1. [地质云]滑坡
人成骨肉瘤细胞系中高侵袭及类肿瘤干细胞亚系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以体外培养的人成骨肉瘤细胞系—MG63细胞为对象,应用有限稀释法进行单细胞分离和单克隆细胞株的培养,成功建立MG63骨肉瘤单克隆细胞株20余个。根据细胞形成的克隆形态,选取其中的完全克隆进行ALP、OCN、OPN等一系列成骨分化标志物基因表达的检测,同时检测各组细胞生物学行为指标,包括肿瘤细胞成瘤、侵袭、迁移、铺展粘附等,发现具有高低不同转移能力和成瘤能力的单克隆细胞株之间在部分成骨细胞标志物、肿瘤转移及促血管形成因子等基因表达具有显著差异。说明检测骨肉瘤细胞成骨分化标志物的基因表达差异可以判断肿瘤的分化程度。进一步通过RT-PCR、RealTime-PCR及Western blot等方法对它们的侵袭能力进行检测,发现高低不同转移能力的细胞株的Cofilin、Limk1基因及蛋白表达存在显著差异,说明Cofilin介导的信号通路在人成骨肉瘤细胞的侵袭、转移等行为中发挥极为重要的作用。最后本实验选取集落形成能力最强的Holoclone细胞株,利用无血清悬浮成球的方式分离出类肿瘤干细胞亚系---MG63-M,并在无血清培养环境中加入低浓度长春新碱,进一步富集、纯化。经RT-PCR、免疫荧光及流式细胞术等检测发现其表达CD133、Oct4、nestin等干细胞表面标志物,同时高表达Mdr1、ABCG2等多药耐药基因。另外,体外实验和动物实验都表明MG63-M不但具有与正常干细胞相似的自我更新和多项分化能力,同时具有极强的致瘤能力和极为显著的多药耐药性。
     本实验进一步验证了骨肉瘤异质性学说和肿瘤干细胞学说,为早期判断骨肉瘤侵袭及转移能力,克服骨肉瘤的多药耐药提供了新的理论基础和实验依据。
Oseteosarcoma is a kind of very common primary malignant neoplasms of bone. Oseteosarcoma can attack any age, Most of Oseteosarcoma attacks the adolescent, and causes great harm and high mortality. At the outset the disease is latent and in high-degree malignancy. Its early clinical symptoms may be confused with trauma of bone and pulmonary metastasis may occur in the early stage of the disease.
     At present, the biological mechanism behind osteosarcoma formation is unclear. However, many researchers accept the‘cancer stem cell’hypothesis that there is a small number of self-renewing cancer cells with properties reminiscent of normal stem cells within a tumor. Cancer stem cells divide asymmetrically. The vast majority of cells derived from cancer stem cells are ordinary cells. A few, however, possess drug resistance and high self-renewal and proliferative capacity, which may explain the poor prognosis, recurrence, and metastasis of most tumors even after chemotherapy.
     Previous studies have shown that MG-63 cells are not monoclonal but are heterogeneous in origin. Many researchers believe that purification of monoclonal cell strains from cell lines is essential for the study of cells. To obtain monoclonal stem-like cell strains from MG-63 cells, we first identified several subpopulations of holoclones. Each holoclone originated from a round- or oval-shaped dense colony of cells. Holoclone cells from breast cancers, gliomas, and other solid tumors tend to form small colonies and have high clonogenicity and strong adhesion abilities. Our findings suggest that the osteosarcoma cells that formed holoclones were tumorigenic. We also found that cultured monoclonal cells did not always retain their unique shape and characteristics, but underwent re-differentiation or automatic subcloning after passage over several generations. For this reason, cells of the same generation were used in each experiment in the present study (all within 12 passages or less).
     Actin cytoskeletal reorganization is essential for numerous cell activities, including migration, morphological change, and vesicle transport. Cofilin plays an essential role in regulating actin filament dynamics. Its actin-depolymerizing and actin -severing activities are inhibited by phosphorylation by LIM kinases and testicular protein kinases and reactivated by dephosphorylation by SSH family phosphatases. In the early stage of cell responses, LIMK1 can stimulate the cell-foot formation, therefore it is necessary in cell migration. Boydern Chamber assay showed that cell invasion significantly in Subline A3, and compared with the control group it was significantly different. By Real Time-PCR and Western blot, Limk1 showed higher expression in Subline A3.
     In the present study, we isolated tumor stem-like cells from the human MG63 osteosarcoma cell line. Limiting dilution of MG63 cells was first performed to isolate holoclones with high clonogenicity. Several osteosarcoma cell sublines with high tumorigenicity were identified. The sublines were then selected in serum-free medium containing a low concentration of vincristine to identify cells that were capable of forming suspended sarcospheres. A highly enriched subpopulation, designated as MG63-M, with the capacity of self-renewal, multilineage differentiation, high tumorigenicity and significant multi-drug resistance was characterized.
