1. [地质云]滑坡
基于偏振—高光谱多维光信息的番茄氮磷钾及交互作用检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国设施园艺面积已突破330万公顷,居世界第一位。经常出现氮、磷、钾等主要营养元素比例失调和胁迫症状,直接影响产量和品质。因此,迫切需要在作物生长过程中对养分进行精确监测和诊断。目前国内外营养检测仅利用了光波的强度,即反射率或反射强度,采用反射光谱技术或图像技术等单一方法诊断作物的营养状况。为了克服单一技术手段无法全面获取作物营养元素亏缺引起的内部组分改变和外部形态特征变化的不足,本研究以番茄为研究对象,引入光波的偏振信息,提出基于偏振-高光谱的多维光信息番茄营养胁迫的诊断方法。
     本论文的主要研究内容如下:
     (1)开发了基于偏振-高光谱多维光信息的作物营养综合检测实验平台。为了对设施番茄的偏振特征进行精确提取和研究,设计开发了一种新型的偏振光谱采集分析系统,实现对不同入射天顶角的偏振光激励下的作物叶片在不同探测天顶角的偏振响应进行综合检测分析。结合高光谱图像系统构建了偏振-高光谱作物营养多维光信息综合检测实验平台。在温室大棚中以无土栽培方式培育了N、P、K营养胁迫及对照组番茄植株,分别采用凯氏定氮法、分光光度计法、火焰光度法分析了各个生长期营养元素含量分布规律。结果表明样本培育达到了预期的效果,营养元素胁迫植株的成功培育为后续研究奠定了坚实的基础。
     (2)研究了基于高光谱的图像特征的氮磷钾营养胁迫模型,试验将获取的番茄叶片高光谱图像进行图像分割、滤波等预处理,经过主成分变换后有效降维,并通过前5个主成分与N、P、K之间的各波长点的权重系数曲线分析,分别找出4个敏感波长,其中三个共有波长为566.29nm,693.71nm,733.71nm;以及N、P、K特有的敏感波长依次是:464.91nm,474.85nm,762.24nm。接着将在敏感波长下采用基于灰度共生矩阵的二阶概率统计滤波提取纹理特征,通过相关性分析得出与N、P、K相关性均较高的图像特征为:VAR693.71、CON566.29、DIS693.71、ENT733.71、 ASM566.29、COR733.71; N、P、K特有的图像特征依次为:氮ASM464.91、COR464.91;磷HOM693.71、ENT474.85;钾HOM762.24、ENT762.24。在建模过程中有比较地运用了MLR.PCR以及PLS三种建模方法。从建模结果看,N元素的PCR模型性能最优,Rc=0.9630,RMSECV=0.3846%,Rp=0.9205,RMSEP=0.4486%.P元素的PLS模型最优,Rc=0.8864,RMSECV=0.5704%,Rp=0.8713,RMSEP=0.5420%.而K元素的MLR模型最优,校正集Rc=0.9109,RMSECV=0.4163%,Rp=0.8547, RMSEP=0.5047%.
     (3)研究了基于反射光谱特征的氮磷钾营养胁迫模型,试验将从番茄叶片高光谱图像中获取的的反射光谱进行SNV、MSC等光谱预处理后,分别采用iPLS、 SiPLS、BiPLS和iPLS-GA特征波段筛选方法优选N、P、K元素含量对应的敏感波长并建立基于反射光谱特征的模型,其中N元素的iPLS-GA模型效果最佳,Rc=0.9156,RMSECV=0.595%,Rp=0.9048,RMSEP=0.632%.P元素的SiPLS模型最佳,Rc=0.8765,RMSECV=0.592%,Rp=0.8740,RMSEP=0.512%;K元素的SiPLS模型最佳,Rc=0.9116,RMSECV=0.598%,Rp=0.9075,RMSEP=0.835%.
