1. [地质云]滑坡
3-D骨应力监测传感系统的构建及在牵张成骨中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     针对传统骨外固定装置无法实时、准确判断骨愈合过程的不足,发明一套新型外固定监测传感系统。该系统能够在提供牢固固定的同时,准确监测骨愈合过程中骨断端间应力及其变化,据此构建骨愈合过程中应力变化参数模型,以此来间接判断骨痂愈合程度和骨对位情况,进而指导牵张成骨过程,补充或者替代传统影像学方法,从而减少患者的放射性暴露,促进骨折快速愈合。进一步通过一系列动物实验来验证发明的3-D骨应力监测传感系统的可靠性与有效性,为后续应用于临床提供充足的实验依据。
     方法
     1.基于现有半环滑槽式外固定架的基础,结合本课题动物实验的需要,运用Solidworks软件重新设计外固定架,以发明一种既牢固稳定,又能保证每根支撑杆受力一致的扣合式外固定装置并进行其力学性能测试。
     2.设计微型拉压力传感器、数据采集盒、数据分析软件,进而组装成数据采集系统并验证其测力的准确性。将其与自行研制的扣合式外固定装置有机结合而形成3-D骨外固定监测传感系统并进行整体性能测试。
     3.构建牵张成骨的动物模型,实时测定牵张过程中应力变化,并进行动物血清中骨转换生化标志物的动态测定,在牵张成骨的不同时期拍摄X片以观察骨愈合情况,并且分别在牵张2周、10周后截取动物骨组织进行骨生物力学性能测试和组织形态学检测。
     结果
     1.发明的扣合式外固定装置既保持半环外固定架安装简便的优点,又极大增强了抗侧向拉压和扭转力强度,同时保证了三根支撑杆受力一致。
     2.微型拉压力传感器在满足500N量程的前提下,整体测量精度达到了1‰,体积控制在2.5×1×1.5cm(长×宽×高)。
     3.试验证明传感器安放于靠近两侧固定圆环处时整个外固定装置的抗扭刚度最佳。
     4.传感器连续监测10天的稳定性较好,且当沿轴向中心受压时,三个传感器测试数值完全一致(CV<2%)。
     5.牵张成骨动物实验过程中血清Ca、P值随牵张的进行呈现出先升后降的趋势。骨碱性磷酸酶(B-ALP)与碱性磷酸酶(ALP)的变化趋势保持高度一致,且一直维持于后者在50%~60%。
     6.牵张成骨过程中,随着每次牵张的进行,骨应力呈现由高到低的变化趋势。并且随着牵张的进行,每天同一时间点所测应力值呈线性增加。
     结论
     1.设计发明的新型扣合式全环外固定装置克服了传统半环外固定架抗侧压和扭转强度差的缺点,同时又保留了后者安装便捷的优点,为临床上骨外固定提供了全新思路。
     2.设计发明的数据采集系统能够准确实现压力信号的实时、精确采集。通过将外加压力行二次换能而转换为数字信号,计算机分析软件读取该信号并实时显示、分析3个通道数据,从而实现了不同传感器通道数据得以自动处理。
     3.本课题创造性地将压力传感器沿三维方向安装于外固定装置的支撑杆上,实现了3个传感器将施于固定架的轴向压力均分的目标,从而成功研制出3-D骨应力监测传感系统,为进一步构建智能调控的骨外固定系统奠定了基础。
     4.动物实验证明:骨断端应力水平是间接反映牵张再生过程中骨痂生长情况的一个灵敏指标,监测其实时变化可以很好预测骨痂生长情况,从而补充或替代传统放射学检查方法,减少X光检查中的放射性暴露。
     5.牵张成骨过程中,其骨应力呈现周期性变化趋势:牵张后瞬间升高,随后呈指数函数规律缓慢降至略高于正常水平,并以此往复。
     6.牵张前后骨应力变化值(△F)受牵张速度、牵张时间的双重因素影响,其三者保持二元线性关系:ΔF =?99 .86+14.83×V+3.74×T
Objective
     To overcome the shortcomings of being incapable of accurately monitoring bone-healing state in real-time by traditional external fixators, this research aims to invent a novel sensing apparatus that can effectively measure tensile force during bone healing process. Then the system parameters will be optimized and adopted to construct the animal model during the procedure of distraction osteogenesis and bone healing. The success of this research will provide a brand new experimental platform for further research on mechanism of accelerating bone healing. Moreover; this research will lay a solid foundation for further clinical application.
