1. [地质云]滑坡
身管径向锻造工艺及锻后身管性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以某自动步枪身管的径向锻造成形过程为研究对象,针对身管成形过程中涉及的材料性能、工艺过程及成形性能等内容,通过理论分析、数值模拟及试验研究相结合的方法,对身管径向锻造成形工艺过程及成形后的身管材料性能和使用性能进行研究。
     根据身管冷热径向锻造成形特点,将身管的变形区域分为下沉段、锻造段和整形段三个部分,在考虑应变、应变率及温度对身管毛坯材料流动应力的影响及多角度入口角锤头对成形的影响的基础上,应用主应力法推导出身管冷热径向锻造成形过程中应力分布及锻压力的解析解公式;通过身管冷热径向锻造成形实例中锤头锻压力的解析解计算值与实际测定值的对比,验证了应用主应力法推导出的解析解公式的准确性。
     应用数值模拟技术建立了某口径自动步枪身管冷径向锻造成形过程的轴对称模型,通过锤头锻压力的数值预测值与实测值的对比,验证了轴对称模型的准确性;根据此轴对称模型,应用正交试验设计法安排模拟过程,通过对模拟结果的方差分析得到了锤头入口角度、断面缩减率、锤头整形段长度、工件轴向进给速度、工件尾端夹持压强5个工艺参数及锤头角度与断面缩减率之间、锤头角度与整形段长度之间、断面缩减率与整形段长度之间3个参数间的交互作用对锤头锻压力、身管与芯棒间压力及身管变形的非均匀性3个成形过程评价指标参数的相对影响程度;并由方差分析结果预测了最小的锤头锻压力、身管与芯棒间压力值及相应的工艺参数组合。
     基于对受内压产生弹塑性变形的身管进行受力分析,设计了测定径向锻造成形前后身管材料横向力学性能的试验,得到了径向锻造成形前后身管材料的横向力学性能;并根据国家标准GB228-2002《金属材料室温拉伸试验方法》测定了径向锻造成形前后身管材料的纵向力学性能;通过分别对比锻前身管材料横向与纵向力学性能、锻前身管材料横向与锻后身管材料横向力学性能、锻前身管材料纵向与锻后身管材料纵向力学性能,验证了测定身管材料横向力学性能的试验的准确性,得到了冷径向锻造工艺使锻后身管材料强度性能增加、塑性性能降低的影响规律。
     在身管径向锻造成形过程的轴对称模型的基础上,建立了预测锻后身管内残余应力分布的轴对称模型,得到了锻后身管内沿径向上的径向、轴向和周向残余应力的分布状态;分析了身管的轴向进给速度、摩擦系数、断面缩减率及锤头的形状等成形过程中的全套工艺参数对残余应力分布的影响;应用拟合回归模型法建立了锻后身管内外表面及身管内部残余应力分布拐点处各向残余应力值与其主要工艺参数的拟合回归方程,由拟合回归方程预测了各残余应力的最大值和最小值及相应的工艺参数取值;并通过与相应工艺参数下有限元模拟值的对比,验证了拟合回归方程预测残余应力值的有效性。
     将盲孔法测定平板表面残余应力的理论应用到径向锻造身管表面残余应力的试验测量中,应用数值方法标定盲孔法的应变释放系数A、B值,通过对比在相同条件下径向锻造身管表面与平板表面的应变释放系数值,得到了当身管外径与钻孔直径的比值D/a≥16时,可应用盲孔法测定径向锻造身管表面残余应力的结论;在此适用范围内,应用盲孔法试验测定了某锻后身管表面的残余应力,并通过直接修正释放系数的方法修正了由钻孔偏心所引起的误差;由试验结果验证了预测残余应力分布的数值模型的准确性。
     分别建立了计算身管在火药气体压力作用下动态应力及身管内表面轴向和周向裂纹应力强度因子的数值模型,得到了身管按动态应力计算时各向应力的分布状态及身管内表面半椭圆形轴向裂纹的应力强度因子与裂纹形状的关系;在数值模型的基础上,结合对径向锻造成形身管内各向残余应力极值分布状态的预测结果,定量的计算了当身管内由第三强度理论计算的残余应力在极值分布状态时身管的动态应力、身管内周向残余应力在极值分布状态时轴向裂纹应力强度因子的大小及轴向残余应力在极值分布状态时周向裂纹应力强度因子的大小;从而得到了锻后身管内部残余应力分布拐点处及外表面上残余应力的存在不利于身管的动态应力、身管内残余压应力不利于裂纹扩展及残余拉应力有利于裂纹扩展的定性影响规律。
The radial forging process of an automatic rifle barrel is the research object of this dissertation.In allusion to the material properties, manufacturing process and formability involved in the forming process of barrel, the radial forging process of barrel, the material properties and the service performance of forged barrel are studied by theoretical analysis, numerical simulation and experimental research.
