1. [地质云]滑坡
纳米ZnO@PVP/Si-NPA湿度传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体材料在湿度传感器研究领域越来越受到重视。金属氧化物ZnO纳米材料,由于其独特的物理和化学特性,在太空、汽车、航天、火警探测、工业尾气检测、气候监测等诸多行业中得到应用。课题组利用水热腐蚀法获得具有微米/纳米层次结构的硅纳米孔柱阵列(Si-NPA),其独特的形貌和结构特点为其良好的湿敏特性提供了良好的条件。本文通过利用操作简单,成本低廉的溶胶凝胶法制备氧化锌纳米颗粒,并通过高分子有机物聚乙烯吡咯烷酮(PVP)进行表面修饰。利用旋涂法将PVP修饰过的ZnO纳米颗粒涂覆到Si-NPA上,制得ZnO@PVP/Si-NPA复合结构湿敏元件。通过一系列表征和测试得到如下结果:
     1.通过场发射扫描电子显微镜、透射电镜观察了氧化锌与PVP形成氧化锌纳米颗粒的形貌,并结合电子衍射、高分辨透射电镜和傅里叶变换验证了ZnO纳米颗粒的存在。利用X射线衍射证明溶胶凝胶法合成ZnO纳米颗粒的物相为六方纤锌矿结构。傅里叶变换红外吸收光谱证实了PVP与Zn2+的相互作用,该相互作用带来PVP对生成的ZnO表面的修饰,并能影响ZnO合成过程。紫外-可见光吸收光谱证明氧化锌纳米颗粒的大小受到PVP摩尔量的影响,通过计算发现ZnO纳米颗粒粒径随着PVP摩尔量的增加呈现先减小再增大的趋势。
     2.比较PVP/Si-NPA和Si-NPA的湿敏性能发现,PVP对Si-NPA衬底的影响较大,由原来电容-相对湿度(C-RH)曲线的接近线性关系转换成为接近指数变化。而ZnO/Si和ZnO@PVP/Si湿敏元件的比较发现,电容出现两种不同的结果,ZnO/Si湿敏元件的电容函数关系基本保持为线性,而ZnO@PVP/Si湿敏元件随着PVP的加入由线性关系转变为指数关系。结合ZnO、PVP和Si-NPA得到不同Zn2+与PVP摩尔比的ZnO@PVP/Si-NPA湿敏元件,经过测试发现,其电容变化在原来的基础上变化更大,并且在Zn2+:PVP=5:5时达到最大值。因此PVP作为ZnO纳米颗粒的修饰剂,以及自身高分子聚合物的特性,能对以Si-NPA为衬底的复合结构湿度传感器产生了极大的增强作用,为后续的湿敏器件性能优化提供了参考和实验基础。
Semiconductor materials have attracted more and more attention in the field of humidity sensor in resent years. As one of the metallic oxides semiconductor materials, zinc oxide nanometer are widely used in space technology, automotive industry, aerospace application, fire detection, industrial exhaust gas testing, climate monitoring, and many other industries for its unique physical and chemical properties. Our team obtained a novel silicon nanoporous pillar array (Si-NPA) with mocron/nanometer hierarchical structure by the hydrothermal etching method, which showed promising prospect in humidity-sensing for its unique morphology and structure feature. In this paper, by simple and low cost sol-gel method we synthesized ZnO nanoparticles, and choosed macromolecule organic matter polyvinylpyrrolidone(PVP) to modify the surface of ZnO nanoparticles. Then the PVP modified ZnO nanoparticles were coated onto the Si-NPA by the spin-coating method, obtaining a ZnO@PVP/Si-NPA composite moisture sensor. A series of characterization and the test were conducted, the results are as follows:
     1.The surface morphology as well as the microstructure of ZnO nanoparticles was characterized by field emission scanning electron microscope (SEM), transmission electron microscope (TEM).Combining with electron diffraction, high resolution pictures, and the Fourier transform the existence of ZnO nanoparticles was verified. X-ray diffraction (XRD) proved the as-synthesized ZnO nanoparticles had wurzite hexagonal structure. Fourier transform infrared absorption spectra (FTIR) proved the interaction of PVP with Zn2+,which caused the modification of the ZnO and influence the synthesization of ZnO nanoparticles. Ultraviolet-visible absorption spectra showed the size of the ZnO nanoparticles influenced by PVP molar weight. Through theoretical calculation we found that the ZnO nanoparticles size decrease and then increase with the increase of the molar amount of PVP.
     2.Comparison of PVP/Si-NPA and Si-NPA humidity-sensitive performance found that PVP has had a biggish impact on Si-NPA substrate performance, the near linear relative humidity capacitance functional relationship converted into near exponential. Comparing the ZnO/Si and ZnO@PVP/Si moisture sensing performance showed the capacitance of the ZnO/Si moisture sensor remained linear and the ZnO@PVP/Si moisture sensor C-RH curve changed from linear relationship to the exponential relationship with increase of PVP. Combining ZnO, PVP, and Si-NPA we got different ZnO@PVP/Si-NPA moisture sensor with different molar ratio of Zn2+:PVP. Trough testing different sensors we found that the sensor with a molar ratio of Zn2+:PVP=5:5reached maximum improvement comparing with the original sample with no PVP. So by modifying the ZnO nanoparticles, and combined with the characteristics of the polymer itself, PVP had enormous enhancement effect on performance of humidity sensor on Si-NPA substrate composite structure, which provided experimental basis and reference for subsequent humidity sensor optimization.