     To isolate stem-like cells from the human MG63 osteosarcoma cell line, different subpopulations of MG63 cells were cloned by limiting dilution and passaged to obtain different sublines. The subline with highest clonogenicity was identified using a proliferation assay, cell-cycle analysis, and soft-agar colony-forming assay; sublines were further selected in serum-free medium containing a low concentration of vincristine to identify cells that could form suspended sarcospheres. Identified cells were then characterized based on morphology, cell surface markers, adipogenic and osteogenic differentiation, and tumorigenicity in nude mice. A total of 19 holoclones that could be stably passaged were obtained. Sublines A1, A3, and D1 were markedly different from other sublines and the parental cell line. Subline D1 not only had a higher colony-forming efficiency and formed larger colonies, but also possessed a shorter latency of tumorigenesis in vivo. After subline D1 was cultured in suspension in medium containing vincristine, a highly enriched subpopulation of cells that could form sarcospheres and be stably passaged were obtained. These cells, designated as MG63-M, expressed multiple markers of multipotent or embryonic stem cells and possessed the capacity for self-renewal, multilineage differentiation, and significant multi-drug resistance. Thus, our results suggest that a subpopulation of stem-like cells can be isolated from human MG63 osteosarcoma cell line.
     The cancer stem cell hypothesis provides an explanation for the etiology of many heterogeneous and highly malignant tumors. In this study, we successfully isolated a subpopulation of tumor stem-like cells from a human osteosarcoma cell line by harvesting sarcospheres formed in serum-free culture medium containing a low concentration of vincristine. Based on our results, we believe that initial identification of holoclones with high tumorigenicity followed by further enrichment is an effective approach for isolation of tumor stem cells. The tumor stem-like cells obtained in this study not only possess the capacity of self-renewal and multilineage differentiation, but also had higher tumorigenicity and more significant drug resistance than those obtained using the conventional method. Thus, it is plausible to speculate that this subpopulation of cells plays a crucial role in the recurrence and chemotherapy resistance in osteosarcomas and are therefore important targets for treatment of the disease.
引文
[1]Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites.[J] Nat Rev Cancer, 2002;2(8): 563-572
    [2]Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. [J] Am J Pathol, 1998;153(3): 865-873
    [3]Ruiz P, Günthert U. The cellular basis of metastasis. [J] World J Urol,1996;14(3): 141-150
    [4]Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. [J] Nat Med, 2006;12(8): 895-904
    [5]Sahai E , Marshall CJ. Differingmodes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis[J]. Nat Cell Biol, 2003;5(8): 711-719
    [6]Condeelis J, Segall JE. Intravital imaging of cell movement in tumors[J]. Nat Rev Cancer, 2003;3(12): 921-930
    [7]Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments[J]. Cell, 2003;112(4): 453-465
    [8]Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration [J]. Curr Opin Cell Biol, 2004;16(1): 14-23
    [9]Merlot S, Firtel RA. Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways[J]. J Cell Sci, 2003;116(Pt17): 3471-3478
    [10]Wyckoff J, Wang W, Lin E Y,et al. A paracrine loop betweentumor cells and macrophages is required for tumor cell migration in mammary tumors[J]. Cancer Res, 2004;64(19): 7022 -7029
    [11]Kang Y, Siegel PM, ShuW, et al. Amultigenic programmediating breast cancermetastasisto bone[J]. Cancer Cell, 2003;3(6): 537-549
    [12]Ahmed F, Wyckoff J, Lin EY, et al. GFP expression in the mammary gland forimaging of mammary tumor cells in transgenic mice [J]. Cancer Res, 2002;62(24): 7166-7169
    [13]Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility[J].Cancer Cell, 2003;4(1): 67-79
    [14]Yang J,. Mani SA, Donaher JL, et al. Twist, amaster regulator of morphogenesis, plays anessential role in tumor metastasis[J]. Cell, 2004;117(7): 927-939
    [15]Adams JC. Roles of fascin in cell adhesion and motility[J]. Curr Opin Cell Biol, 2004;16(5): 590-596
    [16]Thiery JP. Epithelial-mesenchymal transitions in tumour progression [J]. Nat Rev Cancer,2002;2(6): 442-454
    [17]Yamaguchi H, Lorenz M, Kempiak S, et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin[J]. J Cell Biol, 2005,168(3): 441-452
    [18]Zigrino P, Loffek S, Mauch C. Tumor-stroma interactions: their role in the control of tumor cell invasion[J]. Biochimie, 2005;87(3-4): 321-328
    [19]Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors[J]. Curr Opin Cell Biol, 2005;17(5): 559-564
    [20]Wang W, Goswami S, Sahai E,et al. Tumor cells caught in the act of invading: their strategy for enhanced cell motility[J]. Trends CellBiol, 2005;15(3): 138-145
    [21]Ghosh M, Song X, Mouneimne G,et al. Cofilin promotes actin polymerization and defines the direction of cell motility[J]. Science, 2004;304(5671): 743-746
    [22]Yoshioka K, Foletta V, Bernard O,et al. A role for LIM kinase in cancer invasion[J]. Proc Natl Acad Sci USA, 2003;100(12):7247-7252
    [23]Jaffe N, Patel SR, Benjamin RS. Chemotherapy in osteosarcoma Basis for application and antagonism to implementation; early controversies surrounding its implementation. [J] Hematol Oncol Clin N Am, 1995; 9:825.
    [24]Putnam JB, Roth JA. Surgical treatment for pulmonary metastasis from sarcoma. [J] Hematol Oncol Clin N Am,1995;9:869.
    [25]Gaetano B, Picci SF. Prognostic Significance of Serum Alkaline Phosphatase Measure- ments in Patients with Osteosarcoma Treated with Adjuvant or Neoadjuvant Chemo- therapy [J]. Cancer, 1993;71:1224-1230.
