1. [地质云]滑坡
基于物联网的温室环境智能管理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物联网技术是通过各种信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的一种网络技术。近年来物联网技术在各领域的应用得到迅速发展,如何将该技术很好地应用到温室环境智能化调控管理中,对于提高设施农业的现代化水平具有重要的意义。本文通过分析国内外研究现状,针对物联网环境下的温室环境智能管理系统中服务层和决策层研究缺乏的现状,开展了温室环境无线测控网络、网络中多传感器信息融合、温室环境信息处理及调控效果预测模型、作物模型库、多尺度的环境调控优化、基于物联网的温室智能管理系统开发等进行了系统地研究。主要研究结论包括:
     (1)构建了基于Zigbee/3G的温室环境无线测控网络,并针对无线传感器网络的三层结构特点,提出了传感节点+汇聚节点两层的融合方法,利用卡尔曼滤波方法进行传感节点层融合,利用加权最小二乘方法进行汇聚节点层融合。对所建立的模型进行了试验验证,结果表明通过两层的融合处理可以提高温室环境无线测控网络的测量精度和系统的稳定性。在无线测控网络基础上,建立了基于多Agent的无线测控网络资源管理系统,实现对温室环境无线传感器节点的管理。
     (2)针对温室内外环境信息特点,依据温室环境调控规则,提出了基于支持向量机预测和多模型切换的温室环境调控预测模型。采用在线式支持向量机算法建立了室外气象预测模型,采用增量式支持向量机算法建立了环境调控预测模型库,采用多模型切换控制器实现子模型的自适应切换。实验结果表明建立的调控效果预测模型具有较好的预测精度,并可实现模型的自适应切换。
     (3)为实现在定期上市目标下的温室蔬菜作物的生产规划,以作物积温模型为依据,利用历史气象数据和市场价格信息,建立基于积温模型的温室蔬菜生产长尺度环境规划决策模型,模型能实现在定植时间确定条件下预计上市期及逐日环境优化决策、在作物计划定植日期和上市期确定条件下的逐日环境优化决策、温室运行过程中的日环境优化决策。
     (4)针对温室蔬菜作物生长的长尺度和温室环境变化的短尺度之间的协调困难的问题,提出了基于多模型融合的温室环境调控参数优化方法,对基于积温、设定值和光照的温室环境优化调控利用D-S证据理论进行多模型的融合,实现温室环境参数的优化调控,试验温室环境调控结果表明,采用多模型融合的温室环境优化调控方法与设定值调控方法相比增加了积温,实现了温室的高产高效生产。
     (5)针对作物模拟模型的通用性和可重用性差的问题,建立了基于多智能体的温室作物模拟模型库系统框架,系统采用访问层、模型集成层和数据层三层结构,设计了模型Agent、管理Agent、目录服务器、通信系统和访问Agent。基于JADE软件平台,开发了基于多Agent的温室作物模拟模型库系统,并利用黄瓜的生长模拟模型对系统进行了测试。
     (6)建立了基于XML的温室作物环境信息交换标准化接口。开发了基于Agent的温室环境调控智能决策支持系统,并将温室环境无线测控网络与资源管理系统、温室环境调控智能决策支持系统集成,建立了基于物联网的温室环境智能管理系统。系统在镇江市京口区瑞京农业科技示范园智能温室中运行,实现了温室环境智能管理。
The technology for the Internet of Things (IOT) is to connect everything to the Internet for information exchange and telecommunications through a variety of information sensing devices according to the given protocols, so as to realize the intelligentized identification, location, tracking, monitoring and management. IOT technology has been applied to various fields in recent years. In this paper, after analyzing the research status of the technology of Internet of things for intelligent measurement and controlling technology in the greenhouse environment, the studies have made for the wireless measurement and control system of greenhouse climate based on multi-sensor information fusion, climate information processing, crop model base, and the optimization of scale environmental regulation. The details of the sudies for the greenhouse intelligent management system based on Internet of things main include as followings:
     (1) The measurement and controlling system of wireless sensing networks for greenhouse climate based on Zigbee/3G has been built, and the multi-sensor information fusion models of node/cluster layers were proposed according to the characteristics of the three-layer structure of wireless sensing network. The node level fusion has been conducted by using the kalman filtering model, and the cluster level fusion by using weighted least square model. The experimental results showed that the two-level fusion models can improve the measurement accuracy and stability of the wireless sensing networks.