     Methods
     1. Based on animal experiment data, Solidworks software was used to design and improve the widely used half-ring trough external fixators. Adjust the three dimension structure of the external fixator to make each of the nods endure equal force when axially loading. And STM were used to test the mechanical characteristics.
     2. Design minimized strain gauge drawing force and compression force transducer, data acquisition system, and data analysis software, then verify the accuracy of its measuring data. Finally, assemble the transducer with novel full-ring shackle external fixator and test the total system characteristics.
     3. Establish animal model of distraction osteogenesis and bone healing procedure. Monitor the change of tensile force during distraction osteogenesis procedure, and dynamically measure the bone turnover biomarkers. Take X-ray to observe the bone callus state during different phases. Finally perform bone histology and immunohistology test.
     Results
     1. Invented full-ring shackle external fixator not only kept the advantage of easily fixing, but also enhanced the ability against stress from lateral side and torque force. More over, it guaranteed the three nods endure the same stress during axially loading.
     2. Minimized force transducer has 500N range and 1‰total accuracy, the size has been minimized to 2.5×2×1.5cm(L×W×H).
     3. Tests have proven that the torque characteristic is the best when the transducer is fixed closest to the second or third ring.
     4. Continuously Monitoring on the transducers for ten days has proven that the three transducers have good stability, and can get the same testing results(CV<2%)when axially loading.
     5. Ca、P value in serum went up at the beginning, then dropped down as the distraction osteogenesis kept on. Moreover, the B-ALP concentration accounted for half of the ALP value, and they kept the same fluctuation trend with time.
     6. During distraction osteogenesis, the bone tensile force increased with each distraction and then decreased to a level just a little higher than initial one. The tensile force kept linear growing up when the distraction went on.
     Conclusions
     1. The full-ring shackle external fixator is more stable than traditional half-ring trough one especially when against lateral force and torque force. Moreover, the former guarantees the three nods endure the same stress when axially loading. It can provide a new way of thinking for clinical external fixators choosing.
     2. The new method that assembles force transducer with the external fixator can provide real-time, accurate and noninvasive monitoring of bone healing state. Analysis software of the connected computers can read the digital signals transformed from loaded stress and then display and analyze data from transducers at real time, which realizes automatic settlement on data from different transducers.
     3. The research creatively installs the transducers on the rods of the external fixator in three-dimension direction, which realizes the purpose of equalizing axial stress applied on the fixator by means of the three transducers. In this way, 3-D bone tensile force monitoring system is successfully invented and lays a solid foundation for constructing intelligence-controlled external fixation system.
     4. Animal experiments have proven that the bone tensile force is a sensitive index which indirectly reflects the bone callus during distraction osteogenesis. The monitoring on the real-time change of the bone tensile force can make an accurate prediction of the bone callus state, which can supplement and replace the traditional check approach of radiology, and reduce patients’exposure to X-ray.
     5. During distraction osteogenesis, the bone tensile force increases with each distraction and then decreases to a level just a little higher than initial one. The tensile force keeps linear growing up when the distraction goes on. Therefore, the tensile force can be a good parameter for helping monitor bone healing state.
