1. [地质云]滑坡
磁电复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,人们所研究的磁电复合材料主要存在以下几个问题。第一,界面情况对层状磁电复合材料的磁电效应起着至关重要的影响。但是,目前层状磁电复合材料的制备方法如黏结法和电镀法等都不可避免的引入中间层,影响了磁致伸缩层和压电层之间的磁电耦合。第二,在1至150kHz内,弯曲振动模式的两层磁电复合材料一般具有两个谐振频率,但是其谐振磁电电压系数只能一个大,而另一个相对较小。第三,目前所研究的非界面结合型磁电复合材料的结构都过于复杂,不利于制备实际器件。针对以上几个问题,本文以制备出具有巨磁电效应的磁电复合材料为目标,采用化学镀法制备出了磁致伸缩相和压电相直接结合且两相达到足够厚度的Ni/PZT/Ni层状磁电复合材料,消除了中间层的影响,实现了理想的磁电耦合;采用化学镀和黏结法制备出Ni/PZT/TbFe_2负磁致伸缩/压电/正磁致伸缩结构的层状磁电复合材料,获得了两个明显的谐振峰;采用黏结法制备出非界面结合型磁电复合双矩形框结构和两端结合型磁电复合结构,简化了结构,有利于器件制备。
     本文首先分析化学镀镍的热力学可能性和反应机理,以化学镀工艺参数如镀液pH值、温度等为切入点,研究化学镀镍的热力学与动力学过程及其对镀镍层显微组织的影响,进而研究镀镍层组织对镀层磁性能和磁致伸缩性能的影响规律,以三层磁电复合材料为例研究影响化学镀热力学与动力学过程的镀液pH值与温度等工艺参数对磁电复合材料的磁电性能的影响规律。结果表明,在合理的工艺参数范围内,在PZT表面化学镀纯Ni是完全可行的;影响化学镀热力学与动力学过程的工艺参数如镀液pH值和温度等的升高,使得形核率提高、扩散加快,有利于细化镀层晶粒和提高沉积效率,进而改善镀层的软磁性能,提高镀层的磁致伸缩系数,最终获得了具有更好的磁电性能的磁电复合材料。
     其次,利用化学镀制备了三层和五层平板状、三层弧形、三层圆环等结构的磁电复合材料,研究了尺寸、界面情况、曲率和形状等结构因素对层状磁电复合材料的磁电性能的影响规律。结果表明,随着长度或圆环直径尺寸的增加,磁电电压系数升高而谐振频率减小;随着界面粗糙度的增加,化学镀制备的磁电复合材料的磁电电压系数逐渐增大;随着界面的增加,磁电复合材料的磁电性能减弱;随着圆弧半径的增加(曲率的减小),磁电电压系数逐渐增大,而谐振频率逐渐减小;由于Ni环的电磁感应效应与PZT环的压电效应耦合产生压感效应,在高偏置磁场下,轴向模式的圆环状磁电复合材料的谐振磁电电压系数随着偏置磁场的增加而持续增大。
     第三,本文将负磁致伸缩材料Ni、正磁致伸缩材料TbFe_2和压电材料PZT制备成负磁致伸缩/压电/正磁致伸缩结构三层磁电复合材料,通过与两层和三层传统磁电复合材料进行对比分析,研究其磁电性能。结果表明,Ni/PZT/TbFe_2三层磁电复合材料出现两个比较大的谐振峰,TbFe_2层增强了一阶弯曲谐振峰而Ni层增强了一阶平面声波谐振峰,其工作机制是一种加强型的弯曲振动机制;随着Ni层厚度的增加,TbFe_2层所控制的一阶弯曲谐振峰值变化不大,而Ni层所控制的一阶平面声波谐振峰值逐渐增大;一阶弯曲谐振频率和一阶平面声波谐振频率也随Ni层厚度的增加而逐渐增大。
     本文还设计了非界面结合型磁电复合双矩形框结构和两端结合型磁电复合结构,并研究了其磁电性能。结果表明,对于磁电复合双矩形框结构,正、负磁致伸缩相对其磁电性能影响很大,PZT层的尺寸对谐振频率和谐振磁电电压系数都有着很大的影响,而TbFe_2层的尺寸只对谐振磁电电压系数有着显著影响,对谐振频率的影响不大;对于两端结合型磁电复合结构,其理想状态下的磁电电压系数只受体系材料特性和结构尺寸的影响,磁电电压系数与频率的关系图中出现多个谐振峰;受结构参数的影响,TbFe_2/PZT/TbFe_2层状磁电复合结构的磁电电压系数和谐振频率都小于PZT/TbFe_2/PZT层状磁电复合结构中的值;两端结合型PZT/TbFe_2/PZT层状磁电复合结构在第三弯曲谐振频率f_r=69.5kHz时,αE,31得到最大谐振峰值9.9V·cm~(-1)·Oe~(-1),而在第一平面声波谐振频率f_r=85.5kHz时,αE,31得到最大谐振峰值10.5V·cm~(-1)·Oe~(-1)。
There exist some problems on the study of magnetoelectric (ME) composites at present. Firstly,the magnetic-mechanical-electric transform of layered ME composites is achieved by interfacecoupling between magnetostrictive and piezoelectric layers. Therefore, the interface coupling is a keyfactor that determines the ME coupling of layered composites. However, for most of layered MEmaterials, the magnetostrictive and the piezoelectric layers are separated by an epoxy bonding layer,or the surfaces of the piezoelectric layer must be metallized with nonmagnetostrictive layers whichreduce the ME coupling. Secondly, there are two resonance frequencies in1-150kHz for ME bilayers.However, only one of the ME voltage coefficients is large enough. Finally, non-interface bonding typeME composites have recently stimulated tremendous fundamental and practical interests as their MEcoupling is not achieved by interface bonding. However, the structure of the non-interface bondingtype ME composites is too complex to be used for devices. The goal of this thesis is to obtain thecomposites with giant ME coupling. To solve the problem mentioned above, the electroless depositionis used to prepare layered ME composites with desired thickness with neither electrodes nor bondinglayers. The magnetostrictive layers are in direct contact with the piezoelectric layers. TheNi/PZT/TbFe_2trilayers are also prepared with the negative-magnetostrictive/piezoelectric/positive-magnetostrictive layered structure and two remarkable resonance peaks have been observed.The bi-rectangular structure and the ME structure with end-bonding have been prepared, the simplestructures of which benefit their application in devices.