     (2) According the climate information measured with WSN system of the greenhouse environment and in conformity to climate control rules, the controlling-effect model of greenhouse climate has been proposed on the base of support vector machine (SVM) and multi-model switching models. The outdoor meteorological forecast models have been established based on least squares support vector machine (LSSVM) algorithms with the online learning. By using the incremental learning LSSVM algorithms, the greenhouse climate effect forecast models have been establish, and the multi-model switch controllers have been used to realize the adaptive switch of control effect models. The established climate control effect models were verified through the field experiments, and the results showed that the climate control effect models can obtain the satisfactory prediction precision, thus realizing the adaptive switch of climate control effect models. The management system of wireless sensor network resource based on multi-Agent has been established to realize the management of wireless sensors.
     (3) In order to accomplish the production planning of the vegetables in the greenhouse targeting for the sale of certain date, the environmental plan decision support models for long-scale greenhouse have been established on the basis of the temperature-accumulated models of crops and by using the history climate data and market price information etc. This model can achieve the decision support for the forecast of sale date and price with the given plant establishment, and determine the day-by-day optimized decision of environment, as well as to make the day-by-day optimized decision of the environment in the conditions of predicted plant establishment date and the certain sale date, while making the daily optimized decision of the environment of the greenhouse operation etc.
     (4) In order to realize the coordination between the long-scale changes of crop growth and short-scale of climate changes, the realtime greenhouse climate control parameters optimal model was proposed on the basis the multi-model fusion. The model was integrated for the fusion of the control model of accumulation temperature model, settings of model and the light-based models, where the mutil-model fusion is realized by using the D-S evidence theory. Meanwhile, the experimental model with the multi-model fusion was verified in the testing greenhouse. The results show that the multi-model fusion controlling models can increase the accumulation temperatures more than those of the setting values for model, thus realizing the yields of greenhouse.
     (5) In order to resolve the issues of poor generality and repeatability of the crop simulation models, the systematic framework has been established for the greenhouse crop growth simulation model database on the basis of multi-agent. The model database consists of the three layers of access layer, model integration layer and data layer. And it is designed as the model agent, management agent, catalog server agent, communication system and access agent. The Agent-based software of the crop growth simulation model in the greenhouse was developed on the JADE platform. And the growth simulation model for the cucumber was used to test this system.
     (6) The standardized information exchange interface has been established for crop growth environment information in the greenhouse on XML. The Agent-based greenhouse climate controlling decision support system was developed. The software of greenhouse intelligent management system for IOT was developed, so the system can be integrated with WSN resources management, the greenhouse climate controlling decision support system and information exchange interface. This system has succeeded to be applied in the greenhouse of Ruijin Agricultural Scientific and Technologic demonstration park at Jinkou district of Zhenjiang, which can have realized the intelligentized management for greenhouse.
引文
[1]李中华,王国占,齐飞.我国设施农业发展现状及发展思路术[J].中国农机化,2012(1):07-10.
    [2]郭世荣,孙锦,束胜,等.我国设施园艺概况及发展趋势[J].中国蔬菜,2012(18):1-14
    [3]喻景权.“十一五”我国设施蔬菜生产和科技进展及其展望[J].中国蔬菜,2011(2):11-23
    [4]杨其长,魏灵玲,刘文科,等.中国设施农业研究现状及发展战略[J].中国农业信息.2012,(11):22-27
    [5]中国科学院农业领域发展研究组编,中国至2050年农业科技发展路线图[M],科学出版社2009
    [6]钱志鸿,王义君.物联网技术与应用研究[J].电子学报,2012,40(5):1023-1029.
    [7]李道亮.物联网与智慧农业[J].农业工程,2012(1):003.
    [8]阎晓军,王维瑞,梁建平.北京市设施农业物联网应用模式构建[J].农业工程学报,2012,28(4):149-154.