     6. The change of tensile force before and after distraction(△F) is a variable depend on the frequency and time of distraction. And the fittest multiple linear regression formula is:ΔF =?99 .86+14.83×V+3.74×T
引文
[1] Chao S, Edmund Y, Aro H, et al. The Effect of Rigidity on Fracture Healing in External Fixation. SECTION I[J]. Clin Orthop Relat Res, 1989, 241:24-35
    [2] Ilizarov GA. The Tension-Stress Effect on the Genesis and Growth of Tissues: Part I. The Influence of Stability of Fixation and Soft-Tissue Preservation. SECTION III[J]. Clin Orthop Relat Res, 1989, 238:249-281
    [3] Meyer U, Kruse-Losler B, Wiesmann HP. Principles of bone formation driven by biophysical forces in craniofacial surgery[J]. Br J Oral Maxillofac Surg, 2006, 44(4):289-295
    [4] Rogers LC, Bevilacqua NJ, Frykberg RG, et al. Predictors of postoperative complications of Ilizarov external ring fixators in the foot and ankle[J]. J Foot Ankle Surg, 2007, 46(5):372-375
    [5] Watanabe K, Tsuchiya H, Sakurakichi K, et al. Treatment of lower limb deformities and limb-length discrepancies with the external fixator in Ollier's disease[J]. J Orthop Sci, 2007, 12(5):471-475
    [6] Rickman M, Saleh M, Yang L. Tensioning technique and fixator stability of a circular external fixator with threaded fine wires[J]. J Biomech, 2006, 39(3):544-550
    [7] O'Dwyer EM, Askar W, Blackburn TK, et al. An alternative use for rigid external distractors[J]. Br J Oral Maxillofac Surg, 2006, 44(6):550-551
    [8] Yamamoto N, Ohno K, Hayashi K, et al. Effects of stress shielding on the mechanical properties of rabbit patellar tendon[J]. J Biomech Eng, 1993, 115(1):23-28
    [9] Richards M, Goulet JA, Weiss JA, et al. Bone regeneration and fracture healing. Experience with distraction osteogenesis model[J]. Clin Orthop Relat Res, 1998, 355:191?104
    [10] Roth DA, Gosain AK, McCarthy JG, et al. A CT Scan Technique for Quantitative Volumetric Assessment of the Mandible after Distraction Osteogenesis[J]. Plast Reconstr Surg, 1997, 99(5):1237
    [11] Harp JH, Aronson J, Hollis M. Noninvasive Determination of Bone Stiffness for Distraction Osteogenesis by Quantitative Computed Tomography Scans[J]. Clin Orthop, 1994, 301:42
    [12] Rojvachiranonda N, Tepmongkol S, Mahatumarat C. Quantitative Study of New Bone Formation in Distraction Osteogenesis of Craniofacial Bones by Bone Scintigraphy[J]. J Craniofac Surg, 2007, 18(5):1236-1241
    [13] Li QW, Song HR, Mahajan RH, et al. Deformity Correction with External Fixator in Pseudoachondroplasia[J]. Clin Orthop Relat Res, 2006
    [14] Boccaccio A, Pappalettere C, Kelly DJ. The Influence of Expansion Rates on Mandibular Distraction Osteogenesis: A Computational Analysis[J]. Ann Biomed Eng, 2007, 35(11):1940-1960
    [15] Ohnishi I, Kurokawa T, Sato W, et al. Measurement of the tensile forces during bone lengthening[J]. Clin Biomech, 2005, 20(4):421-427
    [16] Gardner TN, Evans M, Simpson H, et al. Force-displacement behaviour of biological tissue during distraction osteogenesis[J]. Med Eng Phys, 1998, 20(9):708-715
    [17] Sakurakichi K, Tsuchiya H, Watanabe K, et al. Distraction osteogenesis of a fresh fracture site using an external fixator[J]. Journal of Orthopaedic Science, 2006, 11(4):390-393
    [18] Drijber F, Finlay JB. Joint slippage in the Hoffmann external fixator: No effect of loading rate in bench experiments[J]. Acta Orthop, 1991, 62(6):535-537
    [19] Schleier P, Wolf C, Siebert H, et al. Treatment options in distraction osteogenesis therapy using a new bidirectional distractor system[J]. Int J Oral Maxillofac Implants, 2007, 22(3):408-416
    [20] Antoci V, Roberts CS, Antoci Jr V, et al. The effect of transfixion wire number and spacing between two levels of fixation on the stiffness of proximal tibial external fixation[J]. J Orthop Trauma, 2005, 19(3):180-
    [21] Antoci V, Voor MJ, Antoci Jr V, et al. Biomechanics of Olive Wire Positioning and Tensioning Characteristics[J]. J Pediatr Orthop, 2005, 25(6):798-
    [22] Bastian L, Lange U, Knop C, et al. Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study[J]. Eur Spine J, 2001, 10(4):295-300
    [23] Jochymek J, Gal P. Evaluation of bone healing in femurs lengthened via the gradual distraction method[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2007, 151(1):137-141