     The thermodynamics and reaction mechanism of electroless Ni-deposition have been studied.The influence of the thermodynamics and kinetics of electroless deposition processes on themicrostructure, magnetic and magnetostrictive properties of the deposited Ni layer and the MEcoupling of Ni/PZT/Ni trilayers has also been investigated. The results indicate that, Ni can besuccessfully deposited on the surface of PZT layers without any impurities. With the increase of pHand/or temperature, the nucleation rate of Ni and the diffusivity of Ni~(2+)increase, which leads to anincrease in the deposition rate and a decrease of the grain size in the deposited Ni layers. Therefore,the soft magnetic and magnetostrictive properties of the deposited Ni layers are improved and thecomposites with strong ME coupling are obtained.
     To study the infuence of the structure factors such as the size, the interface condition, thecurvature and shape on the ME effect of layered composites prepared by electroless deposition, theME coupling of flake-like trilayered, arc shaped trilayered and cylindrical trilayered ME composites have been investigated. The results indicate that, with the increase of length or cylinder diameter, theME voltage coefficient increases, while the resonance frequency decreases. The ME effect of MEcomposites increases as the interface roughness increases. With arc radius increasing (curvaturedecreasing), the resonance frequency of layered arc Ni/PZT/Ni composites gradually decreases, whilethe maximum of the ME voltage coefficient of the composites increases monotonously. The MEvoltage coefficient increases linearly with high static magnetic field because of the piezoinductiveeffect of Ni/PZT/Ni cylindrical layered composites, which results from the combination of theelectromagnetic induction in the Ni cylindrical layers and the piezoelectric effect in the PZT cylinder.
     The negative-magnetostrictive/piezoelectric/positive-magnetostrictive layered ME structuresmade up of Ni, PZT and TbFe_2layers have been prepared. Compared to the ME coupling of bilayersand trilayers, the ME effect of Ni/PZT/TbFe_2trilayers has been studied. There appear two remarkableresonance peaks of αE,31in Ni/PZT/TbFe_2trilayers. The first bending resonance frequency iscontrolled by TbFe_2layer, while the first planar acoustic resonance frequency is controlled by Ni layer.The working principle of Ni/PZT/TbFe_2trilayers is in a bending vibration mode. With the increase ofthe thickness of Ni layer, the ME voltage coefficient at the first bending resonance frequency changesvery fewly, while the ME voltage coefficient at the first planar acoustic resonance frequency increasesremarkably. The first bending resonance frequency and the first planar acoustic resonance frequencyincrease as the thickness of Ni layer increases.
     The ME effect of the bi-rectangular structure and the ME structure with end-bonding have beenstudied. The ME coupling of these structures are achieved without interface coupling and onlyinfluenced by properties of composite materials, the size and structure of the composites. The MEeffect of the bi-rectangular structure is affected by negative and positive magnetostrictive flakes. Theresonance frequency and the maximum ME voltage coefficient of the bi-rectangular ME compositestructure are influenced by the length of PZT flakes. The maximum ME voltage coefficient is alsoinfluenced by the length of TbFe_2flakes, but the resonance frequency is not affected by the length ofTbFe_2flakes. There are several resonance peaks in1-150kHz for the ME structure with end-bonding.In the PZT/TbFe_2/PZT composite structure a large ME voltage coefficient αE,31as high as10.5V·cm~(-1)·Oe~(-1)can be obtained at the first planar acoustic resonance frequency of f=85.5kHz and themaximum value of αE,31=9.9V·cm~(-1)·Oe~(-1)at69.5kHz for the third bending resonance was alsoobserved.