    [9]杨玮,李民赞,王秀.农田信息传输方式现状及研究进展[J].农业工程学报,2008,24(5):297-301
    [10]Wang Ning, Zhang Naiqian. Wang Maohao. Wireless sensors in agriculture and food industry—Recent development and future perspective[J]. Computer and Electronics in Agriculture,2006,50(1):1-14
    [11]句荣辉,沈佐锐.基于短信息的温室生态健康呼叫系统[J].农业工程学报,2004,20(3):226-228.
    [12]刘会忠,吴修文,冯晓霞,等GPRS技术在温室大棚环境监控中的应用[J].农业装备与车辆工程,2010(4):52-54
    [13]王斌,吴锴,李志伟.基于GPRS技术日光温室综合环境集散控制系统的研究与设计[J].山西农业大学学报(自然科学版),2012,32(1):022.
    [14]韩华峰,杜克明,孙忠富,等.基于Zigbee网络的温室环境远程监控系统设计与应用[J].农业工程学报.2009,25(7):158-163
    [15]苗连强,胡会萍.基于Zigbee技术的温室环境远程监测系统设计[J].仪表技术与传感器,2010(010):108-110.
    [16]郭文川,程寒杰,李瑞明,等.基于无线传感器网络的温室环境信息监测系统[J].农业机械学报,2010,41(7):181-185
    [17]周建民,尹洪妍,徐冬冬,基于Zigbee技术的温室环境监测系统[J],仪表技术与传感器,2011(9):50-52
    [18]Park D H, Kang B J, Cho K R, et al. A study on greenhouse automatic control system based on wireless sensor network [J]. Wireless Personal Communications,2011,56(1):117-130.
    [19]Park D H, Park J W. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention [J]. Sensors,2011,11(4): 3640-3651.
    [20]张荣标,谷国栋,冯友兵,等.基于IEEE80211514的温室无线监控系统的通信实现[J].农业机械学报,2008,39(8):119-122.
    [21]李莉,刘刚.基于蓝牙技术的温室环境监测系统设计[J].农业机械学报,2006,37(6):97-100
    [22]马增炜,马锦儒,李亚敏.基于WIFI的智能温室监控系统设计[J].农机化研究,2012(2):154-157
    [23]Li X, Cheng X, Yan K, et al. A monitoring system for vegetable greenhouses based on a wireless sensor network [J]. Sensors,2010,10(10):8963-8980.
    [24]张西良,张卫华,李萍萍,等.基于GSM的室内无线传感器网络簇头节点[J].江苏大学学报(自然科学版),2010,31(2):196-200.
    [25]李莉,李海霞,刘卉.基于无线传感器网络的温室环境监测系统[J].农业机械学报,2009,40(1):228-231
    [26]盛平,郭洋洋,李萍萍.基于Zigbee和3G技术的设施农业智能测控系统[J].农业机械学报,2012,43(12):042.
    [27]Fukatsu T, Hirafuji M, Kiura T. A distributed agent system for managing a web-based sensor network with field servers[C]//Proc. of 4th World Congress on Computers in Agriculture (WCCA).2006:223-228.
    [28]Fukatsu T, Hirafuji M, Kiura T. Agent System for operating web-based sensor nodes via the internet[J]. Journal of Robotics and Mechatronics,2006,18(2):186.
    [29]Fukatsu T, Hirafuji M, Kiura T. Web-based Sensor Network with Flexible Management by Agent System[C]//12th International Conference on Principles of Practice in Multi-Agent Systems,Studies in Computational Intelligence,2011,325:415-424
    [30]张西良,孙优,李萍萍,等.无线传感器网络q分类融合算法[J].江苏大学学报:自然科学版,2008,29(3):189-193.
    [31]吴袆娴,苏诚,陈明,等.基于Agent的温室无线传感网络分簇管理模型[J].广西师范大学学报(自然科学版),2011,2:040.
    [32]韩安太,郭小华,孙延伟.温室无线传感器网络监控系统的事件驱动调度器[J].农业机械学报,2010,41(7):186-204.
    [33]熊迎军,沈明霞,刘永华,等.混合架构智能温室信息管理系统的设计[J].农业工程学报,2012,28(5):181-185.
    [34]朱文婷,陈明.温室无线传感网络多Agent信息融合体系构建[J].郑州大学学报:理学版,2008,40(3):35-39.
    [35]熊迎军,沈明霞,陆明洲,等.温室无线传感器网络系统实时数据融合算法[J].农业工程学报,2012(23):160-166.