     Based on the characters of cold and hot radial forging process of barrel, the deformation region of barrel is divided into the sinking zone, the forging zone and the sizing zone. On the basis of considering the effects of strain, strain rate and temperature on flow stress of barrel blank and the effect of multi-inlet angle die on the forming, the analytical formulae of stress distribution and forging load in the cold and hot radial forging process of barrel are derived by using the slab method; then the accuracy of the analytical formulae is verified by comparing the die forging load calculated by the analytical formulae with the die forging load measured by the test.
     The axisymmetric model for cold radial forging process of an automatic rifle barrel is established by numerical simulation technology, the accuracy of the axisymmetric model is verified by comparing the die forging load predicted by the model with the die forging load measured by the test; based on the axisymmetric model, the simulations are arranged by the orthogonal experiment method, the relative effects of5process parameters, which are die inlet angle, reduction rate, die land length, axial feed velocity of barrel, champing pressure on the end of barrel, and3interactions between process parameters, which are the interaction between die inlet angle and reduction rate, interaction between die inlet angle and die land length, interaction between reduction rate and die land length, on the3forming indicators, which are die forging load, the load between barrel and mandrel, the deformation in-homogeneity of barrel, are obtained by performing analysis of variance on simulation results; the minimum die forging load, minimum load between barrel and mandrel and the corresponding process parameters values are predicted by the variance analysis results.
     Based on stress analysis on the barrel which deformed plastically under internal pressure, the test used to determine the tangential mechanical properties of barrel blank material and forged barrel material is designed, the tangential mechanical properties of barrel blank material and forged barrel material are obtained; then the axial mechanical properties of barrel blank material and forged barrel material are measured according to the national standard GB228-2002:The accuracy of the test used to determine the tangential mechanical properties is verified by comparing the tangential and axial mechanical properties of barrel blank material:by comparing the mechanical properties of barrel blank material and forged barrel material, the influence laws that increasing in strength, decreasing in plastic for forged barrel material by cold radial forging process are obtained, and the anisotropic of forged barrel material is verified.
     The axisymmetric model for predicting residual stresses distributions in forged barrel is established on the basis of the axisymmetric model for simulating the radial forging process of barrel, the distributions of the radial, axial and circumferential residual stresses along radial direction in forged barrel are obtained; the effects of the axial feed velocity of barrel, friction factors, reduction rate and die shape on residual stresses distributions are analyzed; the regression equations between residual stresses on inner, outer surface of forged barrel, in the middle of forged barrel and the main process parameters are built by the regression model method, then the maximum and minimum residual stresses and the corresponding process parameters values are derived through the regression equations; the validity of the regression equations are proved by comparing the predicted residual stresses with the FE simulated values.
     The theory of the blind-hole method used to measure surface residual stresses in plate is applied to measure surface residual stresses in forged barrel. The numerical method is used to calibrate the relaxation coefficients A, B values of the blind-hole, by comparing the relaxation coefficients of the blind-hole in the forged barrel and in the plate under the same material, the same force and the same drilling condition, the conclusion that when the ratio of barrel diameter to hold diameter D/a≥16, the blind-hole method can be used to measure the surface residual stresses in forged barrel is obtained; in this applicable range, the surface residual stresses on a forged barrel are determined by using the blind-hole method, and the off-center error is minimized by a method of modifying the relaxation coefficients directly; the accuracy of the numerical model predicted residual stresses distribution is confirmed by the test results.
     The numerical models used to calculate the dynamic strength of barrel and the axial and circumferential crack stress intensity factor on the inner surface of barrel under the explosive gas pressure are established respectively, the stresses distributions in the barrel calculated in dynamic strength and the relationship between the semi-elliptical crack stress intensity factor and the crack shape on the inner surface of barrel are received; based on the numerical models and combined with the prediction results of residual stresses in forged barrel, when the residual stresses values in forged barrel are extreme, the dynamic strength of barrel, axial crack stress intensity factor and circumferential crack stress intensity factor in the barrel are calculated respectively; so the qualitative influence laws of residual stresses in forged barrel on dynamic strength of barrel and crack stress intensity factor are obtained.