    [24] Fleming BC, Huston DR, Krag MH, et al. Pin force measurement in a halo-vest orthosis, in vivo[J]. J Biomech, 1998, 31(7):647-651
    [25] Younger AS, Morrison J, MacKenzie WG. Biomechanics of external fixation and limb lengthening[J]. Foot Ankle Clin, 2004, 9(3):433-448, vii
    [26] Schr?der HA, Weeth RE, Madsen T. Experimental analysis of hoffmann external fixation in various mountings[J]. Arch Orthop Trauma Surg, 1985, 104(4):197-200
    [27] Hadziahmetovic Z. A mini circular external fixator--Kosevo type[J]. Med Arh, 1992, 46(1-2):25-27
    [28] Sarpel Y, Gulsen M, Togrul E, et al. Comparison of Mechanical Performance Among Different Frame Configurations of the Ilizarov External Fixator: Experimental Study[J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2005, 58(3):546-552
    [29] Yilmaz E, Belhan O, Karakurt L, et al. Mechanical performance of hybrid Ilizarov external fixator in comparison with Ilizarov circular external fixator[J]. 0268-0033 (Print) Journal article; 2758407427model in the lambpdf, 2003, 18(6):518-522
    [30] Hente R, Fuchtmeier B, Schlegel U, et al. The influence of cyclic compression and distraction on the healing of experimental tibial fractures[J]. J Orthop Res, 2004, 22(4):709-715
    [31] Roberts CS, Antoci V, Antoci JV, et al. The effect of transfixion wire crossing angle on the stiffness of fine wire external fixation: A biomechanical study[J]. Injury, 2005, 36(9):1107-1112
    [32] Bronson DG, Samchukov ML, Birch JG, et al. Stability of external circular fixation: a multi-variable biomechanical analysis[J]. 0268-0033 (Print) Journal article; 2758407427model in the lambpdf, 1998, 13(6):441-448
    [33] Huang YS, Li A, Ai SH, et al. Application of sulcated half-ring external fixator for treating bone and joint injuries of burned lower extremities: a report of four cases[J]. Burns, 1991, 17(6):502-505
    [34]马树枝,李起鸿.一期延长矫正下肢26cm巨大短缩畸形和骨不连的远期效果[J].第三军医大学学报, 2002, 24(008):964-966
    [35]谢小平,孙广运.半环槽外固定器在胫骨骨折愈合不良治疗中的作用[J].中华创伤杂志, 2005, 21(005):387-388
    [36] Ohnishi I, Nakamura K, Okazaki H, et al. Evaluation of the fracture site mechanical properties in vivo by monitoring the motion of a dynamic pin clamp during simulated walking[J]. Clin Biomech, 2002, 17(9-10):687-697
    [37] Peptan AI, Lopez A, Kopher RA, et al. Responses of intramembranous bone and sutures upon in vivo cyclic tensile and compressive loading[J]. Bone, 2008, 42(2):432-438
    [1] Ilizarov GA. The Tension-Stress Effect on the Genesis and Growth of Tissues: Part I. The Influence of Stability of Fixation and Soft-Tissue Preservation. SECTION III[J]. Clin Orthop Relat Res, 1989, 238:249-281
    [2] Ilizarov GA, Devyatov AA, Kamerin VK. Plastic reconstruction of longitudinal bone defects by means of compression and subsequent distraction[J]. Acta Chir Plast, 1980, 22(1):32-41
    [3] Aronson J. Experimental and clinical experience with distraction osteogenesis[J]. Cleft Palate Craniofac J, 1994, 31(6):473-481
    [4] Watson JT. Distraction osteogenesis[J]. J Am Acad Orthop Surg, 2006, 14(10):S168-174
    [5] Aronson J, Harrison BH, Stewart CL, et al. The histology of distraction osteogenesis using different external fixators[J]. Clin Orthop, 1989, 241:106-116
    [6] al Ruhaimi KA. Comparison of different distraction rates in the mandible: an experimental investigation[J]. Int J Oral Maxillofac Surg, 2001, 30(3):220-227
    [7] Ohnishi I, Kurokawa T, Sato W, et al. Measurement of the tensile forces during bone lengthening[J]. Clin Biomech, 2005, 20(4):421-427
    [8] Roberts CS, Antoci V, Antoci JV, et al. The effect of transfixion wire crossing angle on the stiffness of fine wire external fixation: A biomechanical study[J]. Injury, 2005, 36(9):1107-1112
    [9] Aarnes GT, Steen H, Kristiansen LP, et al. Tissue response during monofocal and bifocal leg lengthening in patients[J]. J Orthop Res, 2002, 20(1):137-141
    [10] Aarnes GT, Steen H, Ludvigsen P, et al. High frequency distraction improves tissue adaptation during leg lengthening in humans[J]. J Orthop Res, 2002, 20(4):789-792
    [11] Cai G, Saleh M, Coulton L, et al. Distraction-resisting force during tibial diaphyseal lengthening and consolidation--a study on a rabbit model[J]. Clin Biomech (Bristol, Avon), 2004, 19(7):733-737
    [12] Cope JB, Yamashita J, Healy S, et al. Force level and strain patterns during bilateral mandibular osteodistraction[J]. J Oral Maxillofac Surg, 2000, 58(2):171-178