    [36]李惟毅,李兆力,雷海燕,等.农业温室微气候研究综述与理论模型分析[J].农业机械学报,2005,36(5):137-140
    [37]李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,2004,20(3):217-221.
    [38]Bartzanas T, Boulard T. Effect of vent arrangement on windward ventilation of a tunnel greenhouse [J]. Biosystems Engineering,2004,88(4),479-490.
    [39]胥芳,张立彬,陈教料,等.玻璃温室小气候温湿度动态模型的建立与仿真[J].农业机械学报,2006,36(11):102-105.
    [40]Abdel-Ghany A M, Kozai T. Dynamic modeling of the environment in a naturally ventilated, fog-cooled greenhouse[J]. Renewable energy,2006,31(10):1521-1539.
    [41]汪小品,丁为民,罗卫红,等.南方现代化温室能耗预测模型的建立与分析[J].南京农业大学学报,2006,29(1):116-120.
    [42]Kittas C, Bartzanas T. Greenhouse microclimate and dehumidification effectiveness under different ventilator configurations[J]. Building and Environment,2007,42(10):3774-3784.
    [43]孟力力,杨其长,王柟.日光温室热环境模拟模型的构建[J].农业工程学报,2009,25(1):164-170.
    [44]Ould Khaoua S A, Bournet P E, Migeon C, et al. Analysis of greenhouse ventilation efficiency based on computational fluid dynamics[J]. Biosystems Engineering,2006,95(1):83-98.
    [45]樊琦,俞永华,杨祥龙.连栋塑料温室自然通风系统数值模拟研究[J].农机化研究,2006(8):60-62.
    [46]俞永华,王剑平,应义斌.连栋塑料温室多工况下风压的数值模拟[J].江苏大学学报(自然科学版),2007,28(5):373-376.
    [47]王蕊,须晖,马健,等.基于流体力学的湿帘风机温室内气流运动的模拟分析[J].农业工程学报,2011,27(6):250-255.
    [48]程秀花,毛罕平,伍德林,等.玻璃温室自然通风热环境时空分布数值模拟[J].农业机械学报,2009,40(6):179-183.
    [49]程秀花,毛罕平,倪军.温室环境-作物湿热系统CFD模型构建与预测[J].农业机械学报,2011,42(2):173-179.
    [50]顾寄南,毛罕平.温室环境智能化控制数学模型的研究[J].农业机械学报,2001,32(6):63-65.
    [51]邓玲黎,李百军,毛罕平.长江中下游地区温室内温湿度预测模型的研究[J].农业工程学报,2004,20(1):263-266.
    [52]王定成.温室环境的支持向量机回归建模[J].农业机械学报,2004,35(5):106-109.
    [53]Litago J, Baptista F J, Meneses J F, et al. Statistical modelling of the microclimate in a naturally ventilated greenhouse[J]. Biosystems engineering,2005,92(3):365-381.
    [54]Herrero J M, Blasco X, Martinez M, et al. Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms[J]. Biosystems Engineering,2007,98(3): 335-346.
    [55]Patil S L, Tantau H J, Salokhe V M. Modelling of tropical greenhouse temperature by auto regressive and neural network models[J]. Biosystems Engineering,2008,99(3):423-431.
    [56]Trejo-Perea M, Herrera-Ruiz G, Rios-Moreno J, et al. Greenhouse energy consumption prediction using neural networks models[J]. training,2009,1(1):2.
    [57]JW Jones, E Dayan, LH Allen, et al. A dynamic tomato growth yield model(TOMGRO) [J]. Transaction of the AS AE.1991,34(2):663-672.
    [58]Dayan E, Van Keulen H, Jones JW, et al. Development calibration and validation of a greenhouse tomato growth model.I, Description of the model[J]. Agricultural Systems. 1993a.43,145-163
    [59]H Gijzen, E Heuvelink, H Challa, et al. HORTISIM:A model for greenhouse crops and greenhouse climate[J]. Acta Horticulture.1998,456:441-450.
    [60]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review[J]. Scientia Horticulturae,1998,74(1):83-111.