引文
[1]张磊.浅谈火炮与自动武器的发展现状与趋势[J].国防技术基础,2008(10):35-37
    [2]勃拉贡拉沃夫.枪管制造[M].北京:国防工业出版社,1956
    [3]李桂元,孙永德.枪管旋转精锻[J].现代兵器,1981(12):33-36
    [4]李桂元,孙永德.径向锻造厚壁炮管[J].现代兵器,1981(11):39-44
    [5]张洪奎,陈新建,王文革,高雯.径向锻造技术的应用[J].宝钢技术,2005(5):15-17
    [6]樊黎霞,刘力力,刘庆东,董雪花.身管线膛精锻加工过程的数值分析[J].兵工学报,2009(8):1098-1102
    [7]范宏才.现在锻压机械[M].北京:机械工业出版社,1994
    [8]Hojas H. GFM Precision Forging Machines[R]. Steyr, Austria:GFM Corp,1976
    [9]杨德仁.径向锻机[J].大型铸锻件文集,1989(5):157-189
    [10]陆索译.现代锻造设备、材料和工艺[M].北京:国防工业出版社,1982
    [11]王步升.精锻机[J].大型铸锻件文集,1989(5):112-117
    [12]Hoffmanner A L, Iyer K R. Rotary Swaging of Precision Barrels[R]. Rock Island Arsenal IL, Sep.1974,ADA008987
    [13]Barth C F, Dibenedetto J D. Improved Materials and Manufacturing Method for Gun Barrels[R]. Rock Island Arsenal IL, Jun.1975, ADA019520
    [14]Mataya M C. Simulating Microstructural Evolution during the Hot Working of Alloy 718[J]. Hot Working Superalloys,1999(1):18-26
    [15]Bapari A, Najafizadeh A, Moazeny M, Shafyei A. Simulation of Radial Forging Conditions by Third Hits Hot Compression Tests[J]. Materials Science and Engineering A,2008(491):258-265
    [16]Perlovich Y, Isaenkova M, Fesenko V, Krymskaya O, Zavodchikov A. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging[C]. The 14th International ESAFORM Conference on Material Forming, Belfast, Apr.2011:404-409
    [17]Nematzadeh F, Akbarpour M R, Kokabi A H, Sadrnezhaad S K. Structural Changes of Radial Forging Die Surface during Service under Thermo-Mechanical Fatigue[J]. Materials Science and Engineering A,2009(527):98-102
    [18]Lahoti G D, Altan T. Analysis and Optimization of the Radial Forging Process for Manufacturing Gun Barrels[R]. Rock Island Arsenal IL, Dec.1974, ADA005029
    [19]Lahoti G D, Altan T. Analysis of the Radial Forging Process for Manufacturing Rods and Tubes[J]. Journal of Engineering for Industry,1976,98(1):265-271
    [20]Lahoti G D, Liuzzi L, Altan T. Design of Dies for Radial Forging of Rods and Tubes[J]. Journal of Mechanical Working Technology,1977(1):99-109
    [21]Afrasiab H, Movahhedy M R. Generalized Slab Method Analysis of Radial Forging with a General Curved Shaped Die[C].8th Biennial ASME Conference on Engineering Systems Design and Analysis, Torino, Italy, Jul.2006:1-7
    [22]Ghaei A, Movahhedy M R, Taheri A K. Study of the Effects of Die Geometry on Deformation in the Radial Forging Process[J]. Journal of Materials Processing Technology,2005(170):156-163
    [23]Ghaei A, Taheri A K, Movahhedy M R. A new Upper Bound Solution for Analysis of the Radial Forging Process[J]. International Journal of Mechanical Sciences,2006(48): 1264-1272
    [24]Sanjari M, Taheri A K, Ghaei A. Prediction of Neutral Plane and Effects of the Process Parameters in Radial Forging using an Upper Bound Solution[J]. Journal of Material Processing Technology,2007(186):147-153
    [25]章子璞.猎枪枪管精锻工艺的试验研究[J].四川机械,1979(4):27-42
    [26]杨德仁.立式与卧式精锻机[J].大型铸锻件文集,1989(5):140-156