     (4)研究了基于偏振反射特征分析的偏振度番茄营养检测模型。针对特定研究对象,通过正交试验并结合分析各因素与偏振反射比的关系确定了优化组合角度由主到次分别为:入射天顶角60°,偏振片旋转角度45°,探测天顶角45°,方位角180°。对比了在优化组合角度下不同胁迫程度和不同生长期对番茄叶片偏振反正比的影响和差异。为了量化这种差异,利用Stocks公式提取了不同N、P、K水平番茄叶片样本的偏振度特征,采用相关分析法筛选基于偏振度特征与番茄叶片参考值含量有显著关系的敏感波长,提取出N、P、K共有的敏感波长有为655.408nm,744.482nm,850.578nm,而N、P、K特有的敏感波长依次分别为380.487nm,914.562nm,556.664nm。以敏感波长处的偏振度为特征建立了MLR、PCR、PLS模型。N元素的PLS模型最佳,Rp=0.9145,RMSEP=0.7299%;P元素的PLS模型的Rp=0.7846,RMSEP=1.1021%。K的MLR模型最佳,Rp=0.9009,RMSEP=0.7982%,为番茄养分含量情况的快速检测提供了新的思路。
     (5)首次研究了基于偏振-高光谱多维光信息的设施番茄营养含量检测模型。在对图像、光谱和偏振度特征进行准确提取和充分研究的基础上,通过线性和非线性融合方法对番茄叶片的光谱、图像、偏振度特征进行特征层融合。线性融合模型均采用MLR和PLS两种方法,只有N元素含量的线性融合模型精度高于单一类型特征变量的模型。利用BP-ANN以及SVR方法建立非线性融合模型,从建模的结果看,N元素的BP-ANN方法的模型效果最佳,主成分因子数等于6时,Rp=0.9400,RMSEP=0.1995%。P元素的SVR-PSO模型最佳Rp=0.8998,RMSEP=0.1912%。K元素的SVR-GS模型最优,Rp=0.9101,RMSEP=0.1417。研究结果表明基于偏振-高光谱多信息融合的方法评判番茄营养胁迫状况的方法是可行的,融合模型的精度和稳定性较单一来源模型明显提高。
     (6)首次研究了基于偏振-高光谱多维光信息的N、P、K交互作用下设施番茄营养含量诊断模型。通过尝试权重系数矩阵和交互影响系数矩阵的求解对一般线性融合方程进行修正,建立了在考虑氮、磷、钾三者交互作用下的番茄营养含量检测模型。以开花期和结果中期的数据为例计算了N、P、K的预测值,开花期N元素模型的Rp=0.9585,RMSEP=0.2609%,;P元素的Rp=0.9201,RMSEP=0.1739%;K元素的Rp=0.9194,RMSEP=0.2263%。结果中期N元素的Rp=0.9461,RMSEP=0.2452%;P元素的Rp=0.9183,RMSEP=0.2616%;K元素的Rp=0.9144,RMSEP=0.2436%。预测结果表明该方法获得了精度更高的检测模型,尤其是P元素提升幅度相对较大,证明三种元素之间存在着交互影响作用,通过对氮、磷、钾交互作用的综合解耦可以进一步提高多信息融合模型的预测精度,为交互作用下作物营养快速无损检测建模提供新的思路。
Nowadays, China has the world's largest area of facility agriculture, with a total of3.3million ha. The yield and economic profits are serious affected because of nutritional stress and imbalance, such as nitrogen(N), phosphorus(P) and potassium (K) stress. Accurate monitoring and diagnosis of nutrient state in facility crops during the growth process has very important significance. Currently nutrition examinations at home and abroad are using only the strength of lightwave, usually focus on reflectance or reflection intensity. Reflectance spectroscopy technology or imaging technology is widely used in crop nutrition status diagnosis. In order to overcome the inadequacies of models build with single feature sauce, which cannot fully obtain the internal components and external morphological changes caused by crop nutrients stress, polarization information of light is add into this study using tomato as the object. A new method of polarized spectra-hyperspectral is proposed on nutrition stress of facility crops.
     The main contents of this paper are as follows:
     (1) Polarized spectra-hyperspectral multidimensional information detecting platform for crop nutrition comprehensive testing was developed. In order to accurate extract and research the polarized features of facility crops, a new type of polarized spectra acquisition and analysis system was designed, which can comprehensive detect crop leaf and obtain polarized response on different incident zenith angle and different detection zenith angle. Combined polarized spectra acquisition system with hyperspectral imaging system, polarized spctrum-hyperspectral detecting platform was constructed to realize multidimensional information detection of crop nutrition. N, P, K nutrient stress and control groups tomato plants were cultivated respectively via soilless cultivation method in greenhouse. N, P, K element contents were tested adopting Kjeldahl method, spectrophotometry, flame photometric analysis respectively to analyse nutrition distribution in the different growing stage. The results showed that the sample cultivation reached the desired effect. Successful cultivation of nutrition stress samples plants had laid a solid foundation for subsequent research.
     (2) Tomato N, P, K nutrient stress detection models based on hyperspectral image features were studied. Hyperspectral image of tomato leaves were obtain on experiment followed by image segmentation, filtering preprocessing, and principal component transform which effectively reduce dimensionality. Then weighting coefficient curves were drawn after analysis the correlation between the first five principal components and N, P, K nutrition contents respectively. Four sensitive wavelengths were identified, of which there were common wavelength566.29nm,693.71nm,733.71nm; and N, P, K specific sensitive wavelengths corresponding sequence is:464.91nm,474.85nm,762.24nm. Adopting the method of second-order probabilistic statistical filtering based on GLCM to extract texture feature under sensitive wavelengths. Though correlation analysis to find that the following image features showed high correlation with N, P, K, that were VAR.693.71,CON566.29,DIS693.71,ENT733.71,ASM566.29,COR733.71; as well as unique high correlation image features of N, P, K, that were:nitrogen ASM464.91,COR464.91; phosphorus HOM693.71,ENT474.85; potassium HOM762.24.ENT762.24.In the process of establishing a quantitative model, three modeling methods MLR, PCR and PLS were comparatively used. The results showing that PCR model of N elements was best, RMSECV=0.3846%, Re=0.9630, Rp=0.9205, RMSEP=0.4486%, PLS model of P element get optimal performance, RMSECV=0.5704%, Re=0.8864, Rp=0.8713, RMSEP=0.5420%. MLR model of K elements performance best, Re=0.9109, RMSECV=0.4163%, RMSEP=0.5047%, Rp=0.8547.
