1. [地质云]滑坡
基于磁耦合谐振式无线电能传输技术的分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线电能传输技术是当前输电领域中的尖端技术,代表了最前沿的技术理论和最新颖的创意思路,与有线输电方式相比,具有更强的灵活性和更高的安全性。本文研究的磁耦合谐振式无线电能传输技术与其它无线传输技术相比,属于更为新兴的技术,它填补了中距离较大功率无线能量传输技术的空白,拥有广阔的开发与应用前景。
     本文首先介绍了几种常见的无线电能传输技术,对它们的传输方式、适用范围、发展历史和发展方向进行了综述。
     然后,阐述了磁耦合谐振式无线电能传输技术涉及的电磁学近场理论和耦合模式理论,分析了谐振体的自谐振与耦合谐振的能量转换过程,对无线传输系统进行了数学建模,分析得到了影响传输效率的主要因素,并给出了该因素变化时对系统传输状态影响的示意图。
     针对简单振荡电路效率低、谐波含量高、对无线电能传输干扰大等缺点,给出了无线电能传输系统功率变换器的设计方案。系统拓扑主要包括Boost功率因数校正电路、DC/DC变换器以及高频DC/AC逆变器三个部分。其中,Boost功率因数校正电路采用平均电流控制策略,有效抑制了谐波畸变;DC/DC变换器采用移相全桥零电压软开关控制技术,大大降低了开关损耗和电磁干扰;DC/AC逆变器可以通过调节外部给定改变开关管的占空比和工作频率,根据研究需求进行灵活地调整。详细阐述了功率变换器的软硬件设计思路,对主电路参数、采样检测电路以及驱动电路进行了设计,采用TI的DSP芯片TMS320F28335和Altera的CPLD芯片EPM3064A构成数字控制系统,并根据具体的控制策略对其进行了软件编程。
     最后,建立了无线传输线圈的等效电路,对无线传输线圈的工作状态进行分析并得到了适合的工作频率范围,实现了基于磁耦合谐振式的无线电能传输,在此基础上通过一系列实验研究了传输距离、传输方向、传输电压、传输频率和线圈大小对无线传输特性的影响,为进一步应用于实际奠定了基础。
Wireless power transfer is a kind of advanced technology in the area of power transmission, which represents the most leading edge of theories and the latest ideas. Compared to power transfer with wires, it has the advantage of flexibility and safety. The wireless power transfer via strongly coupled magnetic resonances comes more recently in comparison with other wireless power transfer technologies. It fills the blank of wireless power transfer with higher power in middle range and has great potential and vast development prospects.
     The paper introduces several wireless power transfer technologies including their transmission mode, transmission range, history of development and directions in future.
     The coupled mode theory and near field theory which are involved in technology are stated. The process of power transformation of resonators'self-resonance and coupled resonance is analyzed in a mathematical form. The mathematical model for wireless power transfer system is developed. The major factor which affects the transmission efficiency mostly is achieved and the diagram which illustrates the influence of the factor to transmission status is given.
     To improve the efficiency and reduce the harmonic of simple oscillating circuit, the power conversion circuit in the wireless power transfer system is introduced. It includes Boost PFC circuit, DC/DC converter and high frequency DC/AC inverter. Boost PFC circuit uses average current control strategy to suppress the harmonic. DC/DC converter uses phase-shifted ZVS full bridge control strategy to decrease the switching loss. DC/AC inverter can change the duty cycle and frequency through regulator to meet requirements of research. The'design of hardware and software for power conversion circuit is elaborated. The power circuit, sensors and driver circuit are designed. DSP and CPLD are used to constitute the digital control system. Software is programmed according to specific control strategy.
     The equivalent diagram for the coil of wireless power transfer is proposed. The operation condition of coil is analyzed and the adaptive range of working frequency is achieved. After the design of transmission coils, wireless power transfer via strongly coupled magnetic resonances is accomplished. Several experiments are carried out to discuss the effects that the distance, direction, voltage, frequency and size of coil influence the characteristic of wireless power transfer. The research lays the foundation for further applications.
引文
[1]褚红博.多用户无接触电能传输系统的分析计算[D].河北工业大学,2011.
    [2]Mandal T K. Wireless transmission of electricity development and possibility[C]. Proceedings of Sixth international symposium Nikola Tesla. Belgrade, Serbia.2006: 197-200.
    [3]荆晓博,陈启军.基于RFID技术的多负载无线供电系统研制[J].现代科学仪器,2007,4:43-45.
    [4]McSpadden J O, Mankins J C. Space solar power programs and microwave wireless power transmission technology [J]. Microwave Magazine, IEEE,2002,3(4): 46-57.
    [5]Schlesak J J, Alden A, Ohno T. A microwave powered high altitude platform[C]. Microwave Symposium Digest,1988., IEEE MTT-S International. IEEE,1988: 283-286.