引文
[1]李守成,张英飞,韩同样。传感器原理及应用[J]。铁道通信信号,1994,(10): 33-34.
    [2]李守成,张英飞,韩同样。传感器原理及应用[J]。铁道通信信号,1994,(11):31-34.
    [3]郝光宗,邢丽缘,杨纪俊。湿滞定义与温度系数定义[J]。传感器世界,2003,(01):24-26.
    [4]黄鸿斌,黄鸿雁。化学量传感器[J]。传感器技术,1988,(06):48-54.
    [5]Nitta Tsuneharu, Hayakawa Shigeru,罗丹。陶瓷湿度传感器[J]。压电与声光,1981,(03): 26-32.
    [6]郭秀芬。陶瓷湿度传感器[J]。压电与声光,1984,(06): 34-43.
    [7]Kumar Nitin, Dorfman Adam, Hahm Jong-in. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays [J]. Nanotechnology,2006,17(12):2875.
    [8]Wang JX, Sun Xiao Wei, Wei A, et al. Zinc oxide nanocomb biosensor for glucose detection [J]. Applied Physics Letters,2006,88(23):233106-233106-3.
    [9]Kang BS, Wang HT, Ren F, et al. Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors [J]. Applied Physics Letters, 2007,91(25):252103-252103-3.
    [10]Zhang Yongsheng, Yu Ke, Ouyang Shixi, et al. Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films [J]. Physica B:Condensed Matter,2005, 368(1):94-99.
    [11]Zhang Yongsheng, Yu Ke, Jiang Desheng, et al. Zinc oxide nanorod and nanowire for humidity sensor [J]. Applied Surface Science,2005,242(1):212-217.
    [12]Tang H. X., Yan M., Ma X. F., et al. Gas sensing behavior of polyvinylpyrrolidone -modified ZnO nanoparticles for trimethylamine [J]. Sensors and Actuators B-Chemical,2006,113(1): 324-328.
    [13]Cheng XL, Zhao H, Huo LH, et al. ZnO nanoparticulate thin film:Preparation, characterization and gas-sensing property [J]. Sensors and Actuators B:Chemical,2004, 102(2):248-252.
    [14]Nath SS, Choudhury M, Chakdar D, et al. Acetone sensing property of ZnO quantum dots embedded on PVP [J]. Sensors and Actuators B:Chemical,2010,148(2):353-357.
    [15]Mehta SK, Singh Kulvinder, Umar Ahmad, et al. Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles [J]. Electrochimica Acta,2012.
    [16]Shouli Bai, Liangyuan Chen, Jingwei Hu, et al. Synthesis of quantum size ZnO crystals and their gas sensing properties for NO2 [J]. Sensors and Actuators B:Chemical,2011,159(1): 97-102.
    [17]Forleo A, Francioso L, Capone S, et al. Synthesis and gas sensing properties of ZnO quantum dots [J]. Sensors and Actuators B:Chemical,2010,146(1):111-115.
    [18]Tai Weon-Pil, Oh Jae-Hee. Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process [J]. Journal of Materials Science:Materials in Electronics,2002,13(7):391-394.
    [19]Qi Qi, Zhang Tong, Zeng Yi, et al. Humidity sensing properties of KCl-doped Cu-Zn/CuO-ZnO nanoparticles [J]. Sensors and Actuators B:Chemical,2009,137(1):21-26.
    [20]Erol A., Okur S., Comba B., et al. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process [J]. Sensors and Actuators B-Chemical,2010,145(1): 174-180.
    [21]Min H. S., Joo Y. C., Song O. S. Effects of wafer cleaning and annealing on glass/silicon wafer direct bonding [J]. Journal of Electronic Packaging,2004,126(1):120-123.
    [22]许海军,富笑男,孙新瑞等。硅纳米孔柱阵列的结构和光学特性研究[J]。物理学报,2005,(05):2352-2357。
    [23]Li Xin Jian, Hu Xing, Jia Yu, et al. Tunable superstructures in hydrothermally etched iron-passivated porous silicon [J]. Applied Physics Letters,1999,75(19):2906-2908.
    [24]李亚勤,孙新瑞,许海军等。制备条件对硅纳米孔柱阵列表面硅柱密度调制[J]。科学技术与工程,2008,(11):2806-2810。
    [25]Prabahar S, Dhanam M. CdS thin films from two different chemical baths-structural and optical analysis [J]. Journal of Crystal Growth,2005,285(1):41-48.
    [26]Xu Yuan Yuan, Li Xin Jian, He Jin Tian, et al. Capacitive humidity sensing properties of hydrothermally-etched silicon nano-porous pillar array [J]. Sensors and Actuators B: Chemical,2005,105(2):219-222.