     (3) Tomato N, P, K nutrient stress detection models based on reflectance spectrum features were studied. Reflectance spectra were collected from hyperspectral of tomato leaves followed by SNV, MSC preprocessing, etc., and feature band screening methods such as iPLS, SiPLS, BiPLS and iPLS-GA were using to select sensitive wavelength of N, P, K respectively to build detection models. iPLS-GA model of N elements is best, Re=0.9156, RMSECV=0.595%, Rp=0.9048, RMSEP=0.632%. SiPLS model of P elements is best, Re=0.8765, RMSECV=0.592%, Rp prediction set=0.8740, RMSEP =0.512%; SiPLS model of K elements is best, Rc=0.9116, RMSECV=0.598%, Rp=0.9075, RMSEP=0.835%.
     (4) Tomato N, P, K nutrient stress detection models based on degree of polarization features were studied after polarized reflectance characteristics analysis. For a specific object of study, identify the optimal combination of detection angle:incident zenith angle60°, polarizer rotation angle45°, Detect polarize zenith45°, azimuth180°. Difference between different nutrient stress levels and tomato growing stage was compared after optimal combination of detection angle. To quantify the difference, degree of polarization features of different N, P, K nutrient levels of tomato leaf samples were calculated by Stocks formula, the sensitive wavelengths were extracted after analysis the correlation between degree of polarization features and the reference measurement of N, P, K respectively. Though correlation analysis to find that the following sensitive wavelength showed high correlation with N, P, K degree of polarization features, that were655.408nm,744.482nm,850.578nm, and N, P, K specific sensitive wavelengths that N, P, K were380.487nm,914.562nm,556.664nm successively. Degree of polarization sensitive wavelength characteristics as independent variables, the value of the chemical reference measurement as dependent variable to established MLR, PCR and PLS models. PLS model of N elements is best, Rp=0.9145, RMSEP=0.7299%; PLS model of P element is best, Rp=0.7846, RMSEP=1.1021%. MLR model of K is best, Rp=0.9009, RMSEP=0.7982%. This study provides a new idea for the rapid detection of tomato nutrient content.
     (5) Tomato N, P, K nutrient stress detection models based on polarized spectra-hyperspectral multidimensional information were first studied. The image features, spectral features and the degree of polarization features were full and accurate extracted as well as feature level fusion based on linear and nonlinear methods after normalized of the three sources of data information. Only the accuracy of N elements is higher than each single source feature model among the linear fusion models of N, P, K with MLR and PLS methods. Then BP-ANN and SVR methods were using to establish the nonlinear fusion models. The results showing that, the effect of BP-ANN model of N elements is best when principal component factor equal to6, Rp=0.9400, RMSEP=0.1995%. SVR-PSO Model of P element is best, Rp=0.8998, RMSEP=0.1912%; the effect of SVR-GS Model of K element get optimal accuracy, Rp=0.9101, RMSEP=0.1417. The results show that the polarized spectrum-hyperspectral multidimensional information detecting method to judge the tomato nutrient stress conditions is feasible.
     (6) Tomato N, P, K nutrient stress detection models considering interaction effect of the three elements based on polarized spectra-hyperspectral multidimensional information were first studied. The general linear fusion equation were modified via calculation of weight coefficient matrix and interaction effect coefficient matrix. Then tomato N, P, K nutrient stress detection models were established which considering interaction effect of the three elements. Take flowering and mid-fruiting stage data for example to calculate the predicted values of N, P and K nutrition content. On flowering stage, the results of N model were Rp=0.9585, RMSEP=0.2609%; the results of P model were Rp=0.9201, RMSEP=0.1739%; the results of K model were Rp=0.9194, RMSEP=0.2263%. On mid-fruiting stage, the results of N model were Rp=0.9461, RMSEP=0.2452%; the results of P model were Rp=0.9183, RMSEP=0.2616%; the results of K model were Rp=0.9144, RMSEP=0.2436%. The results showed that this method obtain higher accuracy models, especially the accuracy of P element was enhanced relatively large, which proved the existence of the interaction effect between the three elements. Decoupling of interaction effect of N, P and K can further improve prediction accuracy of the multi-information fusion models, and provides a new idea for the rapid detection of crop nutrient content in the case of considering interaction effect of nutrients.