    [61]Marcelis L F M, Elings A, Bakker M J, et al. Modelling dry matter production and partitioning in sweet pepper[C]//III International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation.2006,718:121-128.
    [62]Kahlen K. Towards functional-structural modelling of greenhouse cucumber[J]. Frontis,2007, 22:209-217.
    [63]Marcelis L F M, Elings A, De Visser P H B, et al. Simulating growth and development of tomato crop[C]//International Symposium on Tomato in the Tropics.2008,821:101-110.
    [64]Wiechers D, Kahlen K, Stiitzel H. Dry matter partitioning models for the simulation of individual fruit growth in greenhouse cucumber canopies [J]. Annals of botany,2011,108(6): 1075-1084.
    [65]孙忠富,陈人杰.温室番茄生长发育动态模型与计算机模拟系统初探[J].中国生态农业学报.2003.2:84-88
    [66]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报.2003,19(4):241-244
    [67]李永秀,罗卫红.温室蔬菜生长发育模型研究进展[J].农业工程学报,2008,24(1):307-312.
    [68]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [69]倪纪恒,罗卫红,李永秀,等.温室番茄发育模拟模型研究[J].中国农业科学,2005,38(6):1219-1225.
    [70]施泽平,郭世荣,康云艳,等.基于生长度日的温室甜瓜发育模拟模型的研究[J].南京农业大学学报,2005,28(2):129-132.
    [71]施泽平,郭世荣,康云艳,等.温室甜瓜光合生产与干物质积累模拟模型研究[J].果树学报,2006,23(3):420-426.
    [72]李萍萍,王多辉,邓庆安.温室生菜生长动态及生产潜力的模拟摸型[J].生物数学学报,1999,14(1):77-81.
    [73]胡永光,李萍萍.温室生菜的光合特性及环境参数优化的试验研究[J].江苏理工大学学报:自然科学版,1999,20(3):1-3.
    [74]李萍萍,胡永光,赵玉国,等.叶用莴苣温室栽培单株光合作用日变化规律[J].园艺学报,2001,28(3):240-245.
    [75]李萍萍,夏志军,胡永光.利用Delphi开发温室黄瓜生长动态模拟系统[J].江苏大学学报(自然科学版),2003,24(4):004.
    [76]李萍萍,周静,王纪章,等.温室黄瓜生育期预测的正弦指数模型[J].江苏大学学报:自然科学版,2009,30(4):325-329.
    [77]唐卫东,朱平,郭晨,等.温室植物生长数字化模型构建技术[J].农业机械学报,2010,41(1):159-166.
    [78]李萍萍,李冬生,王纪章,等.温室黄瓜叶片光合速率的类卡方模型[J].农业工程学报,2009,25(1):171-175.
    [79]周静,王纪章,李萍萍,等.温室水果黄瓜叶片扩展及干物质再分配动态模拟模型[J].北方园艺,2011,12:10-13.
    [80]李青林,毛罕平,李萍萍.黄瓜地上部分形态-光温响应模拟模型[J].农业工程学报,2011,27(9):122-127.
    [81]李萍萍,夏志军,胡永光,等.温室黄瓜环境管理智能决策支持系统初探[J].江苏大学学报(自然科学版),2004,25(1):5-8.
    [82]Reynolds J F, Acock B, Dougherty R L, et al. A modular structure for plant growth simulation models[M], Biomass Production by Fast-Growing Trees. Springer Netherlands,1989: 123-134.
    [83]Reynolds J F, Acock B. Modularity and genericness in plant and ecosystem models[J]. Ecological Modelling,1997,94:7-16.
    [84]Acock B, Reynolds F. Introduction:modularity in plant models[J]. Ecological Modelling, 1997,94:1-6.
    [85]Chen J L, Reynolds J F. GePSi:a generic plant simulator based on object-oriented principles [J]. Ecological Modelling,1997,94:53-66.
    [86]Gauthier L, Gary C, Zekki H. GPSF:a generic and object-oriented framework for crop simulation [J]. Ecological Modelling,1999,116:253-268.
    [87]Wang E, Robertson M J, Hammer G L, et al. Development of a generic crop model template in the cropping system model APSIM [J]. European Journal of Agronomy,2002,18:121-140.