    [27]孙永德.径向锻造大直径钢预制坯的低频感应加热[J].国外兵器技术,1985(227):1-16
    [28]王慧芳,俞淑廷.退役精锻机芯棒的剖析及表面涂覆[J].表面技术,1998,27(6):29-33
    [29]康永林,董德元.径向精锻变形的研究[J].鞍山钢铁学院学报,1986(1):45-50
    [30]康永林,董德元.图相分析法在径向精锻工艺中的应用[J].北京科技大学学报,1989,11(1):38-43
    [31]聂振邦.GFM锻机的工艺应用[J].锻压机械,1982(6):30-32
    [32]崔柏伟.高速机车锥形空心轴的锤上径向锻造成型[J].机械工程师,2006(7):136-138
    [33]宋美娟,沈伟.用于难变形材料的新型液压径向锻造机[J].科技译丛(重庆),1994(1):73-77
    [34]彭磊,李树奎,才鸿年,周晓青.变形量对旋转锻造钨合金组织及绝热剪切敏感性影响[J].稀有金属,2011,35(2):218-222
    [35]王世钧,关长友,姜喜群,陈少辉.高比重钨合金径向锻造工艺分析[J].哈尔滨工业大学学报,2000,32(5):57-59
    [36]杨文义.高速钢精锻试验研究[J].河北冶金,1993(5):41-44
    [37]胡宗式.精锻(径向锻造)过程的局部温升现象[C].2000年材料科学与工程进展(下)—2000年中国材料研讨会论文集,北京:中国材料研究学会,2000:1404-1407
    [38]谢仁沛,冯永琦,李渭清,张永强,乔恩利,马龙.径向锻造TC4合金厚壁管材的工艺研究[J].稀有金属快报,2007(3):40-42
    [39]孔永华,李龙,朱世根,陈国胜.缩孔对径向锻造GH4169合金不同部位蠕变性能的影响[J].机械工程材料,2010,34(12):19-21
    [40]苏长清,王维华,杨时永.滑移线矩阵算子法分析高速钢径向热精锻变形过程[J].重庆大学学报,1987(4):32-41
    [41]王振苑,胡宗式.径向锻造终锻过程的流函数法解析[J].东北大学学报,1994,15(1):35-39
    [42]李艳萍,张治民,武月英.车轴径向锻造过程分析[J].锻压装备与制造技术,2007(1):31-33
    [43]Hussain M A, Pu S L, Vasilakis J D. Preliminary Analysis of a Mandrel for 105mm Gun Tube Forgings[R]. Watervliet NY, Jun.1979, ADA072814
    [44]Tszeng T C, Kobayashi S. Determination of Residual Stresses in Radial Forging[J]. Manufacturing Processes Simulation,1986(20):31-45
    [45]Domblesky J P, Shivpuri R, Altan T. A Review of Radial Forging Technology including Perform Design for Process Optimization[R]. Watervliet NY, Feb.1994, ADA278770
    [46]Domblesky J P. Numerical and Experimental Modeling of Multiple Pass Radial Forging of Alloy 718[D]. Columbus:The Ohio State University,1994
    [47]Domblesky J P, Shivpuri R, Painter B. Application of the Finite-Element Method to the Radial Forging of Large Diameter Tubes[J]. Journal of Materials Processing Technology, 1995(49):57-74
    [48]Domblesky J P, Shivpuri R. Development and Validation of a Finite-Element Model for Multiple-Pass Radial Forging[J]. Journal of Materials Processing Technology,1995(55): 432-441
    [49]Abedian A, Poursina M, Golestanian H. A Comparison between the Properties of Solid Cylinders and Tube Products in Multi-Pass Hot Radial Forging using Finite Element Method[C]. Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes, Porto, Portugal, Jun.2007:963-968
    [50]Khayatzadeh S, Poursina M, Golestanian H. A Simulation of Hollow and Solid Products in Multi-Pass Hot Radial Forging using 3D-FEM Method[J]. International Journal of Material Forming,2008,1(1):371-374
    [51]Harrer O, Wallner S, Wieser V, Sommitsch C. Radial forging of a Nickel base Alloy at Different Temperatures[J]. Steel Grips,2006,4(5):356-360
    [52]Chen J, Chandrashekhara K, Richards V L, Lekakh S N. Three-Dimensional Nonlinear Finite Element Analysis of Hot Radial Forging Process for Large Diameter Tubes [J]. Materials and Manufacturing Processes,2010(25):669-678
    [53]Ghaei A, Movahhedy M R, Taheri A K. Finite Element Modeling Simulation of Radial Forging of Tubes without Mandrel[J]. Materials and Design,2008(29):867-872