引文
[1] Tokura Y. Multiferroics-toward strong coupling between magnetization and polarization in asolid. Journal of Magnetism and Magnetic Materials,2007,310:1145-1150.
    [2] Rontgen W C. Ueber die durch Bewegung enies im homogenen electrischen Felde befindlichenDielectricums hervorgerufene electrodynamische Kraft. Annalen der Physik,1888,271:264-270.
    [3] Wilson H A. Phil. On the Electric Effect of Rotating a Dielectric in a Magnetic Field.Philosophical Transactions of the Royal Society A: Mathematical, Physical and EngineeringSciences,1905,204:129-136.
    [4] Curie P. Sur la symétrie des phénomènes physiques: symétrie d'un champ électrique et d'unchamp magnétique. Journal de Physique,1894,3:393-415.
    [5] Landau L D, Lifshitz E M. Electrodynamics of continuous media. Oxford: Pergamon Press,1960.
    [6] Srinivasan G. Magnetoelectric Composites. Annual Review of Materials Research,2010,40(1):153-178.
    [7] Astrov D N. The magnetoelectric effect in antiferromagnetics. Soviet Physics-JETP,1960,11:708-709.
    [8] Rado G T, Folen V J. Observation of the magnetically induced magnetoelectric effect andevidence for antiferromagnetic domains. Physical Review Letters,1961,7:310-311.
    [9] Al'shin B I, Astrov D N. Magnetoelectric effect in titanium oxide Ti2O3. Soviet Physics-JETP,1963,17:809-811.
    [10] Rado G T. Observation and possible mechanisms of magnetoelectric effects in a ferromagnet.Physical Review Letters,1964,13:335-337.
    [11] Ascher E, Schmid H, St ssel H. Some Properties of Ferromagnetoelectric Nickel-IodineBoracite, Ni3B7O13I. Journal of Applied Physics,1966,37:1404-1405.
    [12] Santoro R P, Segal D J, Newnham R E. Magnetic Properties of LiCoP4and LiNiPO4. Journal ofPhysics and Chemistry of Solids,1966,27:1192-1193.
    [13] Schmid H. On a magnetoelectric classification of materials. International Journal ofMagnetism,1973,4:337-361.
    [14] Rivera J P. Search for the piezomagnetoelectric effect in LiCoPO4. Ferroelectrics,1994,161:91-97.
    [15] Krichevtsov B B, Pavlov V V, Pisarev R V. Giant linear magnetoelectric effect in garnet ferritefilms. JETP Letters,1989,49:535-539.
    [16] Rado G T, Ferrari J M, Maisch W G. Magnetoelectric susceptibility and magnetic symmetry ofmagnetoelectrically annealed TbPO4. Physical Review B,1984,29:4041-4048.
    [17] Hur N, Park S, Sharma P A, et al. Electric polarization reversal and memory in a multiferroicmaterial induced by magnetic fields. Nature,2004,429:392-395.
    [18] Gotardo R A M, Santos I A, Cotica L F, et al. Improved ferroelectric and magnetic properties ofmonoclinic structured0.8BiFeO3-0.2BaTiO3magnetoelectric ceramics. Scripta Materialia,2009,61(5):508-511.
    [19] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3multiferroic thin film heterostructures.Science,2003,299:1719-1722.
    [20] Béa H, Bibes M, Ott F, et al. Mechanisms of Exchange Bias with Multiferroic BiFeO3EpitaxialThin Films. Physical Review Letters,2008,100(1):017204.
    [21] Lebeugle D, Colson D, Forget A. Room-temperature coexistence of large electric polarizationand magnetic order in BiFeO3single crystals. Physical Review B,2007,76:024116-024123.
    [22] Munoz T, Rivera J P, Monnier A, et al. Measurement of the quadratic magnetoelectric effect onsingle crystalline BiFeO3. Japanese Journal of Applied Physics,1985,24:1051-1053.
    [23]王会宗.磁性材料及其应用.北京:国防工业出版社,1989.
    [24]宛得福,罗世华.磁性物理.北京:电子工业出版社,1987.
    [25]张沛霖,张仲渊.压电测量.北京:国防工业出版社,1983.
    [26]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1995.
    [27]徐小红,武海顺.压电薄膜的制备、结构与应用.北京:科学出版社,2002.
    [28]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003.
    [29] Dong X F, Qi M, Ou J P, et al. Uniform High Magnetostrictive Properties of Terfenol-DComposites Prepared by a Dry Process. Materials Science Forum,2011,675-677:1179-1182.
    [30] Dapino M J, Flatau A B, Calkins F T. Statistical analysis of terfenol-D material properties.Journal of Intelligent Material Systems and Structures,2006,17(7):587-599.
    [31]刘梅冬,许毓春.压电铁电材料与器件.湖北:华中理工大学出版社,1990.
    [32] Suchanicz J, Sitko D, Kim-Ngan N T H, et al. Electric properties of soft PZT ceramics undercombined electric and mechanic fields. Journal of Applied Physics,2008,104(9):094106.