引文
[1]张艳玲,宋述尧.氮素营养对番茄生长发育及产量的影响[J].北方园艺,2008(2):25-26.
    [2]郝建军,康宗利主编.植物生理学[M],北京市:化学工业出版社,2005.08.
    [3]Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements[J]. Agronomy Journal,1972,64(1):11-13.
    [4]Thomas JR. Gausman H W. leaf reflectance vs. leaf chloro-phyll and corticoid concentration for eightcrops [J]. Agro. J.,1977,69:799-802.
    [5]Penuelas J, Filella I, BielC, et al. The reflectance at the 950~970nm region as an indicator of plantwater status[J]. Int. J. Rem. Sen.,1993,14(10):1887-1905.
    [6]Stone M0L.SoRe j B. Raun W R,et al. Use of spectral radiance for correcting in~season fertilizer nitrogen deficiencies in winter wheat[J]. Transactions of ASAE,1996, (39): 1623-1631.
    [7]Kokaly R, Root R,Brown K, Anderson G L.et al. Calibration of compact airborne sepctrographic imager(CASr) data to surface reflectance at Theodore Roosevelt National Park[J].21st Annual Meeting of the American Chemical Society. San Diego. CA,2001,,April 1-5.
    [8]Osborne S L, Schepem J S,FrancisD D. Detection of phosphorus anti nitrogen deficiencies in corn using spectral ra-diance measurements[J]. Agro. J.,2002,94:1215-1221.
    [9]NguyenH T. Lee BW. Assessment of rice leaf growth and nitrogen status by hyper-spectral canopy reflectance and partial least square regress[J]. Euro. J. Agro.,2006,24:349-356.
    [10]Fitzgerald G,Rodriguez D,Garry O. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index:The canopy chlorophyll content index[J]. Field Crops Research, 116(2010)318-324.
    [11]田庆久,宫鹏,赵春江.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(4):2645-2650.
    [12]李云梅,倪绍祥,黄敬峰.高光谱数据探讨水稻叶片叶绿素含量对叶片及冠层光谱反射 特性的影响[J].遥感技术与应用,2003,18(1):1-4.
    [13]程一松,胡春胜,郝二波,等.氮素胁迫下的冬小麦高光谱特征提取与分析[J].资源科学,2003,25(1):86-93.
    [14]薛利红,曹卫星,罗卫红,等.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003,36(7):807-812.
    [15]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284.
    [16]Zhou Q F, Wang JH. Leaf and spike reflectance spectra of ricewith contrasting nitrogen supplemental levels[J]. Int. J. Rem. Sen.,2003,24(7):1587-1593.
    [17]谭昌伟,工纪华,黄文江,等.夏玉米叶片全氮、叶绿素及叶面积指数的光潜响应研究[J].西北植物学报,2004,24(6):1041-1046.
    [18]易秋香,黄敬峰,王秀珍,等.玉米全氮含量高光谱遥感估算模型研究[J].农业工程学报,2006,22(9):138-143.
    [19]李映雪,朱艳,田永超,等.小麦叶片氮含量与冠层反射光谱指数的定量关系[J].作物学报.2006,32(3):358-362.
    [20]冯伟,朱艳,田永超,等.基于高光谱遗感的小麦叶片氮积累量[J].生态学报,2008,28(1):23-32.
    [21]Miller J R, Hare E W,et al.. Quantitative Characterization of the Vegetation Red Edge Reflectance Model. Int J Remote Sensing,1990,11(10):1755-1773.
    [22]Johnson L F, Hlavaka C A, Peterson D L. Multivariate Analysis of AVIRIS Data for Canopy, Biochemical Estimation along the Oregon Transect. Remote Sensing of Environment,1994, 47:216-230.
    [23]Walburg G,Bauer M E,Daughtry C S T,et al. Effects of nitrogen nutrition on the growth, yield and reflectance characteristics of corn canopies[J]. Agronomy Journal,1982,74(4):677-683.
    [24]Card D H, Peterson D L, Matson P A, Aber J D. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment,1988,26: 123-147.
    [25]Yoder B. J., Pettigrew, Crosby R. E. Predicting nitrogen and chlorophyll content and from concentrations reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment,1995,53,199-211.
    [26]Dury S J, Jia X, Turner B J, Dibley G. From leaf to canopy:Determination of nitrogen concentration of eucalypt tree foliage using HyMap image data. In Proceedings of 10th Australian Remote Sensing and Photogrammetry Conference. Adelaide:Casual Productions, Rundle Mall,2000,875-891.
    [27]Dury S, Turner B, Foley B, et al. Use of high spectral resolution remote sensing to determine leaf palatability of eucalypt trees for folivorous marsupials[J]. International Journal of Applied Earth Observation and Geoinformation,2001,3(4):328-336.