    [88]Beck H. Morgan K, Jung Y, et al. Ontology-based simulation in agricultural systems modeling[J]. Agricultural Systems,2010,103(7):463-477.
    [89]姜海燕,朱艳,徐焕良,等.作物模型资源构造平台(CMRCP)的构建研究[J].农业工程学报,2008,24(2):170-175.
    [90]姜海燕,朱艳,汤亮,等.基于本体的作物系统模拟框架构建研究[J].中国农业科学,2009,42(4):1207-1214.
    [91]傅兵,姜海燕,张梅,等.基于主题图的农业模型描述与表示方法[J].农业工程学报,2011,27(4):190-195.
    [92]赵青松,姜海燕.基于动态描述逻辑的作物系统模拟框架本体研究[J].计算机与应用化学,2011,28(10):1313-1316
    [93]王纪章,李萍萍,吴燕明.基于WEB的作物模型库系统[J].农业工程学报,2011,27(7):178-182
    [94]L.S.Marsh, et al. Dynamic Economically Optimum Day Temperature for Greenhouse Hydroponic Lettuce Production Part Ⅰ:a Computer Model; Part Ⅱ:Results and Simulations. Transactions of the ASAE.1991,34(2):550-562
    [95]Seginer I, Hwang Y, Boulard T, et al. Mimicking an expert greenhouse grower with a neural-net policy. Transactions of the ASAE.1996,39(1):299-306
    [96]J.M.Aaslyng, J.B.Lund, N.Ehler, et al. IntelliGrow:a greenhouse component-based climate control system. Environment Modeling &Software.2003(18).:657-666
    [97]Lacroix R, Kok R. Simulation-based control of enclosed ecosystems —A case study; Determination of greenhouse heating setpoints. Canadian Agricultural Engineering, 1999,41(3):175-183.
    [98]Rijsdijk A A. Temperature integration on a 24-hour base:a more efficient climate control strategy[J]. Acta Horticulturae,2000,19(5):163-169.
    [99]Korner, O, Challa H. Design for an improved temperature integration concept in greenhouse cultivation. Computers and Electronics in Agriculture,2003,39:39-59
    [100]Korner O, Bakker M J. Daily Temperature Integration:a Simulation Study to quantify Energy Consumption. Biosystems Engineering,2004,87(3):67-77
    [101]Korner, O, Challa, H. Temperature integration and process-based humidity control in chrysanthemum, Computers and Electronics in Agriculture,2004,41(1):1-21
    [102]X.Blasco, M.Martinez, J.M.Herrero, et al. Model-based predictive control of greenhouse climate for reducing energy and water consumption. Computers and Electronics in Agriculture 2007(55):49-70
    [103]J.A.Pucheta, C. Schugurensky, R. Fullana, et al. Optimal greenhouse control of tomato-seedling crops. Computers and Electronics in Agriculture 2006,(50):70-82
    [104]Korner O, Van Straten G. Decision support for dynamic greenhouse climate control strategies[J]. Computers and electronics in agriculture,2008,60(1):18-30.
    [105]Gupta M K, Samuel D V K, Sirohi N P S. Decision support system for greenhouse seedling production[J]. Computers and Electronics in Agriculture,2010,73(2):133-145.
    [106]李志伟,王双喜,高昌珍等.以温度为主控参数的日光温室综合环境控制系统的研制与应用.农业工程学报.2002,18(3):68-71
    [107]邓璐娟,张侃谕,龚幼民,等.温室环境多级控制系统及优化目标值设定的初步研究.农业工程学报,2005,21(5):119-122
    [108]戴剑锋,罗卫红,乔晓军,等,基于模型的温室加温目标优化控制系统研究,农业工程学报.2005,22(11):187-191
    [109]王纪章,李萍萍,毛罕平.基于作物生长和控制成本的温室气候控制决策支持系统[J].农业工程学报,2006,22(9):168-171
    [110]王纪章,李萍萍,毛罕平,等.基于模型的温室环境调控技术研究.沈阳农业大学学报.2006,37(3):463-466
    [111]伍德林,毛罕平,李萍萍.基于经济最优目标的温室环境控制策略[J].农业机械学报,2007,38(2):115-119.
    [112]Hu Y, Li P, Zhang X, et al. Integration of an environment information acquisition system with a greenhouse management expert system[J]. New Zealand Journal of Agricultural Research, 2007,50(5):855-860.