    [13] Jochymek J, Gal P. Evaluation of bone healing in femurs lengthened via the gradual distraction method[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2007, 151(1):137-141
    [14] Jones CB, Dewar ME, Aichroth PM, et al. Epiphyseal distraction monitored by strain gauges. Results in seven children[J]. J Bone Joint Surg Br, 1989, 71-B(4):651-656
    [15] Hente R, Fuchtmeier B, Schlegel U, et al. The influence of cyclic compression and distraction on the healing of experimental tibial fractures[J]. J Orthop Res, 2004, 22(4):709-715
    [16] Meyer U, Kruse-Losler B, Wiesmann HP. Principles of bone formation driven by biophysical forces in craniofacial surgery[J]. Br J Oral Maxillofac Surg, 2006, 44(4):289-295
    [17] Raif EM, Seedhom BB. Effect of cyclic tensile strain on proliferation of synovial cells seeded onto synthetic ligament scaffolds—an in vitro simulation[J]. Bone, 2005, 36(3):433-443
    [18] Mandu-Hrit M, Haque T, Lauzier D, et al. Early injection of OP-1 during distraction osteogenesis accelerates new bone formation in rabbits[J]. Growth Factors, 2006, 24(3):172-183
    [19] Rojvachiranonda N, Tepmongkol S, Mahatumarat C. Quantitative Study of New Bone Formation in Distraction Osteogenesis of Craniofacial Bones by Bone Scintigraphy[J]. J Craniofac Surg, 2007, 18(5):1236-1241
    [20] Ozkan K, Eralp L, Kocaoglu M, et al. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis[J]. Growth Factors, 2007, 25(2):101-107
    [21] Aleksyniene R, Eckardt H, Bundgaard K, et al. Effects of parathyroid hormone on newly regenerated bone during distraction osteogenesis in a rabbit tibial lengthening model. A pilot study[J]. Medicina (Kaunas), 2006, 42(1):38-48
    [22] Cheng S, Suominen H, Vaananen K, et al. Serum osteocalcin in relation to calcaneal bone mineral density in elderly men and women: a 5-year follow-up[J]. J Bone Miner Metab, 2002, 20(1):49-56
    [23] Taniguchi T, Matsumoto T, Shindo H. Changes of serum levels of osteocalcin, alkaline phosphatase, IGF-I and IGF-binding protein-3 during fracture healing[J].Injury, 2003, 34(7):477-479
    [24] Weaver CM, Peacock M, Martin BR, et al. Quantification of Biochemical Markers of Bone Turnover by Kinetic Measures of Bone Formation and Resorption in Young Healthy Females[J]. J Bone Miner Res, 1997, 12(10):1714-1720
    [25] Schleithoff SS, Zittermann A, Stuttgen B, et al. Low serum levels of intact osteocalcin in patients with congestive heart failure[J]. J Bone Miner Metab, 2003, 21(4):247-252
    [26] Welch RD, Birch JG, Makarov MR, et al. Histomorphometry of distraction osteogenesis in a caprine tibial lengthening model[J]. J Bone Miner Res, 1998, 13(1):10-12
    [27] Winwood K, Zioupos P, Currey JD, et al. Strain patterns during tensile, compressive, and shear fatigue of human cortical bone and implications for bone biomechanics[J]. J Biomed Mater Res A, 2006
    [28] Younger AS, Mackenzie WG, Morrison JB. Femoral forces during limb lengthening in children[J]. Clin Orthop Relat Res, 1994(301):55-63
    [29] Forriol F, Goenaga I, Mora G, et al. Measurement of bone lengthening forces; an experimental model in the lamb[J]. Clin Biomech (Bristol, Avon), 1997, 12(1):17-21
    [30] Spriggins AJ, Bader DL, Cunningham JL, et al. Distraction physiolysis in the rabbit[J]. Acta Orthop Scand, 1989, 60(2):154-158
    [31] White SH, Kenwright J. The timing of distraction of an osteotomy[J]. J Bone Joint Surg (Br), 1990, 72-B(3):356-361
    [32] Nakamura K, Matsushita T, Okazaki H, et al. Attempted Limb Lengthening by Physeal Distraction: Continuous Monitoring of an Applied Force in Immature Rabbits.[J]. Clin Orthop Relat Res, 1991, 267:306-311
    [33] Stewart KJ, Lvoff GO, White SA, et al. Mandibular distraction osteogenesis: a comparison of distraction rates in the rabbit model[J]. Journal of Cranio-Maxillofacial Surgery, 1998, 26(1):43-49
    [34] Aarnes GT, Steen H, Kristiansen LP, et al. Optimum loading mode for axial stiffness testing in limb lengthening[J]. J Orthop Res, 2006, 24(3):348-354
    [35] Lee C, Ma J, Deal DN, et al. Neuromuscular recovery after distraction osteogenesis at different frequencies in a rabbit model[J]. J Pediatr Orthop, 2006, 26(5):628-633
    1 Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis[J]. Ortop Travmatol Profitez, 1971, 32:7-15.