    [28]Prasad S T, Ronatd B.smith,et al. Hyperspectral vegetation indices and their relationship with agricultural crop characteristics[J]. Remote Sensing Environment.2000,71:158-182.
    [29]Zubillaga M,Urricariet S. Assessment of nitrogen status in wheat using aerial photography [J]. Communications in Soil Science and Plant Analysis,2005,36(13):1787-1798.
    [30]Lee Y J, Yang C M, Chang K W,et al. A simple spectral index using reflectance of 735nm to assess nitrogen status of rice canopy[J]. Agronomy Journal,2008,100(1):205-212.
    [31]赵春江,黄文江等.不同品种、肥水条件下冬小麦光谱红边参数研究[J].中国农业科学,2002,35(8):980-987.
    [32]王之杰,王纪华,黄文江等.冬小麦叶片氮素时空分布特征及其与籽粒品质的关系[J].作物学报,2004,30(7):700-707.
    [33]王秀珍,黄敬峰。李云梅,等.高光谱数据与水稻农学参数之间的相关分析[J].浙江大学学报(农业与生命科学版),2002.28(3):283-288.
    [34]孙莉,陈曦,包安明等.棉花各生育期高光谱数据与叶片生物物理生物化学量的相关分析[J].干旱区地理,2004,27(1):124-129.
    [35]王磊,白由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学,2005,38(11):2268-2276.
    [36]张晓东,毛罕平,程秀花.基于PCA SVR的油菜氮素光谱特征定量分析模型[J].农业机械学报,2009,40(4):161-165.
    [37]周丽丽,冯汉宇,阎忠敏,等.玉米叶片氮含量的高光谱估算及其品种差异[J].农业工程学报,2010,Vo1.26 No.8,195-199.
    [38]N.H. Brogea, J V. Mortensen. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment.2002, 81(1):45-57.
    [39]P.K. Goel, S.O. Prasher, J.A. Landry, R.M. Patel, R.B. Bonnell, A.A. Viau, J.R. Miller, otential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn[J]. Computers and Electronics in Agriculture 2003,38:99-124.
    [40]P M Hansen,J K Schjoerring. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86:542-553.
    [41]Adam K. Tilling, Garry J.O Leary, Jelle G. Ferwerda, Simon D. Jones, Glenn J. Fitzgerald, Daniel Rodriguez, Robert Belford. Remote sensing of nitrogen and water stress in wheat[J]. Field Crops Research,2007,104:77-85.
    [42]Inoue Y, Penuelas J. An AOTE-based hyperspectral imaging system for field use in ecophysiological and agricultural applications[J]. International Journal of Remote Sensing, 2001,22(18):3883-3888.
    [43]杨长明,杨林章,韦朝领等.不同品种水稻群体冠层光谱特征比较研究[J].应用生态学报,2002,13(6):689-692.
    [44]谭昌伟,王纪华,陆建飞,等.基于红边参数的夏玉米长势监测及其营养诊断研究[J].中国生态农业学报,2007,15(1):82-86.
    [45]张俊华,张佳宝,李卫民.基于夏玉米光谱特征的叶绿素和氮素水平及氮肥吸收利用研究[J].土壤,2008,40(4):540-547.
    [46]Salisbury F B, Ross C W. Plant physiology. Belmont, CA:Wadsworth Publishing.1985.
    [47]Jokela A. Effects of foliar potassium concentration on morphology, ultrastructure and polyamine concentration of scots pine needles. Tree physiology,1997,97:2649-2657.
    [48]朱静华,李玉华,李明悦,等.氮、磷、钾对设施蔬菜产量及养分循环的影响,中国农学通报[J],2013,29(7):148-154.
    [49]孙永健,孙园园,李旭毅,等.水氮互作对水稻氮磷钾吸收、转运及分配的影响[J].作物学报2010,36(4):655-664.
    [50]韩晓增,王守宇,刘晓洁.黑土钾素分布状态与大豆钾肥效应的研究[J].大豆科学,2002,21(1):36-42.
    [51]Al-Abbas A H, Barr R, Hall J D, et al.. Spectra of normal and nutrient-deficient maize leaves[J]. Agronomy Journal,1974,66(1):16-20.
    [52]Milton N.M.,Eiswerth B.A.,Ager C.M.Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants,Remote Sens. Environ.1991,36(2):121-127.
    [53]浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析.遥感学报[J],1997,1(2):115-123.
    [54]Ponzoni,F J,Goncalves J L. Spectral features associated with nitrogen, phosphorous,and potassium deficiencies in Eucalyputs saligna seedling leaves[J]. International Journal of remote sensing,1999,20(11):2249-2264.
    [55]Gong P. Analysis of in situ hyperspectral data for nutrient estimaton of giant sequoia[J]. International Journal of remote sensing,2002,23(9):1827-1850.