    [54]Sanjari M, Saidi P, Taheri A K, Zadeh M H. Determination of Strain Field and Heterogeneity in Radial Forging of Tube using Finite Element Method and Microhardness Test[J]. Materials and Design,2012(38):147-153
    [55]Sanjari M, Movahedi M R, Karimi A. An Optimization Method for Radial Forging Process using ANN and Taguchi Method[J]. The International Journal of Advanced Manufacturing Technology,2009,40(7):776-784
    [56]Ghaei A, Movahhedy M R. Die Design for the Radial Dorging Process using 3D FEM[J]. Journal of Materials Processing Technology,2007(182):534-539
    [57]Wallner S, Harrer O, Buchmayr B, Hofer F. Manufacturing of Precision Forgings by Radial Forging[C]. International Conference on Advances in Materials and Processing Technologies, Paris, Oct.2010:315-320
    [58]Lee K H, Yang D Y. Rigid-Plastic Finite Element Analysis of Incremental Radial Forging Process using the Automatic Expansion of Domain Scheme[J]. Engineering Computations,2004,21(5):470-487
    [59]秦敏,李继光,房娃,刘建生.空心车轴径向锻造工艺的模拟研究[J].太原科技大学学报,2008,29(5):373-376
    [60]王连东,高全德,梁晨,刘助柏,张健,刘唯唯.径向精密锻造机V字锥形锤砧锻造分析及数值模拟[J].机械工程学报,2011,47(20):146-151
    [61]董节功,周旭东,高全德,王国宣,白振拴.实心锤头径向锻造压应力分析[J].河南科技大学学报:自然科学版,2007,28(3):4-7
    [62]曹洋,康凤,黄少东,李祖荣,刘川林,胡传凯.钛合金管径向精锻数值模拟分析[J].锻压技术,2006(3):71-73
    [63]周旭东,戴晓珑,王国宣,高全德.基于刚塑性有限元的GFM精锻锻透性仿真[J].河南科技大学学报:自然科学版,2006,27(2):1-3
    [64]周旭东,刘香茹.台阶轴径向锻造锤头数对锻透性和生产率的影响[J].锻压技术,2011,36(4):26-29
    [65]董节功,周旭东,朱锦洪,王国宣.径向锻造三维成形锻透性的数值模拟[J].机械工程材料,2007,31(3):76-78
    [66]王玉凤,李付国,谢汉芳,刘趁意.钼金属径向精锻工艺的数值模拟[J].稀有金属材料与工程,2009,38(12):2136-2140
    [67]卫建军,刘建生.径向锻造锤头结构对车轴成形的影响分析[J].太原科技大学学报,2008,29(4):313-316
    [68]卫建军.火车轴径向锻造机锤头的有限元分析及优化[D].太原:太原科技大学,2008
    [69]韩星会,华林,胡亚民.轴类零件径向锻造压入量研究[J].锻压装备与制造技术,2006(6):75-78
    [70]熊庆华,王梦寒,周杰.TC4钛合金管径向温锻成形工艺仿真[J].锻压装备与制造技术,2005(3):50-52
    [71]刘庆东.膛线精锻加工过程数值模拟及工艺参数优化[D].南京:南京理工大学,2007
    [72]何湘玥.弹膛成形时的工艺参数影响分析及知识库的建立[D].南京:南京理工大学,2011
    [73]王志刚.身管径向锻造工艺解析分析与数值模拟[D].南京:南京理工大学.2011
    [74]刘全坤.材料成形基本原理[M].北京:机械工业出版社,2004
    [75]王祖唐,关廷栋,肖景容.金属塑性成形理论[M].北京:机械工业出版社,1989
    [76]Rudkins N T, Modlen G F, Webster P J. Residual Stresses in Cold Extrusion and Drawing:a Finite Element and Neutron Diffraction Study[J]. Journal of Materials Processing Technology,1994,45(1):287-292
    [77]Razny W, Fischer F D, Finstermann G, Schwenzfeier W. The Influence of Some Rolling Parameters on the Residual Stresses after Rolling[J]. Journal of Materials Processing Technology,1996(60):81-86
    [78]Zaeh M F, Tekkaya A E, Langhorst M, Ruhstorfer M. Experimental and Numerical Investigation of the Process Chain from Composite Extrusion to Friction Stir Welding Regarding the Residual Stresses in Composite Extruded Profiles[J]. Production Engineering,2009,3(4):353-360
    [79]Ma Y J, Zhang Y D, Zhang H W, Xue C. Residual Stress Analysis of the Multi-Stage Forging Process of a Nickel-Based Superalloy Trubine Disc[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2013, 227(2):213-225