    [26]Hummert TW, Schwartz Z, Sylvia VL, et al. Stathmin levels in growth plate chondrocytes are modulated by vitamin D3 metabolites and transforming growth factor beta1 and are associated with proliferation [J]. Endocrine, 2001;15(1): 93-101.
    [27]Senger DR,Wirth DF ,Hynes RO. Trans formed mammalian cells secrete specific proteinsand phosphoproteins. [J] Cell ,1979 ;16 (4) :885-893.
    [28]Franzen A, Heinegrad D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. [J]Biochem J ,1985;232 (3) :715-724.
    [29]Rangaswami H, Bulbule A, Kundu GC, et al. Osteopontin: role in cell signaling and cancer progression. [J] Trends Cell Biol,2006;16 (2) :79-87.
    [30]Xie H , Song J , Du R , et al . Prognostic significance of osteopontin in hepatitis B virus - related hepatocellular carcinoma . [J] Dig Liver Dis,2007;39 (2) :167-172.
    [31]Higashiyama M , I to T , Tanaka E , et al . Prognostic significance of osteopontin expres- sion in human gastric carcinoma . [J] Ann Surg Oncol, 2007;14 (12):3419-3427.
    [32]Cho H , Hong SW, Oh YJ , et al . Clinical significance of osteopontin expression in cervical cancer . [J] Cancer Res Clin Oncol ,2008;134 (8):909-917.
    [33]Tuck AB, Hota C,Wilson SM, et al . Osteopontin induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. [J] Oncogene, 2003;22(8):1198-1205.
    [34]G ong M , Lu Z , Fang G, et al . A small inter fering RNA targeting osteopontin as gastric cancer therapeutics. [J] Cancer Lett, 2008;208(1) :148-159.
    [35]Cui R , Takahashi F , Ohashi R , et al . Abrogation of the interaction between osteopontin and alphavbeta3 integrin reduces tumorgrowth of human lung cancer cells in mice . [J] Lung Cancer ,2007;57 (3) :302-310.
    [36]Tang H, Wang J, Bai F, et al . Inhibition of osteopontin would suppress angiogenesis in gastric cancer . [J] Biochem Cell Biol , 2007;85 (1) :103-110.
    [37]Lin YH, Yang - Yen HF. The osteopontin-CD44 survival sig-nal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway.[J] Biol Chem, 2001;276 (49):46024-46030.
    [38]Geissinger E,Weisser C, Fischer P,et al.Autocrine stimulation by osteopontin contributes to antiapoptotic signalling of melanocytesin dermal collagen. [J]Cancer Res,2002;62 (16) :4820-4828.
    [39]Lee JL , Wang MJ , Sudhir PR , et al . Osteopontin promotes in-tegrin activation through outside - in and inside - out mechanisms : OPN- CD44V interaction enhances survival in gastrointestinal cancer cells. [J]Cancer Res ,2007;67 (5) :2089-2097.
    [40]Wong TS , K wong DL , Sham J , et al . Elevation of plasma osteopontin level in patients with undifferentiated naspharyngeal carcinoma. [J]Eur J Surgoncol , 2005;31 (5) :555-558.
    [41]Allan AL,George R,Vantyghem SA , et al . Role of the integrinbinding protein osteopo- ntin in lymphatic metastasis of breast cancer . [J]Am J Pathol ,2006;169 (1) :233-246.
    [42]Suzuki M,Mose E,Galloy C ,et al .Osteopontin gene expression determines spontaneous metastatic per formance of orthotopic humanbreast cancer xenografts. [J]Am J Pathol ,2007;171 (2) :682-692.
    [43]张惠忠,丘钜世,朱全胜.成骨性肿瘤中Ⅰ、Ⅱ和Ⅲ型胶原蛋白的表达[J].癌症,1999;18(5): 531- 534.
    [44]Park, YB Kim HS, Oh JH, Lee, et al. The coexpression of p53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma [J]. Int. Orthop. 2001;24(6): 307-310.
    [45]Bruer AU, Savaskan NE, Plaschke M, et al. Performant path lesion induces upregulation of stathmin messenger RNA, but not SCG10 messenger RNA, in the adult rat hippocampus [J]. Neuroscience, 2001;102(3): 515-526.
    [46]Hummert TW, Schwartz Z, Sylvia VL, et al. Stathmin levels in growth plate chondrocytes are modulated by vitamin D3 metabolites and transforming growth factor beta1 and are associated with proliferation [J]. Endocrine, 2001;15(1): 93-101.
    [47]Fidler IJ. Tumor heterogeneity and the biology of cancer invasion and metastasis [J]. Cancer Res, 1978;38(9): 2651- 2660.
    [48]Wentao Zhu, Feng jin Guo, Tao Xu, et al. Establishment of nude mice model of human osteosarcoma cell MG63 with different potential of metastasis [J]. Chinese-German Journal of Clinical Oncology, 2007;6(5): 484- 486.
    [49]Hart IR. The selection and characterization of an invasive variant cells of the B16 melanoma [J]. Am J Pathol, 1979;97(3): 587-600.
    [50]Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a maligmant tumor[J]. Science, 1977;197: 893-895
    [51]高大新,原泉,张海燕等。细胞周期D1、p16、Rb蛋白在骨肉瘤中的表达及意义[J]。中华实验外科杂志。2000;4:375.