    [33] Zhang X G, Liu J, Luo Y. The Fabrication and Performance of PZT Ferroelectric Films. RareMetal Materials and Engineering,2008,37:717-720.
    [34] Li H, Li Y C, Zhou D, et al. Application of PMNPT single crystal in a3.2MHz phased-arrayultrasonic medical imaging transducer.2007Sixteenth Ieee International Symposium on theApplications of Ferroelectrics,2007,1-2:569-571.
    [35] Deng X Y, Zhang H T, Li T, et al. Ferroelectricity of nanocrystalline BaTiO3ceramics by firstprinciple calculation. Chinese Science Bulletin,2010,55(20):2182-2185.
    [36] Israel C, Mathur N D, Scott J F. A one-cent room-temperature magnetoelectric sensor. NatureMaterials,2008,7(2):93-94.
    [37] Fetisov Y K, Bush A A, Kamentsev K E, et al. Ferrite-piezoelectric multilayers for magneticfield sensors. IEEE Sensors Journal,2006,6(4):935-938.
    [38] Bichurin M I, Petrov V M, Petrov R V, et al. Magnetoelectric sensor of magnetic field.Ferroelectrics,2002,280:365-368.
    [39] Dong S X, Li J F, Viehland D. Ultrahigh magnetic field sensitivity in laminates ofTERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3crystals. Applied Physics Letters,2003,83(11):2265-2267.
    [40] Zhai J, Xing Z, Dong S X, et al. Detection of pico-Tesla magnetic field usingmagnetoelectricsensors at room temperature. Applied Physics Letters,2006,88:062510.
    [41] Dong S X, Zhai J, Bai F, et al. Push-pull mode magnetostrictive/piezoelectric laminatecomposite with an enhanced magnetoelectric voltage coefficient. Applied Physics Letters,2005,87(6):062502.
    [42] Karmarkar M, Dong S X, Li J F, et al. Magnetoelectric laminate based DC magnetic fieldsensor. Physica Status Solidi-Rapid Research Letters,2008,2(3):108-110.
    [43] Dong S X, Zhai J Y, Li J F, et al. Small dc magnetic field response of magnetoelectric laminatecomposites. Applied Physics Letters,2006,88(8):082907.
    [44] Dong S, Li J F, Viehland D. Circumferentially magnetized and circumferentially polarizedmagnetostrictive/piezoelectric laminated rings. Journal of Applied Physics,2004,96(6):3382.
    [45] Dong S X, Li J F, Viehland D. Vortex magnetic field sensor based on ring-type magnetoelectriclaminate. Applied Physics Letters,2004,85(12):2307-2309.
    [46] Dong S, Bai J G, Zhai J, et al. Circumferential-mode, quasi-ring-type, magnetoelectric laminatecomposite—a highly sensitive electric current and/or vortex magnetic field sensor. AppliedPhysics Letters,2005,86(18):182506.
    [47] Dong S X, Li J F, Viehland D, et al. A strong magnetoelectric voltage gain effect inmagnetostrictive-piezoelectric composite. Applied Physics Letters,2004,85(16):3534-3536.
    [48] Dong S X, Li J F, Viehland D. Voltage gain effect in a ring-type magnetoelectric laminate.Applied Physics Letters,2004,84(21):4188-4190.
    [49] Dong S X, Zhai J Y, Li J F, et al. Magnetoelectric gyration effect in Tb1-xDyxFe2-y/Pb(Zr,Ti)O3laminated composites at the electromechanical resonance. Applied Physics Letters,2006,89(24):243512.
    [50] Fetisov Y K, Srinivasan G. A ferrite/piezoelectric microwave phase shifter: studies on electricfield tunability. Electronics Letters,2005,41:1066-1067.
    [51] Srinivasan G, Zavislyak I V, Tatarenko A S. Millimeter-wave magnetoelectric effects in bilayersof barium hexaferrite and lead zirconate titanate. Applied Physics Letters,2006,89:152508.
    [52] Tatarenko A S, Gheevarughese V, Srinivasan G. A magnetoelectric microwave band-pass filter.Electronics Letters,2006,42:540-541.
    [53] Ustinov A B, Srinivasan G, Kalinikos B A. Ferrite-ferroelectric hybrid wave phase shifters.Applied Physics Letters,2007,90:031913.
    [54] Das J, Kalinikos B A, Barman A R, et al. Multifunctional dual-tunable low lossferriteferroelectric heterostructures for microwave devices. Applied Physics Letters,2007,91:172516.
    [55] Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: Historicalperspective, status, and future directions. Journal of Applied Physics,2008,103(3):031101.
    [56] Tellegen B D H. The gyrator, a new electric network element. Philips Research Report,1948,3:81-101.
    [57] Suchtelen J. Product properties: A new application of composite materials. Philips ResearchReport,1972,27:28-37.