    [80]赵晓慈,张以都,张洪伟.环件径向冷轧塑性变形及残余应力分布仿真[J].北京航空航天大学学报,2008,34(9):1088-1091
    [81]刘树伟,王志云,王本贤,戎利建.冷轧Inconel718管材残余应力的模拟分析[J].制造技术研究,2012,6(3):17-19
    [82]赵丽丽,张以都.基于MSC的板材冷轧残余应力分布的数值仿真[J].有色金属, 2005,57(1):27-29
    [83]刘晓龙,高玉魁,刘蕴韬,陈东风.孔挤压强化残余应力场的三维有限元模拟和实验研究[J].航空材料学报,2011,31(2):24-27
    [84]Chuen T T. Residual Stress Calculations by Finite Element Method in Manufacturing[D]. Berkeley:University of California, Berkeley,1987
    [85]Ameli A, Movahhedy M R. A Parametric Study on Residual Stresses and Forging Load in Cold Radial Forging Process [J]. The International Journal of Advanced Manufacturing Technology,2007(33):7-17
    [86]Afrasiab H, Movahhedy M R. Numerical Study of the Workpiece Rotation Effect on the Strain and Residual Stress Distribution in the Cold Radial Forging Process [C].10th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, Jul. 2010
    [87]Jang D Y, Liou J H. Study of Stress Development in Axi-symmetric Products Processed by Radial Forging using a 3-D Non-linear Finite-Element Method[J]. Journal of Materials Processing Technology,1998(74):74-82
    [88]Sahoo A K, Tiwari M K, Mileham A R. Six Sigma based Approach to Optimize Radial Forging Operation Variables[J]. Journal of Materials Processing Technology,2008(202): 125-136
    [89]黄少东,许彪,刘川林,肖远伦.冷径向精锻钛合金管残余应力测试[J].精密成形工程,2011,3(6):85-87
    [90]王涛.精锻枪管炸裂与机械性能初探[J].四川兵工学报,2002,23(3):38-40
    [91]田文松,罗荣,代安源.枪管径向冷精锻成形技术的应用研究[J].精密成形工程,2009,1(3):58-62
    [92]陈会丽,钟毅,王华昆,张家涛,起华荣.残余应力测试方法的研究进展[J].云南冶金,2005,34(3):52-54
    [93]王庆明,孙渊.残余应力测试技术的进展与动向[J].机电工程,2011,28(1):11-15
    [94]Stone H J, Withers P J, Holden T M, Roberts S M. Comparison of Three Different Techniques for Measuring the Residual Stresses in an Electron Beam-Welded Plate of Waspaloy[J]. Metallurgical and Materials Transactions A,1999(30):1797-1808
    [95]Annibali G, Bruno G, Fiori F, Giuliani A, Manescu A. Neutron-Diffraction Measurements for Residual Stress Analysis in Automotive Gears[J]. Applied Physics A: Materials Science & Processing,2002(74):1698-1700
    [96]Withers P J, Turski M, Edwards L, Bouchard P J, Buttle D J. Recent Advances in Residual Stress Measurement[J]. International Journal of Pressure Vessels and Piping, 2008(85):118-127
    [97]Taylan Altan, Gracious Ngaile, Gangshu Shen. Cold and Hot Forging:Fundamentals and Applications[M]. OH:ASM International,2005
    [98]何宜柱,雷廷权,吴惠英,陈大宏.动态再结晶晶粒尺寸同Zener-Holloman参数间的理论模型[J].华东冶金学院学报,1995,12(2):139-145
    [99]Ragupathi P S, Lahoti G D, Altan T. Application of the Radial Forging Process to Cold and Warm Forging of Cannon Tubes:Volume III Analysis of Stresses in the Mandrel[R]. Watervliet NY, May 1980, DAAA2278C0109
    [100]Schey J A. Introduction to Manufacturing Processes[M]. New York:McGraw Hill Publishing Co,1987
    [101]Marsh A E. Aerospace Forgings-Materials, Processes and Product[M]. Scripta Metallurgica, 1982
    [102]Cotterill P, Mould P R. Recrystallization and Grain Growth in Metals[M]. New York: Halstead Press,1976