    [52]范德刚,范清宇,张惠中等,利用基因芯片技术筛选不同移动能力骨肉瘤细胞差异表达基因[J]。第四军医大学学报,2003;24:816-819.
    [53]Khanna C, Khan J, Nguyen P, et al. Metastasis associated difference in gene expression in murine model of osteosarcoma[J]. Cancer Res. 2001;61: 3750-3759.
    [54]Khanna C, Prehn J, Yeung C, et al. An orthotopic murine model of osteosarcoma with clonally related variants differing in pulmonary metastatic potential [J]. Chin Exp, Metastasis, 2001;18: 261-271.
    [55]Anna B, Glinskii TH, Brian A, et al.Viable circulating metastatic cells Produced in orthotopic but not ectopic prostate cancer models [J]. Cancer Res, 2003;63: 4239-4243.
    [52]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J,Weissman IL, Wah GM. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 2006;66:9339–9344.
    [53]Dalerba P, Cho RW, Clarke MF. Cancer stem cells: Models and concepts[J]. Annu Rev Med 2007;58:267–284.
    [54]Immervoll H, Hoem D, Sakariassen P?, Steffensen OJ, Molven A. Expression of the stem cell marker CD133 in pancreas and pancreatic ductal adenocarcinomas[J]. BMC Cancer 2008;8:48.
    [55]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci 2003; 100: 3983–3988.
    [56]Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells[J]. Oncogene 2004; 23:7274–7282.
    [57]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. [J]Nature 2004; 432: 396–401.
    [58]Gibbs PC, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA. Stem-like cells in bone sarcomas: Implications for tumorigene sis. [J] Neoplasia 2005;7:967–976.
    [59]Wang JC, Dick JE. Cancer stem cells: Lessons from leukemia. [J]Trends Cell Biol 2005;15: 494–501.
    [60]Li L, NeavesWB. Normal stem cells and cancer stem cells: The niche matters. [J]Cancer Res 2006;66:4553–4557.
    [61]O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. [J]Nature 2007;445:106–110.
    [62]Maitland NJ, Collins AT. Prostate cancer stem cells: A new target for therapy. [J]Clin Oncol 2008;26:2862–2870.
    [63]Jordan CT, Guzman ML, Noble M. Cancer stem cells. [J] N Engl J Med 2006; 355: 1253– 1261.
    [64]Ailles LE, Weissman IL. Cancer stem cells in solid tumors. [J]Curr Opin Biotechno 2007; l18:460–466.
    [65]Graziano A, D’Aquino R, Tirino V, Desiderio V, Rossi A, Pirozzi G. The stem cell hypothesis in head and neck cancer. [J]Cell Biochem 2008;103:408–412.
    [66]Yang YM, Chang JW. Current status and issues in cancer stem cell study. [J]Cancer Invest 2008;26:741–755.
    [67]Zou GM. Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. [J] Cell Physiol 2008;217:598–604. Review.
    [68]Mizrak D, Brittan M, Alison MR. CD133: Molecule of the moment[J]. Pathol 2008; 214:3–9.
    [69]Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. [J]Stem Cells 2002;20:11–20.
    [70]Hadnagy A, Gabouryb L, Beaulieua R, Balickia D. SP analysis may be used to identify cancer stem cell populations. [J]Exp Cell Res 2006;312:3701–3710.
    [71]Picci P. Osteosarcoma (osteogenic sarcoma). [J]Orphanet J Rare Dis 2007;23:2–6.
    [72]Marina N, Gerbhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. [J]Oncologist 2004;9:422–441.
    [73]Reya T, Morrison SJ, Clarke MF, Weissman I L. Stem cells, cancer, and cancer stem cell[J]. Nature 2001, 414:105-111.
    [74]Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited the cancer stem cell hypothesis [J]. Clin Pharmacol 2005;45(8):872-877
    [75]季平.肿瘤干细胞研究进展及展望.重庆医学,2007;36( 4) 289-290.
    [76]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J] .Nat Mied ,1997;3 (7):730 - 737 .
    [77]Clark R B, Anderson E, Howell A, et al. Regulation of human breast epithelial cell [J]. Cell peolif, 2003;36(suppl 1):45-58.
    [78]Singh S K, Hawkins C, Clarke I D, et al. Identification of human brain tomour initiating cells [J]. Nature, 2004; 432(7015):396-401.
    [79]Kim CF, Jackson EL, Woolfenden AE, et al. Identification of brochioalveolar stem cells in normal lung cancer[J]. Cell, 2005; 121(6): 823 -835.
    [80]Fang D, Ngnyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas[J]. Cancer Res, 2005;65(20):9382-9337.
    [81]Ando S, Abe R, Sasaki M, et al. Bone marrow-derived cells are not the origin of the cancer stem cells in ultraviolet-induced skin cancer. Am J Pathol, 2009;174:595-601.
    [82]O’Brien CA, Poller A, Callinger S, et al. A human colon cancer cell capable of initiating tumout growth in immunodeficient mice[J]. Nature, 2007;445 (7123):106-110.
    [83]Ahaba AR. Therapeutic inhibition of hedgehog-GL/signaling in Cancer:epithelia, stromal, or stem cell targets? Cancer Cell, 2008;14: 281-283.