    2 Ilizarov GA. The principles of the Ilizarov method[J]. Bull Hosp Jt Dis Orthop Inst, 1988, 48:1-11.
    3王正国.再生医学研究进展[J].中华创伤骨科杂志, 2006, 8:1-3.
    4黄俊武,王向阳,石成第,等. Ilizarov外固定架治疗创伤性马蹄足[J].中华创伤骨科杂志, 2006, 8:411-414.
    5郑诚功.骨科生物力学的发展现况[J].中华创伤骨科杂志, 2006, 8:101-104.
    6 Hollis JM, Aronson J, Hofmann OE. Differential loads in tissues during limb lengthening[C]. 38th Annual Meeting, Orthopaedic Research Society, 1992, Washington, DC
    7 Younger AS, Mackenzie WG, Morrison JB. Femoral forces during limb lengthening in children[J]. Clin Orthop Relat Res, 1994:55-63.
    8 Aronson J, Harp JH. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis[J]. Clin Orthop Relat Res, 1994:73-79.
    9 Cai G, Saleh M, Coulton L, et al. Distraction-resisting force during tibial diaphyseal lengthening and consolidation--a study on a rabbit model[J]. Clin Biomech (Bristol, Avon), 2004, 19:733-737.
    10 Leong JC, Ma RY, Clark JA, et al. Viscoelastic behavior of tissue in leg lengthening by distraction[J]. Clin Orthop Relat Res, 1979:102-109.
    11 Verkerke GJ, Koops HS, Veth RP, et al. Design of a load cell for the Wagner distractor[C]. Proceedings of the Institution of Mechanical Engineers, 1989, 203: 91-96
    12 Wolfson N, Hearn TC, Thomason JJ, et al. Force and stiffness changes during Ilizarov leg lengthening[J]. Clin Orthop Relat Res, 1990, 250:58-60.
    13 Simpson A, Kenwright J. Tension measurements during leg lengthening[J]. Int J Orthop Trauma, 1993, 3:21-24.
    14 Gardner TN, Evans M, Simpson AH, et al. A method of examining the magnitude and origin of "soft" and "hard" tissue forces resisting limb lengthening[J]. Med Eng Phys, 1997, 19:405-411.
    15 Ohnishi I, Nakamura K, Okazaki H, et al. Evaluation of the fracture site mechanical properties in vivo by monitoring the motion of a dynamic pin clamp during simulated walking[J]. Clin biomech (Bristol, Avon), 2002, 17:687-697.
    16李起鸿,曾宪政.半环槽式外固定架的研制与临床应用[J].中华骨科杂志, 1984, 4:332-336.
    17夏和桃,张晓林.组合式外固定器的研制与临床应用[J].中华创伤杂志, 1992, 8:263-265.
    18 Aarnes GT, Steen H, Kristiansen LP, et al. Tissue response during monofocal and bifocal leg lengthening in patients[J]. J Orthop Res, 2002, 20:137-141.
    19 Forriol F, Goenaga I, Mora G, et al. Measurement of bone lengthening forces; an experimental model in the lamb[J]. Clin Biomech (Bristol, Avon), 1997, 12:17-21.
    20 Ohnishi I, Kurokawa T, Sato W, et al. Measurement of the tensile forces during bone lengthening[J]. Clin Biomech (Bristol, Avon), 2005, 20:421-427.