    [58] Boomgaard J, Terrell D R, Born R A J, et al. An in situ grown eutectic magnetoelectriccomposite material. Journal of Materials Science,1974,9:1705-1709.
    [59] Run A M J G, Terrell D R, Scholing J H. An in situ grown eutectic magnetoelectric compositematerial. Journal of Materials Science,1974,9:1710-1714.
    [60] Boomgaard J, Run A M J G, Suchtelen J. Piezoelectric-piezomagnetic composites withmagnetoelectric effect. Ferroelectrics Letters,1976,14:727-728.
    [61] Boomgaard J, Born R A J. A sintered magnetoelectric composite material BaTiO3-Ni(Co,Mn)Fe2O4. Journal of Materials Science,1978,13:1538-1548.
    [62] Harshe G, Dougherty J P, Newnham R E. Theoretical modelling of multilayer magnetoelectriccomposites. International Journal of Applied Electromagnetics in Materials,1993,4:145-159.
    [63] Lupeiko T G, Lisnevskaya I V, Chkheidze M D, et al. Laminated magnetoelectric compositesbased on nickel ferrite and PZT materials. Inorganic Materials,1995,31:1139-1142.
    [64] Bichurin M I, Kornev I A, Petrov V M, et al. Investigation of magnetoelectric interaction incomposite. Ferroelectrics,1997,204:289-297.
    [65] Patankar K K, Patil S A, Sivakumar K V, et al. AC conductivity and magnetoelectric effect inCuFe1.6Cr0.4O4-BaTiO3composite ceramics. Materials Chemistry and Physics,2000,65:97-102.
    [66] Ryu J, Carazo A V, Uchino K, et al. Piezoelectric and magnetoelectric properties of LeadZirconate Titanate/Ni-Ferrite particulate composites. Journal of Electroceramics,2001,7(1):17-24.
    [67] Patankar K K, Nipankar R P, Mathe V L, et al. Role of sintering on magneto-electric effect inCuFe1.8Cr0.2O4–Ba0.8Pb0.2Ti0.8Zr0.2O3composite ceramics. Ceramics International,2001,27:853-858.
    [68] Mathe V L, Patankar K K, Jadhav U V, et al. Studies on structural, dielectric andmagnetoelectric properties in CuFe1.8Cr0.2O4–Pb(Mg1/3V2/3)O3composites. CeramicsInternational,2001,27:531-535.
    [69] Wan J G, Wang X W, Wu Y J, et al. Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3composite thin filmsderived by a sol-gel process. Applied Physics Letters,2005,86(12):122501.
    [70] Srinivasan G, DeVreugd C P, Flattery C S, et al. Magnetoelectric interactions in hot-pressednickel zinc ferrite and lead zirconante titanate composites. Applied Physics Letters,2004,85(13):2550.
    [71] Jiang Q H, Shen Z J, Zhou J P, et al. Magnetoelectric composites of nickel ferrite and leadzirconnate titanate prepared by spark plasma sintering. Journal of the European CeramicSociety,2007,27(1):279-284.
    [72] Kanamadi C M, Das B K, Kim C W, et al. Dielectric and magnetic properties of (x)CoFe2O4+(1-x)Ba0.8Sr0.2TiO3magnetoelectric composites. Materials Chemistry and Physics,2009,116(1):6-10.
    [73] Bammannavar B K, Chavan G N, Naik L R, et al. Magnetic properties and magnetoelectric(ME) effect in ferroelectric rich Ni0.2Co0.8Fe2O4+PbZr0.8Ti0.2O3ME composites. MaterialsChemistry and Physics,2009,117(1):46-50.
    [74] Lisnevskaya I V, Bobrova I A, Bikyashev E A, et al. Interfacial reactions and properties ofY3Fe5O12/Ba1-xPbxTiO3composites Inorganic Materials,2006,42(10):1147-1151.
    [75] Srinivasan G, Rasmussen E, Gallegos J, et al. Magnetoelectric bilayer and multilayer structuresof magnetostrictive and piezoelectric oxides. Physical Review B,2001,64(21):214408.
    [76] Lopatin S, Lopatina I, Lisnevskaya I. Magnetoelectric PZT/ferrite composite materials.Ferroelectrics,1994,162:63-68.
    [77] Getman I. Magnetoelectric composite materials: theoretical approach to determine theirproperties. Ferroelectrics,1994,162:45-50.
    [78] Srinivasan G, Rasmussen E, Levin B, et al. Magnetoelectric effects in bilayers and multilayersof magnetostrictive and piezoelectric perovskite oxides. Physical Review B,2002,65(13):134402.
    [79] Srinivasan G, Rasmussen E, Hayes R. Magnetoelectric effects in ferrite-lead zirconate titanatelayered composites: The influence of zinc substitution in ferrites. Physical Review B,2003,67(1):014418.
    [80] Srinivasan G. Low frequency and microwave magnetoelectric effects in thick filmheterostructures of lithium zinc ferrite and lead zirconate titanate. Solid State Communications,2003,128(6-7):261-266.