    [56]Mutanga O,Skidmorea A.K,Prinsb H T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features[J]. Remote Sensing of Environment,2004,89:393-408.
    [57]Ayala-Silva T,Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research,2005, ARTICLE IN PRESS.
    [58]弓洁琼,詹海刚,刘大召.遥感遥测中偏振信息的研究进展[J].光谱学与光谱分析,Vol.130,No14,1088-1095.
    [59]赵云升.偏振光遥感[A].遥感信息系统研究[C].张柏等.北京:科学出版社,2000.
    [60]李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995.
    [61]马娟.偏振图像获取与处理方法研究[D].华中科技大学,2007.
    [62]杨之文.偏振光谱的测量及研究进展[J].光谱实验室,2003(06):815-820.
    [63]Francois-Marie Breon, Didier Tanre, Pierre Lecomte and Maurice Herman. Polarized Reflec-tance of Bare Soils and Vegetation:Measurements and Models[J]. IEEE Transactions on genoscience and remote sensing, Vol.33, NO.2,1995.3,487-499.
    [64]A. Comar, F. Baret etc., Wheat leaf bidirectional reflectance measurements:Description and quantification of the volume, specular and hot-spot scattering features[J]. Remote Sensing of Environment 121 (2012):26-35.
    [65]周成虎等.遥感影像地学理解与分析[M].北京:科学出版社,1999.
    [66]Lois Grant. Diffuse and specular characteristics of leaf reflectance[J]. Remote sensing of environment,1987,22(2):309-322.
    [67]Paul Woessner and Bruce Hapke. Polarization of light scattered by clover[J]. Remote sensing of environment,1987,21(3):243-261.
    [68]P.Goloub, M.Herman, L. Deuze, R.Frouin. Optical properties of snow and ice derived from aircraft POLDER data. Antarctic Journal of United States[J],1992,27:191-192.
    [69]Jean-Louis Roujean,Francois-Marie Breon, Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J],1995,51(3):375-384.
    [70]Raven P N, Jordan D. Polarized Directional Reflectance From Laurel and Mullein Leaves[J]. Opt Eng,2002,4(15):1002-1012.
    [71]Vanderbilt V, Grant L. Polarization of Light Scattered by Vegetation[J]. Proc.2005,73(6): 1012-024.
    [72]Didier Combes,Laurent Bousquet, Stephane Jacquemoud, et.al. A new spectrogoniophoto-meter to measure leaf spectral and directional optical properties [J]. Remote Sensing of Environment,2007 (109),107-117.
    [73]董国权,李正直.植被双向反射模型研究综述[J].遥感技术与应用Vol.8,No.4,1993,12:47-51.
    [74]韩志刚,吕达仁,刘春田,等.草地反射太阳光偏振特性测量个例分析[J].草地学报,1998,6(4):237-242.
    [75]赵云升,黄方,金伦,等.植物单叶偏振反射特征研究[J].遥感学报Vol.4, No.2,May,2000,131-135.
    [76]宋开山,赵云升,金伦.不同物候期的玉米单叶偏振反射特征分析[J].东北师大学报自然科学版,Vol132, No14, Dec.2000,112-115.
    [77]宋开山,张柏,赵云升.东北主要高大落叶乔木单叶的偏振特性研究[J].东北师大学报自然科学版,Vol.36 No.1, March 2004,88-94.
    [78]杨之文,高胜钢,王培纲.几种地物反射光的偏振特性[J].光学学报,2005,25(2):241-245.
    [79]宋开山,赵云升,张柏.偏振反射与二向性反射的关系-以不同物候期杨树单叶的室内光谱测量为例[J].中国科学院研究生院学报,Vol.22, No.2, March 2005,164-169.
    [80]唐若愚,于国萍,王晓峰.自然光照下偏振度图像的获取方法[J].武汉大学学报(理学版).Vol.52 No.1,Feb.2006,059-063.
    [81]张莉莉.利用偏振高光谱反演植被叶绿素含量[D];东北师范大学;2007.
    [82]韩阳,赵云升,张莉莉,等.丁香叶片叶绿素含量偏振高光谱数学模型反演研究[J].光谱学与光谱分析,Vol.129,No16,June,2009,1595-1598
    [83]Green, J.R., Margerison, D. Statistical treatment of experimental data[M],1978, United States, Chicago.
    [84]张成军,实验设计与数据处理[M].北京:化学工业出版社,2009.
    [85]周祥,辛海宁,孙兴祥.滨海盐土地区词料大麦氮、磷、钾适宜用量及其互作研究[J].大麦科学,Vol.50,1997 No.1,Dec:27-29.
    [86]金晶炜,范富,熊俊芬,等.氮、磷、钾肥互作效应与紫花苜蓿产量的相关性研究[J].云南农业大学学报,Vol.12,No.5,Sep.2007,719-722.