    [103]Guimares G G, Jonas J J. Recrystallization and Aging Effects Associated With The High Temperature Deformation of Waspaloy and Inconel 718[J]. Metallurgical Transactions,1981(12):1655-1666
    [104]Mataya M C, Matlock D K. Effects of Multiple Reductions on Grain Refinement During Hot-Working of Inconel 718[R]. Superalloy 718-Metallurgy and Applications, Pittsburgh, Pennsylvania, Jun.1989:155-178
    [105]柳秉毅.材料成形工艺基础[M].北京:高等教育出版社,2011
    [106]陆璐,王辅忠,王照旭.有限元方法在金属塑性成形中的应用[J].材料导报,2008,22(6):87-91
    [107]刘郁丽.叶片精锻成形规律的三维有限元分析[D].西安:西北工业大学,2001
    [108]王忠雷.三维金属体积成形过程有限元模拟若干关键技术研究与系统开发[D].济南:山东大学,2011
    [109]谢水生,李雷.金属塑性成形的有限元模拟技术及应用[M].北京:科学出版社,2008
    [110]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009
    [111]赵腾伦,姚新军.ABAQUS 6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007
    [112]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009
    [113]陈魁.试验设计与分析[M],第2版.北京:清华大学出版社,2005
    [114]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005
    [115]任露泉.试验设计及其优化[M].北京:科学出版社,2009
    [116]杜强,贾丽艳.SPSS统计分析从入门到精通[M].北京:人民邮电出版社,2011
    [117]张红坡,张海锋.SPSS统计分析实用宝典[M].北京:清华大学出版社,2012
    [118]Michno Jr M J, Findley W N. Experiments to Determine Small Offset Yield Surfaces for 304L Stainless Steel under Combined Tension and Torsion[J]. Acta Mechanica, 1973(18):163-179
    [119]Hecker S S. Yield Surfaces in Prestrained Aluminum and Copper[J]. Metallurgical Transactions,1971(2):2077-2086
    [120]Lee D, Jabara F S, Backofen W A. Knoop-Hardness Yield Loci for 2 Titanium Alloys[J]. Trans. TMS-AIME,1976(239):1476-1485
    [121]Lin S B, Ding J L. Experimental Study of the Plastic Yielding of Rolled Sheet Metals with the Cruciform Plate Specimen[J]. International Journal of Plasticity,1995,11(5): 583-604
    [122]柴蓉霞,温莉敏,许树勤,池成忠,范亚地.AZ31镁合金挤压管材力学性能测试[J].轻合金加工技术,2006,34(2):21-23
    [123]王仲仁,苑世剑,胡连喜.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997
    [124]GB/T228-2002.金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002
    [125]Montgomery D C. Design and Analysis of Experiments[M]. New York:John Wiley & Sons INC,2005
    [126]Maxwell A S, Turnbull A. Measurement of Residual Stress in Engineering Plastics using the Hole-Drilling Technique[J]. Polymer Testing,2003(22):231-233
    [127]徐忠根,沈祖炎.残余应力的测定方法[J].华南建设学院西院学报,1994,2(2):60-66
    [128]Bynum J E. Modifications to the Hole-Drilling Technique of Measuring Residual Stresses for Improved Accuracy and Reproducibility[J]. Experimental Mechanics,1981, 21(1):21-30
    [129]裴怡,包亚峰,唐慕尧,黄兰林.盲孔法测量精度的研究—边界及孔间距的影响[J].焊接学报,1994,15(3):191-196
    [130]Flaman M T. Brief Investigation of Induced Drilling Stresses in the Center-Hole Method of Residual-Stress Measurement[J]. Experimental Mechanics,1982,22(2): 26-30
    [131]刘伯梁,焦建强,李广铎.钻孔法测定焊接残余应力时的s。[J].实验力学,1994,9(2):115-123
    [132]黄蓝林,唐慕尧,孟繁森.焊接应力测量中A、B系数分级应用的研究[C].第六届全国焊接学术会议论文选集,西安:西安交通大学出版社,1991:4-25
    [133]侯海量,朱锡,刘润泉.盲孔法测量焊接残余应力应变释放系数的有限元分析[J].机械强度,2003,25(6):632-636
    [134]谭明鹤,王荣辉,黄永辉.盲孔法测残余应力中应变释放系数的修正方法[J].热加工工艺,2007,36(19):65-68