    [81] Zhou J P, He H C, Shi Z, et al. Dielectric, magnetic, and magnetoelectric properties oflaminated PbZr0.52Ti0.48O3/CoFe2O4composite ceramics. Journal of Applied Physics,2006,100(9):094106.
    [82] Zhai J Y, CAI N, Lin Y H, et al. Coupled magnetodielectric properties of laminatedPbZr0.53Ti0.47O3/NiFe2O4ceramics. Journal of Applied Physics,2004,95(10):5685-5690.
    [83] Ryu J, Carazo A V, Uchino K, et al. Magnetoelectric properties in piezoelectric andmagnetostrictive laminate composites. Japanese Journal of Applied Physics Part1: RegularPapers Short Notes&Review Papers,2001,40(8):4948-4951.
    [84] Ryu J H, Priya S, Carazo A V, et al. Effect of the magnetostrictive layer on magnetoelectricproperties in lead zirconate titanate/terfenol-D laminate composites. Journal of the AmericanCeramic Society,2001,84(12):2905-2908.
    [85] Dong S X, Zhai J Y, Xing Z P, et al. Extremely low frequency response of magnetoelectricmultilayer composites. Applied Physics Letters,2005,86(10):102901.
    [86] Zhou J P, Meng L, Xia Z H, et al. Inhomogeneous magnetoelectric coupling inPb(Zr,Ti)O3/Terfenol-D laminate composite. Applied Physics Letters,2008,92(6):062903.
    [87]贾艳敏,罗豪甦, Or S W, et al.复合材料Terfenol-D/PMNT的磁电和逆磁电响应.科学通报,2008,53:1172-1176.
    [88] Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics,2005,38(8): R123-R152.
    [89] Laletsin U, Padubnaya N, Srinivasan G, et al. Frequency dependence of magnetoelectricinteractions in layered structures of ferromagnetic alloys and piezoelectric oxides. AppliedPhysics A: Materials Science&Processing,2004,78(1):33-36.
    [90] Pan D A, Bai Y, Chu W Y, et al. Magnetoelectric coupling and the hydrogen effect onNi-PZT-Ni trilayers made by electrodeposition. Smart Materials&Structures,2007,16(6):2501-2504.
    [91] Pan D A, Bai Y, Chu W Y, et al. Ni-PZT-Ni trilayered magnetoelectric composites synthesizedby electro-deposition. Journal of Physics: Condensed Matter,2008,20(2):025203.
    [92] Pan D A, Bai Y, Chu W Y, et al. Magnetoelectric effect in a Ni-PZT-Ni cylindrical layeredcomposite synthesized by electro-deposition. Journal of Physics D: Applied Physics,2008,41(2):022002.
    [93] Pan D A, Bai Y, Volinsky A A, et al. Giant magnetoelectric effect in Ni–lead zirconium titanatecylindrical structure. Applied Physics Letters,2008,92(5):052904.
    [94] Pan D A, Tian J J, Zhang S G, et al. Geometry effects on magnetoelectric performance oflayered Ni/PZT composites. Materials Science and Engineering: B,2009,163(2):114-119.
    [95] Pan D, Lu J, Bai Y, et al. Shape demagnetization effect on layered magnetoelectric composites.Chinese Science Bulletin,2008,53(14):2124-2128.
    [96] Nan C W, Liu G, Lin Y H. Influence of interfacial bonding on giant magnetoelectric response ofmultiferroic laminated composites of Tb1-xDyxFe2and PbZrxTi1-xO3. Applied Physics Letters,2003,83(21):4366-4368.
    [97] Nan C W, Liu L, Cai N, et al. A three-phase magnetoelectric composite of piezoelectricceramics, rare-earth iron alloys, and polymer. Applied Physics Letters,2002,81(20):3831-3833.
    [98] Nan C W, Cai N, Liu L, et al. Coupled magnetic-electric properties and critical behavior inmultiferroic particulate composites. Journal of Applied Physics,2003,94(9):5930-5936.
    [99] Shi Z, Nan C W, Liu J, et al. Influence of mechanical boundary conditions and microstructuralfeatures on magnetoelectric behavior in a three-phase multiferroic particulate composite.Physical Review B,2004,70(13):134417.
    [100] Nan C W, Cai N, Shi Z, et al. Large magnetoelectric response in multiferroic polymer-basedcomposites. Physical Review B,2005,71(1):014102.
    [101] Ma J, Shi Z, Nan C W. Magnetoelectric properties of composites of single Pb(Zr,Ti)O3rods andTerfenol-D/epoxy with a single-period of1-3-type structure. Advanced Materials,2007,19(18):2571-2573.
    [102] Shi Z, Nan C W, Zhang J, et al. Magnetoelectric effect of Pb(Zr,Ti)O3rod arrays in a(Tb,Dy)Fe2/epoxy medium. Applied Physics Letters,2005,87(1):012503.
    [103] Wan J G, Liu J M, Chand H L W, et al. Giant magnetoelectric effect of a hybrid ofmagnetostrictive and piezoelectric composites. Journal of Applied Physics,2003,93(12):9916.