    [87]张清云,李强,蒋齐,等.氮、磷、钾互作效应对甘草产量影响的研究[J].土壤通报Vo1.40,No.5,Oct.,2009,1119-1122.
    [88]王华,毛新华,孙燕,等.淤泥土水稻"3414”氮磷互作肥效试验[J].现代农业科技,2009,Aug.,Vol.19,31-32.
    [89]穗波信雄等.图像处理在植物生长信息提取中的应用[J].农业机械学会关西支部(日),平成4年(第72号):63-46.
    [90]Graeff S, Wilhelm C.et al. Use of reflectance measurement for the early detection of N, P, Mg and Fe deficiencies in Zea mays[J]. Plant Nutr Soil.2001,164:445-450.
    [91]Pagola M, Ortiz R, Irigoyen I. et al. New method to assess barley nitrogen nutrition status based on image color analysis. Comparison with SPAD 502 [J]. Computers and electronics in agriculture,2009,65(3):213-218.
    [92]张彦娥,李民赞,张喜杰,等.基于计算机视觉技术的温室黄瓜叶片营养信息检测[J].农业工程学报,2005,21(8):102-105.
    [93]祝锦霞,邓劲松,石媛媛,等.基于水稻扫描叶片图像特征的氮素营养诊断研究[J].光谱学与光谱分析,2009,29(8):2171—2175.
    [94]冯雷,方慧,周伟军,等.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006,26(9):1749-1752.
    [95]毛罕平,吴雪梅,李萍萍.基于计算机视觉的番茄缺素神经网络识别[J].农业工程学报, 2005,21(8):106-109.
    [96]OiWah L, Anand K. Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. Journal of Photochemistry and Photobiology B: Biology,85(2006):131-139.
    [97]乔欣,马旭等.大豆叶绿素和钾素信息的冠层光谱响应[J].农业机械学报.2008,39(4):108-116.
    [98]张晓东,毛罕平.油菜氮素光谱定量分析中水分胁迫与光照影响及修正[J].农业机械学报,2009,40(2):164-169.
    [99]卢颖林,李庆余,徐新娟,等.不同形态氮素对番茄幼苗体内营养元素含量的影响[J],中国农学通报2010,26(21):122-130.
    [100]Mohr Hans, Schopfer Peter, Plant Physiology[M], Publisher:Springer-Verlag Berlin and Heidel-berg GmbH & Co. K.
    [101]廖延彪.偏振光学[M],北京:科学出版社,2003.
    [102]李钟铭.偏振度反演液体密度研究-以盐水为例[D].东北师范大学,2008.
    [103]王宏民,松莹莹,付源.空域法进行图像增强处理在MATLAB中的仿真与分析[J].煤矿机械,2005,56(3):56-58.
    [104]余成波.数字图像处理及matlab实现[M].重庆:重庆大学出版社,2003.
    [105]陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社,2005.
    [106]Green A A, Berman. M., Switzer P, Craig M D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal[J]. IEEE Transactions on Geoscience and Remote Sensing,1988,26(1):65-74.
    [107]Lee C, Landgrebe D. A. Feature Extraction based on Decision Boundaries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(4):388-400.
    [108]田野,赵春晖,季亚新.主成分分析在高光谱遥感图像降维中的应用[J].哈尔滨师范大学自然科学学报,2007,(5):58-60.
    [109]John R Smith, Shih-Fu Chang. Automated binary texture feature sets for image retrieval. IEEE International Conference on Acoustics, Speech, and Signal Processing[C].Atlanta, GA, USA,1996,4:2239-2242.
    [110]Robert M. Haralick K. Shanmugam, Texture features for image classification[J]. IEEE Trans On Sys, Man, and Cyb,1973, SMC-3(6):610-621.
    [111]虞佳佳.基于高光谱成像技术的番茄灰霉病早期快速无损检测机理和方法研究[D].浙江大学,2012.
    [112]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析.电子学报,2006,(1):155-158.
    [113]Haralick R. M., Shanmugan, K., and Dinstein, I., Textural Features for Image Classification[J]. IEEE Transactions on Systems, Man, and Cybernetics,1973, Vol.3(6):610-621.
    [114]许禄,邵学广.化学计量学方法(第二版)[M].北京:科学出版社,2004.
    [115]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006.
    [116]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.4.
    [117]申艳,张晓平,梁爱珍,等.多元散射校正和逐步回归法建立黑土有机碳近红外光谱定量模型[J].农业系统科学与综合研究.2010(02):174-180.
    [118]吴迪,吴洪喜,蔡景波,等.基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究[J].红外与毫米波学报.2009(06):423-724.
    [119]朱文静.近红外光谱分析法快速检测奶粉品质的研究.江苏大学[S].2007.12.
    [120]王加华,韩东海.基于遗传算法的苹果糖度近红外光谱分析[J],光谱学与光谱分析,2008Vo1.28.No.10:2308-2311.