    21 Singare S, Li D, Liu Y, et al. The effect of latency on bone lengthening force and bone mineralization: an investigation using strain gauge mounted on internal distractor device[J]. BioMed Eng Online, 2006, 5.
    22王序全,李起鸿.实验性胫骨延长时关节接触压力分析[J].中国矫形外科杂志, 2000, 7:354-356.
    23 Younger AS, Morrison J, MacKenzie WG. Biomechanics of external fixation and limb lengthening[J]. Foot Ankle Clin, 2004, 9:433-448, vii.
    24 Ilizarov GA. The Tension-stress effect on the genesis and growth of tissues: Part I. The influence of stability of fixation and soft-tissue preservation. SECTION III[J]. Clin Orthop Relat Res, 1989, 238:249-281.
    25 Podolsky A, Chao EY. Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators[J]. Clin Orthop Relat Res, 1993:61-70.
    26 Yilmaz E, Belhan O, Karakurt L, et al. Mechanical performance of hybrid Ilizarov external fixator in comparison with Ilizarov circular external fixator[J]. Clin biomech (Bristol, Avon), 2003, 18:518-522.
    27 Sarpel Y, Gulsen M, Togrul E, et al. Comparison of Mechanical Performance Among Different Frame Configurations of the Ilizarov External Fixator: Experimental Study[J]. J Trauma, 2005, 58:546-552.
    28黄雷,张建立,王慎东,等.三种不同器械固定胫骨骨折的生物力学评价及临床意义[J].中华创伤骨科杂志, 2006, 8:668-670.
    29 Caja V, Kim W, Larsson S, et al. Comparison of the mechanical performance of three types of external fixators: linear, circular and hybrid[J]. Clin biomech (Bristol, Avon), 1995, 10:401-406.
    30 Bronson DG, Samchukov ML, Birch JG, et al. Stability of external circular fixation: a multi-variable biomechanical analysis[J]. Clin Biomech (Bristol, Avon), 1998, 13:441-448.
    31 Roberts CS, Antoci V, Antoci JV, et al. The effect of transfixion wire crossing angle on the stiffness of fine wire external fixation: A biomechanical study[J]. Injury, 2005, 36:1107-1112.
    32 Spriggins AJ, Bader DL, Cunningham JL, et al. Distraction physiolysis in the rabbit[J]. Acta Orthop Scand, 1989, 60:154-158.
    33 White SH, Kenwright J. The timing of distraction of an osteotomy[J]. J Bone Joint Surg (Br), 1990, 72-B:356-361.
    34 Nakamura K, Matsushita T, Okazaki H, et al. Attempted Limb Lengthening by Physeal Distraction: Continuous Monitoring of an Applied Force in Immature Rabbits.[J]. Clin Orthop Relat Res, 1991, 267:306-311.
    35 Ohnishi I, Nakamura K, Okazaki H, et al. Evaluation of the fracture site mechanical properties in vivo by monitoring the motion of a dynamic pin clamp during simulated walking[J]. Clin Biomech (Bristol, Avon), 2002, 17:687-697.
    36 Aarnes GT, Steen H, Kristiansen LP, et al. Optimum loading mode for axial stiffness testing in limb lengthening[J]. J Orthop Res, 2006, 24:348-354.
    37 Aarnes GT, Steen H, Ludvigsen P, et al. In vivo assessment of regenerate axial stiffness in distraction osteogenesis[J]. J Orthop Res, 2005, 23:494-498.
    38 Lauterburg MT, Exner GU, Jacob HA. Forces involved in lower limb lengthening: an in vivo biomechanical study[J]. J Orthop Res, 2006, 24:1815-1822.
    39吴玲,龙洁,樊瑜波,等.山羊下颌骨牵张成骨的生物力学研究[J].口腔医学研究, 2005, 21:385-388
    [1]霍维玲,房明亮.“Y”钢板固定治疗肱骨髁间骨折[J].实用临床医药杂志, 2005, 9: 34-35.
    [2] Ilizarov GA. The principles of the Ilizarov method[J]. Bull Hosp Jt Dis Orthop Inst, 1988, 48: 1-11.
    [3] Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis[J]. Ortop Travmatol Profitez, 1971, 32: 7-15.
    [4]秦泗河. Ilizarov生平、生物学理论与技术简要回顾[J].中国矫形外科杂志, 2004, 12: 318-320.
    [5] De Bastiani G, Aldegheri R, Renzi Brivio L. The treatment of fractures with a dynamic axial fixator[J]. J Bone Joint Surg Br, 1984, 66: 538-545.