    [104] Deng C Y, Zhang Y, Ma J, et al. Magnetoelectric effect in multiferroic heteroepitaxialBaTiO3-NiFe2O4composite thin films. Acta Materialia,2008,56(3):405-412.
    [105] Wu T, Zurbuchen M A, Saha S, et al. Observation of magnetoelectric effect in epitaxialferroelectric film/manganite crystal heterostructures. Physical Review B,2006,73(13):134416.
    [106] Zhou J P, He H C, Shi Z, et al. Magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3double-layer thinfilm prepared by pulsed-laser deposition. Applied Physics Letters,2006,88(1):013111.
    [107] Stein S, Wuttig M, Viehland D, et al. Magnetoelectric effect in sputtered composites. Journal ofApplied Physics,2005,97(10):10Q301.
    [108] He H C, Wang J, Zhou B P, et al. Ferroelectric and ferromagnetic behavior ofPb(Zr0.52Ti0.48)O3-Co0.9Zn0.1Fe2O4multilayered thin films prepared via solution processing.Advanced Functional Materials,2007,17(8):1333-1338.
    [109] Lin R J, Wu T B, Chu Y H. Interface effects on the magnetoelectric properties of (00l)-orientedPb(Zr0.5Ti0.5)O3/CoFe2O4multilayer thin films. Scripta Materialia,2008,59(8):897-900.
    [110]何泓材,林元华,南策文.多铁性磁电复合薄膜.科学通报,2008,53(10):1136-1148.
    [111] Jia Y M, Or S W, Lam K H, et al. Magnetoelectric effect in composites of magnet, metal-cap,and piezoceramic. Applied Physics A,2007,86(4):525-528.
    [112] Wang Y, Or S W, Chan H L W, et al. Magnetoelectric effect from mechanically mediatedtorsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3single crystal. Applied Physics Letters,2008,92(12):123510.
    [113] Leung C M, Or S W, Zhang S, et al. Ring-type electric current sensor based on ring-shapedmagnetoelectric laminate of epoxy-bonded Tb0.3Dy0.7Fe1.92short-fiber/NdFeB magnetmagnetostrictive composite and Pb(Zr, Ti)O3piezoelectric ceramic. Journal of Applied Physics,2010,107(9):09D918.
    [114] Xing Z P, Li J F, Viehland D. Giant magnetoelectric effect in Pb(Zr,Ti)O3-bimorph/NdFeBlaminate device. Applied Physics Letters,2008,93(1):013505.
    [115] Wang Y, Or S W, Chan H L W, et al. Giant magnetoelectric effect in mechanically clampedheterostructures of magnetostrictive alloy and piezoelectric crystal-alloy cymbal. AppliedPhysics Letters,2008,93(21):213504.
    [116] Zhang N, Petrov V M, Johnson T, et al. Enhancement of magnetoelectric coupling in apiezoelectric-magnetostrictive semiring structure. Journal of Applied Physics,2009,106(12):126101.
    [117] Zeng M, Or S W, Chan H L W. Giant magnetoelectric effect in magnet-cymbal-solenoidcurrent-to-voltage conversion device. Journal of Applied Physics,2010,107(7):074509.
    [118] Dong S X, Zhai J Y, Xing Z P, et al. Giant magnetoelectric effect (under a dc magnetic bias of2Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1/3,Nb2/3)O3-7%PbTiO3fibers.Applied Physics Letters,2007,91(2):022915.
    [119] Chashin D V, Fetisov Y K, Tafintseva E V, et al. Magnetoelectric effects in layered samples oflead zirconium titanate and nickel films. Solid State Communications,2008,148(1-2):55-58.
    [120] Chashin D V, Fetisov Y K, Kamentsev K E, et al. Resonance magnetoelectric interactions dueto bending modes in a nickel-lead zirconate titanate bilayer. Applied Physics Letters,2008,92(10):102511.
    [121] Petrov V M, Srinivasan G, Bichurin M I, et al. Theory of magnetoelectric effect for bendingmodes in magnetostrictive-piezoelectric bilayers. Journal of Applied Physics,2009,105(6):063911.
    [122] Xing Z P, Dong S X, Zhai J Y, et al. Resonant bending mode of Terfenol-D/steel/Pb(Zr,Ti)O3magnetoelectric laminate composites. Applied Physics Letters,2006,89(11):112911.
    [123]伍学高,李铭华,黄渭成.化学镀技术.成都:四川科学技术出版社,1985.
    [124] Córdoba J M, Odén M. Growth and characterization of electroless deposited Cu films oncarbon nanofibers. Surface and Coatings Technology,2009,203(22):3459-3464.
    [125] Fu Y B, Zhang L D, Zheng J Y. Electroless deposition of Ni on template of halloysite and itsmagnetic property. Transactions of Nonferrous Metals Society of China,2004,14:152-156.