    [84]Li X, Lewis MT, Huang J, et al. Is tumor growth sustained by rare cancer stem cell or donmant Cloner? Cancer Res, 2008;68:4018-1021
    [85]Singh SK,Hawkins C, Clarke ID, et a1. Identification of human brain tumour initiating cells[J]. Nature,2004;432 (7015):396-401.
    [86]Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Nail Acad Sci USA,2007;104(24): 10158-10163.
    [87]Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell pmperties in hesd and neck squamous cell carcinoma[J]. Proc Nan Acad Sci USA,2007;104 (3):973-978.
    [88]Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells [J]. Cancer Res, 2007;67 (3):1030-1037.
    [89]Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins[J]. Annu Rev Biochem, 1981;50:349-383.
    [90]Shmelkov SV, St Clair R, Lyden D, et al . AC133 /CD133 /Prominin-1[J]. Int J Biochem Cell Biol, 2005;37 (4):715- 719
    [91]PeichevM, NaiyerAJ, Pereira D, et al . Expression of VEGFR-2and AC133 by circulatinghuman CD34 (+) cells identifies a population of functional endothelial precursors[J]. Blood, 2000;95 (3):952-958.
    [92]Singh SK, Clarke ID, Terasaki M, et al . Identification of a cancer stem cell in human brain tumors[J]. Cancer Res, 2003; 63 (18):5821- 5828.
    [93]Singh SK, Hawkins C, Clarke I D, et al . Identificati on of human brain tumour initiating cells [J]. Nature, 2004;432 ( 7015 ) : 396-401.
    [94]Hemmati HD, Nakano I , Lazareff JA, et al . Cancer ous stem cells can arise from pediatric brain tumors[J]. Proc Natl Acad SciUSA, 2003;100 (25):15178-15183.
    [95]Galli R, Binda E, OrfanelliU, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma[J]. Cancer Res, 2004;64 (19) : 70112 7021.
    [96]Suetsugu A, Nagaki M, Aoki H, et al.Characterization of CD133 +hepatocellular carcinoma cells as cancer stem/progenit or cells[J]. Biochem Biophys Res Commun 2006; 351(4): 820-824.
    [97]O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007; 445 (7123): 106-110.
    [98]Zhou L, Wei X, Cheng L, et al . CD133, one of the markers of cancer stem cells in HepG2 cell line [J]. Laryngoscope 2007;117(3):455-460.
    [99]Ma S, Chan KW, Hu L, et al . Identification and characterization of tumorigenic liver cancer stem /progenitor cells [J]. Gastroenterology 2007;132 (7): 2542-2556.
    [100]RicciVitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human coloncancer-initiating cells[J]. Nature 2007;445 (7123):111-115.
    [101]Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells [J]. Cancer Res 2005;65(23): 10946 -10951
    [102]Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype[J]. Nat Med 2001;7(9):1028-1034.
    [103]Zhou S , Morris JJ , Barnes Y, et al. Bcrp1 gene expression is required for nomal numbers of side population stem cell in mice ,and confers relative protection to mitoxan-trone in hematopoietic cells in vivo[J] . PNAS 2002;99 (19):12339-12344.
    [104]Loo TW, Clarke DM. Mutations to aminoacids located in predicted transmembranesegment6(TM6) modulate the activity and substrate specificity of human P-glycoprotein[J]. Bio chemistry 1994;33(47):4049-4057.
    [105]Wadkins RM, Hyatt JL, Yoon KJ,et al.Discovery of novel selective inhibitors of human intestinal carboxy lesterase for the amelioration of irinotecan-induceddiarrhea: synthesis, quantitative structure-activity relation ship analysis, and biological activity[J]. Mol Pharmacol 2004;65(6): 1336- 1343.
    [106]Doyle LA, Ross DD.Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2)[J]. Oncogene 2003;22(47):7340-7358.
    [107]Patrawala L , Calhoun T, Schneider -Broussard R , et al. Side population is enriched in tumor igenic , stem-like cancer cells ,whereas ABCG2+and ABCG2- cancer cells are similarly tumorigenic [J].Cancer Res 2005;65(14) : 6207 - 6220.
    [108]Hirshmann-Jax C, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity inhuman tumor cells [J] . PNAS 2004;101(39):14228 - 14233.
    [109]Bates SE, Robey R, Miyake K, et al. The role of half-transporters in multidrug resistance [J] . J Bioenerg Biomembr 2001;33(6):503-511.
    [110]Pierce GB, Speers WC. Tumors as caricatures of the process of tissue renewal : prospects for therapy by directing differentiation [J].Cancer Res 1988;48(8):1996- 2004.
    [111]Woehlecke H, Osada H, Herrmann A, et al. Reversal of breast cancer resistance protein -mediated drug resistance by tryprostatinA [J]. Int J Cancer 2003;107(5):72 1-728.
    [112]Bruin M ,Miyake K, Litman T, et al. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR[J].Cancer Letter 1999;146(2):117- 126.
    [113]Guzman ML, Swiderski CF, Howard DS,et al. Preferential induction of apoptosis for primary human leukemic stem cells [J].PNAS 2002;99(25): 16220-16225.
    [114]Stephenson WT, Poirier SM, Rubin L , et al. Evaluation of reproductive capacity in germ cell tumor patients following treatment with cisplatin, etoposide, and bleomycin [J].J Clin Oncology 1995;13(9):2278-2280.