    [121]Norgaard L, Saudland A, Wagner J, et al.Interval Partial Least-squares Regression(iPLS):A Comparative Chemometric Study With an Example from Near-Infrared Spectroscopy [J]. Applied Spectroscopy,2000,54(3):413-419.
    [122]WuDi, HeYong, NiePengeheng, et al. Hybrid variable selection in visible and near-infiared spectral analysis for non-invasive quality determination of grape juice[J]. Analytica Chimica Acta.2010(1-2):229-237.
    [123]WangXiaofei, BaoYanfei, LiuGuili, LiGang, LinLing, Study on the Best Analysis Spectral Section of NIR to Detect Alcohol Concentration Based on SiPLS[J]. Procedia Engineering 2012 International Workshop on Information and Electronics Engineering.2012, Vol.29: 2285-2290.
    [124]Riccardo Leardi, Lars NΦrgaard. Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral region[J]. Chemometrics, 2004,18:486-497.
    [125]Zou Xiao bo, Zhao Jie wen, Li Yan xiao. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of 'Fuji' apple based on BiPLS and FiPLS models[J]. Vibrational Spectroscopy,2007,44:220-227.
    [126]Tewari Jagdish C., Dixit Vivechana, ChoByoung-KWan, Malik Kamal A. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy[J]. Spectrochimica Acta Part A: Moleeular and Biomolecular Spectroscopy.2008(3):1119-1127.
    [127]赵凯华.光学(第一版)[M],高等教育出版社,2004.
    [128]赵永强,潘泉,程咏梅.成像偏振光谱遥感及应用[J],国防工业出版社[M],北京:2011.
    [129]马文蔚.物理学(第五版),光的偏振性[M],高等教育出版社北京:2006.
    [130]于国萍,王晓峰.第五届全国高等学校物理实验教学研讨会论文集[M],厦门,2008,331-333.
    [131]毋红军,刘章.统计数据的异常值检验[J].华北水利水电学院学报,2003,24(1):69-72.
    [132]丁世飞,靳奉祥,史忠植.基于PLS的信息特征压缩算法[J].计算机辅助设计与图形学学报,2005.2,Vol.117,Nol2Feb1,2005.
    [133]简小刚,贾鸿盛,石来德.多传感器信息融合技术的研究进展[J].中国工程机械学报,2009 Jun.Vol.7,No.2:227-232.
    [134]严怀成,黄心汉,王敏.多传感器数据融合技术及其应用[J].传感器技术,2005,24(10):1-4.
    [135]蓝金辉,马宝华,李科杰.多传感器目标的数据融合方法[J].测试技术学报,1998,12(1):26-31.
    [136]T.Richard. Princip les of effective multisensor data fusion [J]. Military Technology,2003,27 (5):29-37.
    [137]J.B. Gao. Some remark on Kalman filters for the multisensory fusion [J]. Inf. Fusion,2002,3 (3):191-201.
    [138]V. Megalooi konomou, Y.Yesha. Space efficient quantization for distributed estimation by a multisensor fusion system [J]. Inf. Fusion,2004,5 (5):299-308.
    [139]Daniel Guyer, Xiukun Yang. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries [J]. Comput. Electron. Agric.,2000,29(3):179-194.
    [140]Chen Q S, Zhao J W, Fang, C H, Wang D. M. (2007).Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM) [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,66,568-574.
    [141]T.Richard. Princip les of effective multisensor data fusion[J]. Military Technology,2003,27 (5):29-37.
    [142]Vapnik V. The Nature of Statistical Learning Theory[M]. NY:Springer-Verlag,1995.
    [143]Cortes C, Vapnik V N. Support-vector Networks[J]. Machine Learning,1995(20):273-297.
    [144]戚双斌,王维庆,张新燕.基于SVM的风速风功率预测模型[J].可再生能源,Vol.28,No.4,Aug.2010,25-28.
    [145]Di Wu, Haiqing Yana, Xiaojing Chen, Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine[J]. Journal of Food Engineering,88 (2008):474-483.
    [146]Maksim Lapin, Matthias Hein, Bernt Schiele. Learning using privileged information:SVM+ and weighted SVM Original Research Article. Neural Networks, Volume 53, May 2014, 95-108.
    [147]韩阳,李潜,赵云升,等.三因素及其交互作用对植物叶片多角度偏振高光谱特征的影响[J].红外与毫米波学报,2010,8,Vol.29,No.4,316-320.
    [148]张成军.实验设计与数据处吾[M].北京:化学工业出版社,2009.
    [149]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002.
    [150]镇常青.多目标决策中的权重调查确定方法[J].系统工程理论与实践,1987,7(2):16-24
    [151]程明熙.处理多目标决策问题的二项系数加权和法[J].系统工程理论与实践,1983,3(4):23-26.
    [152]陈挺.决策分析[M].北京:科学出版社,1997.