    [126] Homma T, Sezai Y, Osaka T. A study on growth processes of CoNiP perpendicular magneticanisotropy films electroless-deposited at room temperature. Electrochimica Acta,1997,42(20-22):3041-3047.
    [127] Hsu H F, Tsai C L, Lee C W, et al. Mechanism of immersion deposition of Ni-P films on Si(100)in an aqueous alkaline solution containing sodium hypophosphite. Thin Solid Films,2009,517(17):4786-4791.
    [128] Yagi S, Kawamori M, Matsubara E. Electrochemical Study on the Synthesis Process of Co-NiAlloy Nanoparticles via Electroless Deposition. Journal of the Electrochemical Society,2010,157(5): E92-E97.
    [129] Tang X J, Bi C L, Han C X, et al. A new palladium-free surface activation process for Nielectroless plating on ABS plastic. Materials Letters,2009,63(11):840-842.
    [130] Huang Y, Shi K, Liao Z J, et al. Studies of electroless Ni-Co-P ternary alloy on glass fibers.Materials Letters,2007,61(8-9):1742-1746.
    [131]闫洪.现代化学镀镍和复合镀新技术.北京:国防工业出版社,1999.
    [132]姜晓霞,沈伟.化学镀理论与实践.北京:国防工业出版社,2000.
    [133] Liu W, Hsieh S, Chen W, et al. Growth behavior of electroless Ni-Co-P deposits on Fe. AppliedSurface Science,2009,255(6):3880-3883.
    [134] Moustafa S F, Daoush W M. Synthesis of nano-sized Fe-Ni powder by chemical process formagnetic applications. Journal of Materials Processing Technology,2007,181(1-3):59-63.
    [135] Takahashi Y K, Hono K, Ishii M, et al. Microstructure of CoNiFeB electroless-deposited softmagnetic underlayer for perpendicular recording media. Journal of Magnetism and MagneticMaterials,2008,320(3-4):490-495.
    [136]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术.哈尔滨:哈尔滨工业大学出版社,2000.
    [137] Hanna F, Hamid Z A, Aal A A. Controlling factors affecting the stability and rate of electrolesscopper plating. Materials Letters,2004,58(1-2):104-109.
    [138] Zhang H J, Zhang H T, Wu X W, et al. Preparation and pattern recognition of metallic Niultrafine powders by electroless plating. Journal of Alloys and Compounds,2006,419(1-2):220-226.
    [139] Lu J, Pan D A, Yang B, et al. Wideband magnetoelectric measurement system with theapplication of a virtual multi-channel lock-in amplifier. Measurement Science and Technology,2008,19(4):045702.
    [140]陆俊.宽频电动力学测试技术在铁酸铋晶体上的应用.北京:北京科技大学,2009.
    [141] Dong S X, Cheng J R, Li J F, et al. Enhanced magnetoelectric effects in laminate composites ofTerfenol-D/Pb(Zr,Ti)O3under resonant drive. Applied Physics Letters,2003,83(23):4812-4814.
    [142] Pettiford C, Lou J, Russell L, et al. Strong magnetoelectric coupling at microwave frequenciesin metallic magnetic film/lead zirconate titanate multiferroic composites. Applied PhysicsLetters,2008,92(12):122506.
    [143] Bichurin M I, Petrov V M, Srinivasan G. Theory of low-frequency magnetoelectric coupling inmagnetostrictive-piezoelectric bilayers. Physical Review B,2003,68(5):054402.
    [144] Fetisov Y K, Chashin D V, Srinivasan G. Piezoinductive effects in a piezoelectric ring withmetal electrodes. Journal of Applied Physics,2009,106(4):044103.
    [145] Fetisov Y K, Chashin D V. Transformation of alternating magnetic and electric fields in aferroelectric-conductor ring structure. Technical Physics Letters,2009,35(8):710-712.
    [146] Viswan R, Kim S H, Jeong J R, et al. Fabrication of TERFENOL-D/PZT bilayer structures forthe study of voltage control of magnetization easy axis. Journal of Magnetism and MagneticMaterials,2007,310(2): E899-E900.
    [147] Bichurin M I, Petrov V M, Galkina T A. Microwave magnetoelectric effects in bilayer of ferriteand piezoelectric. European Physical Journal Applied Physics,2009,45(3):30801.
    [148] Shi Z, Ma J, Nan C W. A new magnetoelectric resonance mode in bilayer structure compositeof PZT layer and Terfenol-D/epoxy layer. Journal of Electroceramics,2008,21(1-4):390-393.
    [149] Wan J G, Li Z Y, Wang Y, et al. Strong flexural resonant magnetoelectric effect inTerfenol-D/epoxy-Pb(Zr,Ti)O3bilayer. Applied Physics Letters,2005,86(20):202504.
    [150] Zeng M, Or S W, Chan H L W. Giant resonance frequency tunable magnetoelectric effect in adevice of Pb(Zr0.52Ti0.48)O3drum transducer, NdFeB magnet, and Fe-core solenoid. AppliedPhysics Letters,2010,96(20):203502.