    [115]Jonker JW,Freeman J, Bolscher E, et al. Contribution of the ABC transporters Bcrp1 and Mdr1a /1b to the side population phenotype in mammary gland and bone marrow of mice [J].Stem Cells 2005;23(8): 105-1065.
    [116]Houghton PJ, Germain GS, Harwood FC, et al. Imatinib mesylate is a potent inhibitor ofthe ABCG2(BRCP) transporter and reverses resisitance to topotecan and SN-38 in vitro [J]. Cancer Res 2004;64 (7):2333-2337.
    [117]Robert WR, Kenneth KK, Orsolya P, et al. ABCG2: A perspective [J]. Advanced Drug Delivery Reviews 2009;61 (1):3-13.
    [118]Michael D, Tito F, Susan B. Tumor stem cells and drug resistance[J].Nat Rev 2005;5 (4): 275-284.
    [119]Osborn M,Weber K. Intermediate filaments: cell-type-specific markers in differentiation and pathology [J].Cell 1982;31:303-306.
    [120]Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis[J].Oncogene 2004;23:298-302.
    [121]Koutselini H,Markopoulos C,Lambropoulou S, et al. Relationship of Epidermal growth factor receptor (EGFR), proliferating cell nuclear antigen (PCNA) and vimentin expression and various prognostic factors in breast cancer patients[J].Cytopathology 1995; 6:14-21.
    [122]Gilles C,Polette M,Piette J, et al. Vimentin expression in cervical carcinomas: association with invasive and migratory potential[J]. Pathol 1996;180:175-180.
    [123]Nieminen M, Henttinen T, Merinen M, et al. Vimentin function in lymphocyte adhesion and transcellular migration[J].Nat Cell Biol 2006;8:156-162.
    [124]Wang N, Stamenovic D. Mechanics of vimentin intermediate filaments[J]. Musele Res Cell Motil 2002;23:535-540.
    [125]Steinert PM, Steven AC, Roop DR. The molecular biology of Inter-mediate filaments [J].Cell 1985;42:411-420.
    [126]Benes P, Maceckova V, Zdraha1 Z, et al. Role of vimentin in regulation of monocyte/macrophage differentiation[J].Differentiation 2006;74:265-276.
    [127]Lang SH, Hyde C, Reid I N, et al . Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma[J]. Prostate 2002;52 (4):253-263 .
    [128]Singh S, Sadacharan S, Su S, et al . Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of p rostate cancer[J]. Cancer Res 2003; 63 (9):2306- 2311.
    [129]Ben-Ze’ev A. The cytoskeleton in cancer cells[J]. Biochim Biophy Acta 1985;780 (3):197-212.
    [130]吴静,古建鼐.成纤维细胞和纤维肉瘤细胞的中等纤维构型特点及其意义[J].暨南大学学报(医学版) 1995;16 (4):8-13.
    [131]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature 1981;292(5819): 154-156
    [132]Ezeh UI, Turek PJ, Reijo RA, et al. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma[J]. Cancer 2005;104(10): 2255-2265
    [133]Hart AH, Hartley L, Parker K, et al. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors[J]. Cancer, 2005, 104(10): 2092-2098
    [134]Sugawara K, Kurihara H, Negishi M, et al. Nestin as a marker for proliferative endothelium in gliomas [J] . Lab Invest ,2002 ,82 (3) :345-351.
    [135]Pekny M, Johansson CB, Eliasson C, et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin [J].J Cell Biol, 1999 ,145 (3) :503-514.
    [136]Kobayashi M, Sjoberg G, Soderhall S , et al.Pediatric rhabdomyosarcomas express the intermediate filament nestin [J]. Pediatr Res, 1998,43 (3) : 386-392.
    [137]Gupta S, Verfaillie C, Chmielewski D, et al. Isolation and Characterization of Kidney- Derived Stem Cells [J]. J Am Soc Nephrol, 2006, 23 (2) : 20.
    [138]Looijenga LH, Stoop H, De L eeuw HP, et al1POU 5F1 (OCT3/4) Identifies Cells with Pluripotent Potential in Human Germ Cell Tumors[J]. Cancer research, 2003, 63 (9) : 2244-2250.
    [139]Sales KM, Winslet MC, Scifalian AM. Stem Cells and Cancer: An Overview. [J]Stem Cell Rev 2007;3:249-255.
    [140]Boman BM. Cancer Stem Cells: A Step Toward the Cure.[J] Clin Oncol 2008; 26: 2795 -2799.
    [141]Dalerba P, et al. Cancer Stem Cells: Models and Concepts. [J] Annu. Rev. Med. 2007; 267-84.
    [142]Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bonemarrow of breast cancer patients have a putative breast cancer stem cell phenotype. [J] Clin Can Res 2006;12:5615-21.
    [143]Christiansen JJ, Rajasekaran AK. Reassessing Epithelial to Mesenchymal Transition as a Prereqisite for Carcinoma Invasion and Metastasis. [J] Caner Res 2006;66(17):8319-26.
    [144]Turley EA, et al. Mechanisms of Disease: epithelial mesenchymal transition-does cellular plasticity fuel neoplastic progression? [J] NAT CLIN PRACT ONCOL 2008;5:280-290.