    [6]Shinohara N, Kawasaki S. Recent Wireless Power Transmission technologies in Japan for space solar power station/satellite[C]. Radio and Wireless Symposium,2009. RWS'09. IEEE. IEEE,2009:13-15.
    [7]杨民生,王耀南.新型无接触感应合电能传输技术研究综述[J].湖南文理学院学报:自然科学版,2010,22(001):44-53.
    [8]李璐.无线充电技术2013年或迈入技术成熟期[J].通信世界(34):23-23.
    [9]赵兴福,魏健.电动汽车无线充电技术的现状与展望[J].上海汽车,2012(6):3-6.
    [10]王任,曲卫迎.无线充电技术及其在电动汽车上的应用初探[J].科技创新导报,2010(029):59-59.
    [11]陈其成.植入式装置的体内外双向通信方式[J].电子世界,2012(24):104-105.
    [12]郑晓晨,汪木兰.心脏起搏器用无线充电系统设计[J].机电产品开发与创新,2009(5):37-39.
    [13]周颖.海尔:用无尾改变厨电世界[J].进出口经理人,2012(11):30-31.
    [14]任立涛.磁耦合谐振式无线能量传输功率特性研究[D].哈尔滨:哈尔滨工业大学,2009.
    [15]Gozalvez J. WiTricity-The Wireless Power Transfer [Mobile Radio] [J]. Vehicular Technology Magazine, IEEE,2007,2(2):38-44.
    [16]Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. science,2007,317(5834):83-86.
    [17]Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics,2008,323(1):34-48.
    [18]管克江.“无尾”电器让充电走向无线时代[J].发明与创新,2010(003):20-20.
    [19]张小壮.磁耦合谐振式无线能量传输距离特性及其实验装置研究[D].哈尔滨工业大学,2009.
    [20]翟渊,孙跃,戴欣,等.磁共振模式无线电能传输系统建模与分析[J].中国电机工程学报,2012,32(12):155-160.
    [21]张超.磁耦合谐振无线电能传输系统共振器的仿真和实验研究[D].天津:河北工业大学,2011.
    [22]傅文珍,张波,丘东元,等.自谐振线圈耦合式电能无线传输的最大效率分析与设计[J].中国电机工程学报,2009(18):21-26.
    [23]程丽敏,崔玉龙.磁耦合谐振式无线电能传输技术研究进展[J].电工电气,2012(12).
    [24]张献,杨庆新,陈海燕,等.电磁耦合谐振式传能系统的频率分裂特性研究[J].中国电机工程学报,2012,32(9).
    [25]邬春明.电磁场与电磁波[M].北京大学出版社,2012.
    [26]施云琼.防电磁辐射的整体屏蔽设计[J].电气应用,2008,27(11):64-66.
    [27]沙湘月,伍瑞新.电磁场理论与微波技术[M].南京大学出版社,2004.
    [28]Louisell W H. Coupled mode and parametric electronics[M]. New York:Wiley, 1960.
    [29]Haus H, Huang W, Kawakami S, et al. Coupled-mode theory of optical waveguides[J]. Journal of Lightwave Technology,1987,5(1):16-23.
    [30]张超.磁谐振耦合无线电能传输系统谐振器的仿真和实验研究[D].河北工业大学,2011.
    [31]李长明.EMI滤波对开关电源功率因数的影响[J].通信电源技术,1997(3):1-4.
    [32]宁改娣,杨拴科.DSP控制器原理及应用[M].科学出版社,2002.
    [33]宋万杰,罗丰,等CPLD技术及其应用[M].西安电子科技大学出版社,1999.
    [34]蒋志宏,黄立培,孙晓东,等.基于DSP的DC/DC Boost PFC模块的并联交错控制研究[J].电工电能新技术,2004,3:006.
    [35]贲洪奇,张继红,刘桂花.开关电源中的有源功率因数校正技术[J].2010.
    [36]应葑蔚.基于DSP控制的PFC电路研究[D].浙江大学,2004.
    [37]赵修科.实用电源技术手册磁性元件分册[J].2002.
    [38]王丽莎.基于MATLAB的黑启动方案的仿真校验[D].华北电力大学(河北),2010.
    [39]阮新波,严仰光.脉宽调制DC/DC全桥变换器的软开关技术[M].科学出版社,1999.
    [40]杜军,周摊维,陆治国.带饱和电感的移相全桥PWM变换器软开关分析[J]. Journal of Chongqing University,2004,1(27):1.
    [41]Pressman A I, Billings K H, Morey T. Switching power supply design[M]. McGraw-Hill,2009.
    [42]曲立楠.磁耦合谐振式无线能量传输机理的研究[D].哈尔滨:哈尔滨工业大学,2010.