可用性研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [130]朱元林,何平,张家懿,等.冻土在振动荷载作用下的三轴蠕变模型[J].自然科学进展,1998(1):60-62.
    [131]朱元林,何平,张家懿,等.围压对冻结粉土在振动荷载作用下蠕变性能的影响[J].冰川冻土,1995,17(增):20-25.
    [132]赵淑萍,何平,朱元林,等.荷载振动频率对冻结兰州细砂蠕变特性的影响[J].岩石力学与工程学报,2006,25(增2):4097-4103.
    [133]赵淑萍,何平,朱元林,等.冻结粉土的动静蠕变特征比较[J].岩土工程学报,2006,28(12):2160-1263.
    [134]黄明,刘新荣,祝云华,等.低频周期荷载下广义Kelvin-Voigt模型特性研究[J].岩土力学,2009,30(8):2300-2304.
    [135]黄明,刘新荣.交通荷载作用下高填方路堤的工后蠕变模型探析[J].解放军理工大学学报(自然科学版),2011,12(1):54-58.
    [136] Tillerson J R. Geomechanics investigations of SPR crude oil storage caverns[A]. In: SMRIFall Meeting[C]. Toronto, Canada,1979.
    [137] Dreyer W E. Results of recent studies on the stability of crude oil and gas storage in saltcaverns[A]. In: Coogan AH ed. Proceeding of the4th International symposium on salt[C].Cleveland, USA, Northern Ohio Geological Society,1973:65-92.
    [138] Hugout B. Mechanical behavior of salt cavities-in situtests-model for calculating the cavityvolume evolution[A]. In:2nd Conference on the Mechanical Behavior of salt[C]. Trans TechPublication,1988:291-310.
    [139] Preece D S. Calculation of creep induced volume reduction of the Weeks Island SPR facilityusing3D finite element methods[C]. The29th U. S. Symposium on Rock Mechanics,1988.
    [140] Hou Z M. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zonearound underground facilities[J]. International Journal of Rock Mechanics&Mining Sciences,2003(40):725-738.
    [141] Philippe B. In situ experience and mathematical representation of the behavior of rock saltused in storage of gas[A]. In: Hardy, Jr. HR, Langer M eds.1st Conference on the MechanicalBehavior of salt[C]. Trans Tech Publication,1984:453-471.
    [142] Schmidt U, Staudtmeister K. Determining minimum permissible operating pressure for a gascavern using the finite element method[A]. In: Proceedings of International Conference onStorage of Gases in Rock Caverns[C]. Trondheim,1989:103-115.
    [143] Heusermann S, Rolfs O, Schmidt U. Nonlinear finite-element analysis of solution minedstorage caverns in rock salt using the Lubby2constitutive model[J], Computers and Structures,81(2003):629-638
    [144] Hoffman. Effects of cavern depth on surface subsidence and storage loss of oil-filledcaverns[C]. SAND92-0053, Sandia National Laboratories, Albuquerque, NM,1992.
    [145] Ussam A, Mirza. Prediction of creep deformations in rock salt pillars[A]. The mechanicalbehavior of salt proceedings of the first conference[C]. Clausthal, trans tech publications.1981:311-325
    [146] Sobolik S R, Ehgartner B L. Effects of cavern shapes on cavern and well integrity for thestrategic petroleum reserve[C]. The Mechanical Behavior of Salt-Understanding of THMCProcesses in Salt(2007):353-361
    [147] Bruno M S, Dussealut M B. Geomechanical analysis of pressure limits for gas storageressrvirs[J], International journal of rock mechanics and mining sciences,1998.
    [148] Standtmeister K, Rokahr R B. Rock mechanical design of storage in bedded salt caverns[J].International Journal of Rock Mechanics&Mining Sciences.1997,34(3):646.
    [149] Han G, Bruno M. Gas Storage and Operations in single Bedded Salt Caverns: StabilityAnalyses[C]. SPE Gas Technology Symposium held in Calgary, Alberta, Canada,15-17May2006: Spe99520.
    [150]王贵君.盐岩层中天然气存储洞室围岩长期变形特征[J].岩土工程学报,2003,25(4):431-435.
    [151]陈锋,杨春和,白世伟.盐岩储气库最佳采气速率数值模拟研究[J].岩土力学,2007,28(1):57-63.
    [152]郤保平,赵阳升,赵延林,等.层状盐岩储库长期运行腔体围岩流变破坏及渗透现象研究[J].岩土力学,2008,29(增):241-246.
    [153]马洪岭.超深地层盐岩地下储气库可行性研究[D].武汉:中国科学院武汉岩土力学研究所,2010.
    [154]陈卫忠,伍国军,戴永浩,等.废弃盐穴地下储气库稳定性研究[J].岩石力学与工程学报,2006,25(4):848-854.
    [155]李银平,杨春和,罗超文,等.湖北省云应地区盐岩溶腔型地下能源储库密闭性研究[J].岩石力学与工程学报,2007,26(12):2430-2436.
    [156]王同涛,闫相祯,杨恒林,等.多夹层盐穴储气库最小允许运行压力的数值模拟[J].油气储运,2010,29(11):877-879.