    [145]Yang MH, et al. Direct regulation of TWIST by HIF-1αpromotes metastasis. Nature Cell Biology 2008;10:295-305.
    [146]Weis J, Kaplan RN, Rafii S and Lyden D. Migratory neighbour and distant invaders: tumor-associated niche cells. [J] Genes & Dev.2008;22:559-574.
    [147]Guarino M. Epithelial mesenchymal transition and tumour invasion. [J] Int J Biochem & Cell Bio 2007;39:2153-2160.
    [148]Kaplan RN. Bone marrow cells in the“pre-metastatic niche”: within bone and beyond. [J] Cancer Metastasis Rev 2006;25:521-529.
    [149]Rodda D J, Chew J L, Lim L H, et al. Transcriptional regulation of Nanog by OCT4 and SOX2.[J] J Biol Chem, 2005, 280(26): 24731-24737
    [150]Pochampally RR, Smith JR, Ylostalo J, and Prockop DJ . Serumdeprivation of human marrow stromal cells (hMSCs) selects for a sub-population of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. [J] Blood 2004; 103:1647 -1652.
    [151]Reya T, Morrison SJ, Clarke MF, and Weissman IL. Stem cells,cancer, and cancer stem cells. [J] Nature 2001;414:105-111.
    [152]Jaffe N, Carrasco H, Raymond K, Ayala A, and Eftekhari F. Cancure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery [J] Cancer 2001;95:2202-2210.
    [153]Hatano S Y, Tada M, Kimura H, et al. Pluripotential competence of cells associated with Nanog activity. [J] Mech Dev 2005;122(1): 67-79.
    [154]Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells. [J] Cloning Stem Cells 2004;6:386–391.
    [155]Raff M. Adult stem cell plasticity: fact or artifact? [J]Annu Rev Cell Dev Biol2003;19:1–22.
    [156]Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. [J] Proc Natl Acad Sci USA 1985;82:5390–53944.
    [157]Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. [J]Proc Natl Acad Sci USA 1987;84:2302–2306.
    [158]Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. [J]Proc Natl Acad Sci USA 2005;102: 14677–14682.
    [159]Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. [J] Lab Invest 1994;70:6-22.
    [160]Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, et al. Heterogeneity of tumor cells from a single mouse mammary tumor. [J] Cancer Res 1978;38: 3174–3181.
    [161]Heppner GH. Tumor heterogeneity. [J] Cancer Res 1984;44: 2259–2265.
    [162]Weiss L. Cancer cell heterogeneity. [J]Cancer Metastasis Rev 2000;19: 345–350.
    [163]Pierce GB. Neoplasms, differentiations and mutations. [J]Am J Pathol 1974; 77: 103–118.
    [164]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer and cancer stem cells. [J] Nature 2001; 414: 105-111.
    [165]Matthew L, Matthew H, Stuart F, et al. Retention of Intrinsic Stem Cell Hierarchies in Carcinoma-Derived Cell Lines. [J] Cancer Res 2005;65: (19):8944- 8950
    [166]Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. [J] Cancer Res 2005;65: 6207–6219.
    [167]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. [J] Oncogene 2006;25: 1696–1708.
    [168]Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. Hierarchical organi- zation of prostate cancer cells in xenograft tumors: the CD44+ a2h1+ cell population is enriched in tumor-initiating cells. [J] Cancer Res 2007;67:6796–6805.
    [169]Tang DG, Patrawala L, Calhoun T, et al. Prostate cancer stem/progenitor cells: identification, characterization, and implications. [J] Mol Carcinog 2007;46:1–14.
    [170]Bhatia B, Tang S, Yang P, et al. Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. [J]Oncogene 2005;24:3583–3595.
    [171]Bhatia B, Multani AS, Patrawala L, et al. Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT. [J] Int J Cancer 2008;122:1483–1495.
    [172]Hangwen L, Xin C, Tammy CD,et al. PC3 Human Prostate Carcinoma Cell Holoclones Contain Self-renewing Tumor-Initiating Cells.[J] Cancer Res 2008; 68(6): 1820-1825
    [173]Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes.[J] Proc Natl Acad Sci USA 1985;82:5390–5394.
    [174]Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. [J] Cell 1993;73:713–724.
    [175]石晓兵,陈安民.不同转移特性人成骨肉瘤MG-63细胞亚系的建立及特征[J].中国矫形外科杂志, 2004, 12 (21):1675-1677.
    [176]PARKER,GIBBS C, K UKEKOV VG, REITH JD, et al . Stem like cells in bone sarcomas: implications for tumorigenesis.[J] Neoplasia, 2005, 11 (7): 967 -976.
    [177]张岩姜侃冯尔宥夏仁云高低不同分化特性人成骨肉瘤MG-63克隆细胞株的建立[J]中国矫形外科杂志,2005;13(13):1007-1009
    [178]Johnston JJ, Kelley RI, et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1[J]. Am J Hum Genet, 2000;67(4): 814-821
    [179]Ghosh M, Song X, et al.Cofilin promotes actin polymerization and Defines the direction of cell motility[J].Science,2004;304(5671):743-746
    [180]Yamaguchi H, Lorenz M, et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin[J]. J Cell Biol 2005;168(3): 441-452 [181石晓兵,陈安民.不同转移特性人成骨肉瘤MG-63细胞亚系的建立及特征[J].中国矫形外科杂志, 2004;12 (21):1675-1677.