    [113]王成,李民赞,王丽丽,等.基于数据仓库和数据挖掘技术的温室决策支持系统[J].农业工程学报,2009,24(11):169-171.
    [114]朱丙坤,徐立鸿,胡海根,等.基于节能偏好的冲突多目标相容温室环境控制[J].系统仿真学报,2011,23(001):95-99.
    [115]杨承凯,曾军,黄华.多传感器融合中的卡尔曼滤波探讨[J].现代电子技术,2009,32(14):159-161.
    [116]李海艳,李维嘉,黄运保.基于卡尔曼滤波的多传感器测量数据融合[J].武汉大学学报:工学版,2011,44(4):521-525.
    [117]付华,胡雅馨.一种改进的无线传感器网络信息融合技术[J].计算机系统应用,2010,19(7).183-185
    [118]李雪莲,孙尧,莫宏伟.基于最小二乘法的冗余信息数据融合算法实现[J].计算机工程与应用,2009.45(15):34-38.
    [119]蔡科,左宪章,康健,等.无线传感器网络测试系统数据融合研究.计算机仿真,2010,27(7):1-4
    [120]刘建书,李人厚,常宏.基于相关性函数和最小二乘的多传感器数据融合[J].控制与决策,2006,21(6):714-716+720
    [121]李萍萍,毛罕平.温室小气候要素的计算机自动控制效果分析[J].中国农业气象,1998,19(6):19-20.
    [122]李萍萍,毛罕平.智能温室综合环境因子控制的技术效果及合理的环境参数研究[J].农业工程学报,1998,14(3):197-201.
    [123]王纪章,赵青松,李萍萍.温室多层覆盖的冬季保温效果研究[J].中国蔬菜,2012(18):106-110
    [124]焦竹青,熊伟丽,徐保国.基于加权最小二乘法的异质传感器融合[J].吉林大学学报(工学报),2010,40(3):816-820
    [125]张益铭,徐晓钟,王智庆.支持向量机与时间序列预测综述[J].计算机应用与软件,2010,27(12):127-129
    [126]王晓兰,康蕾.在线模糊最小二乘支持向量机的时间序列预测[J].计算机工程与应用,2010,46(9):215-216
    [127]张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(2):400-406
    [128]翟军勇,费树岷.基于动态模型库的多模型切换控制[J].控制理论与应用,2009,26(12):1410-1414.
    [129]蔡象元,现代蔬菜温室设施和管理[M].上海科学技术出版社,2000.9
    [130]宋旭东,方向明,刘晓冰.基于FIPA-Agent的DSS模型库的研究[J].微计算机信息,2008,5:251-253.
    [131]何瑞波,陈立云,万博,等.基于Agent的面向DSS的模型库系统研究[J].计算机与数字工程,2011,39(12):54-57.
    [132]袁爱进,曹立明,王小平.一种基于FIPA ACL和XML的Agnet通信语言[J].微型电脑应用.2003,19(07):46-47
    [133]蔡树彬,明仲,李师贤,等.基于本体的模型集成[J].电子学报.2009,37(04):713-719
    [134]谢创丰,黄穗.基于JADE平台的MAS通信协议封装研究与设计[J].计算机工程与设计.2009,30(21):4988-4990.
    [135]于卫红著.基于JADE平台的多Agent系统开发技术[M].国芳工业出版社,北京,2011
    [136]Fabio Bellifemine, Giovanni Caire, Dominic Greenwood. Developing Multi-Agent Systems with JADE [M]. John Wiley & Sons,Ltd,2007
    [137]李萍萍,李冬生,王纪章,等.温室黄瓜叶片光合速率的类卡方模型[J].农业工程学报,2009,25(1):171-175.
    [138]王纪章.基于模型的温室环境调控专家系统研究[D].江苏大学,2005.
    [139]郑洪倩.基质含水量对黄瓜和生菜生长的影响及模拟模型研究[D].江苏大学,2009.
    [140]周静.温室水果黄瓜生长发育模拟模型研究[D].江苏大学,2009.
    [141]夏志军.温室黄瓜环境管理的智能决策支持系统研究[D].江苏大学,2004.