    [157]马林建,刘新宇,许宏发,等.井喷失控条件下盐岩储库稳定性分析[J].岩土力学,2011,32(9):2791-2799.
    [158]尹雪英,杨春和,陈剑文.金坛盐矿老腔储气库长期稳定性分析数值模拟[J].岩土力学,2006,27(6):869-874.
    [159]黄小兰,杨春和,陈锋,等.潜江地区层状盐岩天然气储库密闭性评价研究[J].岩土力学,2011,32(5):1473-1479.
    [160]丁国生,张保平,杨春和,等.盐穴储气库溶腔收缩规律分析[J].天然气工业,2007,(11):94-99.
    [161]施锡林,李银平,杨春和,等.盐穴储气库水溶造腔夹层垮塌力学机制研究[J].岩土力学,2009,30(12):3615-3622.
    [162]张强勇,陈旭光,张宁,等.交变气压风险条件下层状盐岩地下储气库注采气大型三维地质力学试验研究[J].岩石力学与工程学报,2010,29(12):2410-2419.
    [163]贾超,张强勇,刘家涛,等.不同储气内压下盐岩地下储气库可靠性分析[J].地下空间与工程学报,2011,7(2):276-280.
    [164]邓检强,吕庆超,杨强,等.变形稳定理论在盐岩储气库优化设计中的应用[J].岩土力学,2011,32(增2):507-513.
    [165]戴永浩,陈卫忠,杨春和,等.金坛盐岩储气库运营模型试验研究[J].岩土力学,2009,30(12):3574-3580.
    [166]任松,李小勇,姜德义,等.盐岩储气库运营期稳定性评价研究[J].岩土力学,2011,32(5):1465-1473.
    [167]贾超,刘家涛,张强勇,等.盐岩储气库运营期时变可靠度计算及风险分析[J].岩土力学,2011,32(5):1479-1484.
    [168]王保群,张强勇,李术才,等.盐岩地下油气储库设计参数优化研究[J].岩石力学与工程学报,2011,30(增1):3334-3341.
    [169]孙钧.岩土材料流变及工程应用[M].北京:中国建筑工业出版社,1999.
    [170]孟召平,彭苏萍,张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报,2003,25(2):140-143.
    [171]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [172]宋飞.石膏角砾岩非线性流变模型研究及有限元分析[D].西安:长安大学,2006.
    [173]金丰年.岩石的时间效应[D].上海:同济大学,1993.
    [174]夏才初,金磊,郭锐.参数非线性理论流变力学模型研究进展及存在的问题[J].岩石力学与工程学报,2011,30(3):454-463.
    [175]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [176]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [177]耶格JC,库克NGW.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981:382-403.
    [178]杨挺青,罗文波,徐平,等.粘弹性理论与应用[M].北京:科学出版社,2004.
    [179]陈文玲,赵法锁,弓虎军.三轴蠕变试验中云母石英片岩蠕变参数的研究[J].岩石力学与工程学报,2011,30(增1):2810-2816.
    [180]陈文玲.黑河水库坝肩边坡云母石英片岩三轴蠕变机理及蠕变模型研究[D].西安:长安大学,2009.
    [181]阎岩.渗流作用下岩石蠕变试验与变参数蠕变方程的研究[D].北京:清华大学,2009.
    [182]阎岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学,2010,31(10):3025-3035.
    [183]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2):391-396.
    [184]张清照,沈明荣,丁文其.结构面的剪切蠕变特性及本构模型研究[J].土木工程学报,2011,44(7):127-132.
    [185]杨欣.充填体蠕变本构模型及其工程应用[D].南昌:江西理工大学,2011.
    [186]赵宝云.岩石拉、压蠕变特性研究及其在地下大空间洞室施工控制中的应用[D].重庆:重庆大学,2011.
    [187] Boidy E, Bouvand A, Pellet F. Back analysis of time-dependent behavior of a test gallery inelaystone[J]. Tunneling and Underground Space Technology,2002,17(4):415-424.
    [188] Malan D F. Time-dependent behavior of deep level tabu1ar excavations in hard rock[J]. RockMechanics and Rock Engineering,1999,32(2):123-155.
    [189]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-447.
    [190]熊良宵,杨林德,张尧.硬岩的复合黏弹塑性流变模型[J].中南大学学报(自然科学版),2010,41(4):1540-1548.
    [191]汪仁和,李栋伟,王秀喜.改进的西原模型及其在ADINA程序中的实现[J].岩土力学,2006,27(11):1954-1958.
    [192]杨文东.复杂高坝坝区边坡岩体的非线性损伤流变力学模型及其工程应用[D].济南:山东大学,2011.
    [193]宋亮.芒硝力学性质及其水溶开采溶腔稳定性研究[D].重庆:重庆大学,2010.
    [194]莫江.层状盐岩体储气库建造及运行稳定性研究[D].太原:太原理工大学,2009.
    [195]侯正猛.金坛地下储气库15口采卤溶腔稳定性评价技术服务报告[R].德国:克劳斯塔大学,2004,18-25.