    [135]刘晓红,苏文桂,张运泉.屈服状态下盲孔法测量残余应力孔边应变释放系数修正[J].铸造技术,2010,31(1):36-39
    [136]Sandifer J P, Bowie G E. Residual Stress by Blind-Hole Method with Off-Center Hole[J]. Experimental Mechanics,1978,18(5):173-179
    [137]Wang H P. The Alignment Error of the Hole-Drilling Method[J]. Experimental Mechanics,1979,19(1):23-27
    [138]王龙.盲孔法测量圆钢管表面应力的试验与分析[J].建筑科学,2009,25(9):48-52
    [139]陆才善.残余应力测试—小孔释放法[M].西安:西安交通大学出版社,1991
    [140]刘一华,贺赞晖,詹春晓,李昊.盲孔法中释放系数的数值计算方法[J].机械强度,2008,30(1):33-36
    [141]侯健,韩育礼.火炮身管强度设计理论和安全系数的研究[J].弹道学报,2009,21(3):44-47
    [142]牛群峰.高射频身管刚强度及热分析[D].南京:南京理工大学,2008
    [143]曾志银,宁变芳,王在森.身管动态应力有限元通用求解方法[J].兵工学报,2005,26(6):725-728
    [144]董明,王婷.考虑身管壁压的迫击炮炮身强度分析[J].机械工程与自动化,2011(6):25-26
    [145]李强,李鹏辉,胡明,武云飞,茹占勇.速射火炮身管冲击载荷下内膛塑性变形分析[J].中北大学学报(自然科学版),2011,32(5):550-555
    [146]吴永海,徐诚,李峰,范钦满.承受热冲击的大口径机枪枪管的热效应分析[J].南京理工大学学报,2007,31(1):1-5
    [147]吴永海,徐诚,张海兵.某大口径机枪枪管的瞬态热弹耦合动力响应分析[J].弹道学报,2006,18(4):16-20
    [148]王加刚,徐亚栋.复合材料身管动态特性分析[J].四川兵工学报,2010,31(2):82-85
    [149]徐亚栋,钱林方.复合材料身管热—结构耦合分析与优化[J].弹道学报,2006, 18(2):31-35
    [150]徐亚栋,钱林方,石秀东.复合材料身管三维瞬态热结构耦合分析[J].南京理工大学学报,2007,31(2):151-154
    [151]陈龙淼,钱林方.基于热效应的复合材料身管强度分析[J].南京理工大学学报(自然科学版),2008,32(6):710-714
    [152]侯健,冯广斌,韩育礼.自增强圆筒强度的计算方法及试验研究[J].南京理工大学学报,2000(6):536-539
    [153]蔡樑.自紧厚壁圆筒动态强度的有限元分析及实验研究[D].南京:南京理工大学,2011
    [154]曾志银,张军岭,吴兴波.火炮身管强度设计理论[M].北京:国防工业出版社,2004
    [155]李宝峰,刘协权,倪新华.双剪强度理论在火炮身管强度计算中的应用[J].科学技术与工程,2007,7(13):3235-3237
    [156]周俊忠.冲击载荷下身管强度自增强研究[D].哈尔滨:哈尔滨工程大学,2008
    [157]顾金桂.国外炮管疲劳及其研究方法(上)[J].现代兵器,1982(9):10-14
    [158]白德忠.身管失效与炮钢材料[M].北京:兵器工业出版社,1989
    [159]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997
    [160]Hyde T H, Warrior N A. An Improved Method for the Determination of Photoelastic Stress Intensity Factors using the Westergaard Stress Function[J]. International Journal of Mechanical Sciences,1990,32(3):265-273
    [161]Nicholson J W, Mettu S R. Computation of Dynamic Stress Intensity Factors by the Time Domain Boundary Integral Equation Method-I Analysis[J]. Engineering Fracture Mechanics,1988,31(5):759-767
    [162]Nabavi S M, Ghajar R. Analysis of Thermal Stress Intensity Factors for Cracked Cylinders using Weight Function Method[J]. International Journal of Engineering Science,2010,48(12):1811-1823
    [163]Wang Y H. Stress Intensity Factor for a Crack in a Tube by the Boundary Collocation Method[J]. International Journal of Pressure Vessels and Piping,1989,38(3):167-176
    [164]Yan X Q. A Boundary Element Analysis for Stress Intensity Factors of Multiple Circular Arc Cracks in a Plane Elasticity Plate [J]. Applied Mathematical Modeling, 2010,34(10):2722-2737
    [165]Ju S H. Finite Element Calculation of Stress Intensity Factors for Interface Notches[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(33):2273-2280
    [166]Newman J C, Raju I S. Stress Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in Finite Thickness Plates[J]. Engineering Fracture Mechanics,1979, 11(4):817-829