    [182]Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A 1985;82: 5390–4.
    [183]Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 1993;73: 713–24.
    [184]Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion[J]. Biochim Biophys Acta, 2007;1773 (5): 642-652
    [185]Yap CT, Simpson TI, et al. The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner[J]. Cell Motil Cytoskel- eton, 2005;60 (3): 153-165
    [186]Horita Y, Ohashi K, et al. Suppression of the invasive capacity of rat ascites hepatoma cells by knockdown of Slingshot or LIM kinase[J]. J Biol Chem, 2008;283 (10): 6013-6021
    [187]Heredia L, Helguera P, et al. Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease[J]. J Neurosci, 2006;26 (24): 6533-6542
    [188]Nishimura Y, Yoshioka K, et al. LIM kinase 1: evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells[J]. Eur J Cell Biol, 2004;83(7): 369-380
    [189]Bagheri-Yarmand R, Mazumdar A, et al. LIM kinase1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system[J]. Int J Cancer, 2006;118(11): 2703-2710
    [190]李振华LIMK1表达对人成骨肉瘤细胞生物学活性影响的体外研究吉林大学20080401
    [191]梅红雌激素在hMSCs成骨和成脂肪诱导分化中的作用及机制研究吉林大学20080401
    [192]Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJA.. The origin of the cancer stem cell: Current controversies and new insights[J]. Nat Rev Cancer 2005;5:899–904.
    [193]Reger RL, Tucker AH, Wolfe MR..Differentiation and characterization of human MSCs[J]. Methods Mol Biol 2008;449:93–107.
    [194]Park BW, Hah YS, KimDR, KimJR, Byun JH. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells[J]. Arch Oral Biol 2007;52:983–989.
    [195]Nadri S, Soleimani M, Kiani J, Atashi A, Izadpanah R. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells[J]. Differentiation 2008;76:223–231.
    [196]Challen GA, Little MH..Aside order of stemcells: The Sp phenotype[J]. StemCells 2006; 24:3–12.
    [197]Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells[J]. Stem Cells 2002;20:11–20.
    [198]Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications[J]. Clin Pharmacokinet 2004;43:553–576.
    [199]Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD, Vaalburg W, vander Graaf WT. The distribution of drug-ef?ux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood–testis barrier and in primary testicular tumours[J]. Eur J Cancer 2004;40:2064–2070.
    [200]Choi CH. ABC transporters asmultidrug resistancemechanisms and the development of chemosensitizers for their reversal[J]. Cancer Cell Int. 2005;5:30.
    [201]Abbott BL. ABCG2 (BCRP) expression in normal and malignant hematopoietic cells[J]. Hematol Oncol 2003;21:115–130.
    [202]Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2) [J]. Oncogene 2003;22:7340–7358.
    [203]Kawabata S, Oka M, Soda H, Shiozawa K, Nakatomi K, Tsurutani J, Nakamura Y, Doi S, Kitazaki T, Sugahara K, Yamada Y, Kamihira S, Kohno S. Expression and functional analyses of breast cancer resistance protein in lung cancer[J]. Clin Cancer Res 2003; 9:3052–3057.
    [204]Hoei-Hansen CE, Sehested A, Juhler M, Lau YF, Skakkebaek NE, Laursen H, Rajpert-deMeyts E. New evidence for the origin of intracranial germ cell tumours from primordial germ cells: Expression of pluripotency and cell differentiation markers[J]. J Pathol 2006;209:25–33.
    [205]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J,Weissman IL, Wah GM. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells[J]. Cancer Res 2006;66:9339–9344.
    [206]Shmelkov SV, St.Clair R, Lyden D, Rafii S. Molecules in focus: AC133/CD133/ Prominin-1[J]. Int J Biochem Cell Biol 2005;37:715–719.
    [207]Neuzil J, Stantic M, Zobalova R, Chladova J,Wang X, Prochazka L,Dong L, Andera L,Ralph SJ. Tumour-initiating cells vs. cancer‘stem’cells and CD133: What’s in the name? [J]Biochem Biophys Res Commun 2007; 355:855–859.
    [208]Ye F, Zhou C, Cheng Q, Shen J, Chen H. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed inmalignant cervical epithelial cells[J]. BMC Cancer 2008;8:108–113.
    [209]Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features[J]. Development 2006; 133:1193–1201.
    [210]Tang N, SongWX, Luo J, Haydon RC, He TC. Osteosarcoma development and stem cell differentiation[J]. Clin Orthop Relat Res 2008;466:2114–2130.
    [211]PARKER,GIBBS CK, UKEKOV VG, REITH JD, et al .Stem like cells in bone sarcomas : implications for tumorigenesis [J].Neoplasia, 2005;11 (7):972-976.
    [212]Al-Hajj M, Wi cha MS, Benito-Hernandez A, Morrison SJ, and Clarke MF. Prospective identification of tumorigenic breast cancer cells. [J] Proc Natl Acad Sci USA 2003;100, 3983– 3988.
    [213]Reynolds BA and Weiss S. Generation of neurons and Astrocytes from isolated cells of the adult mammalian central nervous system. [J] Science 1992;255, 1707–1710.
    [214]Jaffe N, Carrasco H, Raymond K, Ayala A, and Eftekhari F. Cancure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery [J]Cancer 2002;95, 2202– 2210.