    [6]李起鸿,周仲安,马树枝.肢体延长长度的临床观察与实验研究[J].解放军医学杂志, 1987, 12: 404-407.
    [7]马树枝,李起鸿.一期延长矫正下肢26cm巨大短缩畸形和骨不连的远期效果[J].第三军医大学学报, 2002, 24: 964-966.
    [8] Ilizarov G. The Tension-Stress Effect on the Genesis and Growth of Tissues: Part II. The Influence of the Rate and Frequency of Distraction. SECTION III[J]. Clin Orthop Relat Res, 1989, 239: 263-285.
    [9]张锡庆,王科文. Ilizarov肢体延长36例报告[J].中华小儿外科杂志, 2000, 21: 83-85.
    [10]郝敬东,张锡庆,王晓东,等.肢体延长的大鼠模型[J].中华小儿外科杂志, 2003, 24: 45-48.
    [11] Paley D, Catagni M, Argnani F, et al. Treatment of congenital pseudoarthrosis of the tibia using the Ilizarov technique[J]. Clin Orthop, 1992, 280: 81-93.
    [12]潘少川. Ilizarov技术在肢体延长临床应用的进展[J].中华小儿外科杂志, 2000, 21: 73-73.
    [13]张锡庆,王科文,王晓东. Ilizarov技术结合髓内克氏针治疗先天性胫骨假关节[J].中国矫形外科杂志, 2002, 10.
    [14]李起鸿,周仲安.骨外固定技术治疗先天性胫骨假关节[J].中华骨科杂志, 1996, 16: 623-626.
    [15]陈一心,宋知非.萎缩性骨不连的研究进展[J].江苏医药, 2006, 32: 946-947.
    [16]艾合麦提·玉素甫,陈统一,王晓峰,等.应用Ilizarov技术治疗长管状骨缺损性骨不连[J].中华骨科杂志, 2006, 26: 247-251.
    [17]许建中,李起鸿.骨外固定技术治疗复杂骨不连与骨缺损[J].中华外科杂志, 2002, 40: 280-282.
    [18]袁天祥,马宝通,赵宝成,等.不同骨延长器治疗肢体畸形并大段骨缺损[J].中国矫形外科杂志, 2006, 14: 405-408.
    [19]秦泗河,陈建文,郑学建,等. Ilizarov张力-应力法则结合三关节有限截骨矫正成年人重度马蹄内翻足[J].中华骨科杂志, 2004, 24: 338-341.
    [20]夏和桃,彭爱民,韩义连,等.矮身材和侏儒症的双下肢内外结合延长术(附638例报告)[J].中国矫形外科杂志, 2005, 13: 1285-1288.
    [21]秦泗河,李承鑫,吴鸿飞,等.先天性胫骨缺如伴重度膝关节屈曲畸形的牵伸治疗1例(附文献综述)[J].中国矫形外科杂志, 2005, 13: 1629-1633.
    [22] Rickman M, Kreibich DN, Saleh M. Fine wire frame arthrodesis for the salvage of severe ankle pathology[J]. Injury, 2001, 32: 241-247.
    [23] Katsenis D, Bhave A, Paley D, et al. Treatment of Malunion and Nonunion at the Site of an Ankle Fusion with the Ilizarov Apparatus[J]. Journal of bone and joint surgery, American volume, 2005, 87: 302-309.
    [24]骆东山,熊进,陈一心,等.持续灌注冲洗法在四肢骨感染中的应用[J].实用临床医药杂志, 2006, 10: 9-10.
    [25] Patil S, Montgomery R. Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications[J]. J Bone Joint Surg Br, 2006, 88: 928.
    [26] Ilizarov GA. Clinical Application of the Tension-Stress Effect for Limb Lengthening. SECTION I[J]. Clin Orthop Relat Res, 1990, 250: 8-26.
    [27]李起鸿,曾宪政.半环槽式外固定架的研制与临床应用[J].中华骨科杂志, 1984, 4: 332-336.
    [28]夏和桃,张晓林.骨科多功能全自动旋具的研制与临床应用[J].中华创伤杂志, 1994, 10: 47-48.
    [29] Baumgart R, Betz A, Schweiberer L. A fully implantable motorized intramedullary nail for limb lengthening and bone transport[J]. Clin Orthop Relat Res, 1997, 343: 135–143.