    [27]Li Long Yu, Dong Yong Fen, Jiang Wei Fen, et al. High-performance capacitive humidity sensor based on silicon nanoporous pillar array [J]. Thin Solid Films,2008,517(2):948-951.
    [28]吉慧芳,董永芬,李隆玉等。退火对电容型硅纳米孔柱阵列湿度传感器性能的影响[J]。传感技术学报,2008,(07):1097-1101。
    [29]陈绍军,杨光,冯春岳等。硅纳米孔柱阵列的酒敏特性研究[J]。传感器与微系统,2006,(12):18-20。
    [30]王海燕,李新建。硅纳米孔柱阵列及其四氧化三铁复合薄膜的湿敏电容特性研究[J]。物理学报,2005,(05):2220-2225。
    [31]Jiang WeiFen, Xiao ShunHua, Zhang HuanYun, et al. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array [J]. Science in China Series E: Technological Sciences,2007, (4).
    [32]董永芬,李隆玉,冯春岳等。基于Si-NPA的W03薄膜电容湿敏性能[J]。功能材料与器件学报,2008,(06):955-960。
    [33]冯春岳,肖龙,董永芬等。WO3/Si-NPA复合薄膜的电容湿度传感性能研究[J].传感器与微系统,2007,(11):57-60,64。
    [34]Dong Yong Fen, Li Long Yu, Jiang Wei Fen, et al, Capacitive humidity-sensing properties of electron-beam-evaporated nanophased WO3 film on silicon nanoporous pillar array [J]. Physica E:Low-dimensional Systems and Nanostructures,2009,41(4):711-714.
    [35]李隆玉,肖顺华,董永芬等。基于Si-NPA的BaTiO3薄膜的电容湿敏性能研究[J]。传 感技术学报,2007,(12):2558-2562。
    [36]王海燕,李隆玉,董永芬等。γ-Fe2O3/硅纳米孔柱阵列湿敏元件的湿敏性能研究[J]。传感技术学报,2008,(07):1093-1096。
    [37]Wang Hai Yan, Li Xin Jian. Capacitive humidity-sensitivity of carbonized silicon nanoporous pillar array [J]. Materials Letters,2010,64(11):1268-1270.
    [38]Wang Xuejiao, Pang Zhanwen, Wu Mingzai, et al. Simple hydrothermal route to synthesise a nanocrystalline ZnO/PVP composite film and its optical property [J]. Micro & Nano Letters, IET,2012,7(6):523-525.
    [39]Jetson Rachael, Yin Kezhen, Donovan Katrina, et al. Effects of surface modification on the fluorescence properties of conjugated polymer/ZnO nanocomposites [J]. Materials Chemistry and Physics,2010,124(1):417-421.
    [40]Zhang Zhenyi, Shao Changlu, Gao Fei, et al. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers [J]. Journal of colloid and interface science,2010,347(2):215-220.
    [41]Makkar Meenu, Bhatti HS. Inquisition of reaction parameters on the growth and optical properties of ZnO nanoparticles synthesized via low temperature reaction route [J]. Chemical Physics Letters,2011,507(1):122-127.
    [42]Pal E., Hornok V., Kun R., et al. Hydrothermal synthesis and humidity sensing property of ZnO nanostructures and ZnO-In(OH)3 nanocomposites [J]. Journal of colloid and interface science,2012,378:100-109.
    [43]Kanitkar P., Adhyapak P., Aiyer R., et al. Synthesis and electrical characterization of Ag, Au-PVP nanocomposites for humidity sensing [J]. Sensor Letters,2012,10(3-4):932-940.
    [44]Wang Jinfeng, Tsuzuki Takuya, Tang Bin, et al. Synthesis of silica-coated ZnO nanocomposite:The resonance structure of polyvinyl pyrrolidone (PVP) as a coupling agent [J]. Colloid and polymer science,2010,288(18):1705-1711.
    [45]宋晓东,陶荟春,高晓红等。ZnO/PVP纳米复合膜的制备及其性质[J]。吉林工程技术师范学院学报,2009,(11):70-73。
    [46]Li Bibo, Wen Ming, Li Wei, et al. Preparation and characterization of baicalin-poly-vinylpyrrolidone coprecipitate [J]. International Journal of Pharmaceutics, 2011,408(1):91-96.
    [47]Guo L, Cheng JX, Li X-Y, et al. Synthesis and optical properties of crystalline polymer-capped ZnO nanorods [J]. Materials Science and Engineering:C,2001,16(1): 123-127.
    [48]Guo Lin, Yang Shihe, Yang Chunlei, et al. Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles [J]. Chemistry of Materials,2000, 12(8):2268-2274.
    [49]Zhu Yongfa, Zhang Li, Gao Chong, et al. The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor [J]. Journal of materials science,2000,35(16): 4049-4054.
    [50]Krishnan Deepti, Pradeep T. Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds [J]. Journal of Crystal Growth,2009,311(15):3889-3897.
    [51]Rani Seema, Suri Poonam, Shishodia PK, et al. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2008, 92(12):1639-1645.
    [52]Spanhel Lubomir, Anderson Marc A. Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J]. Journal of the American Chemical Society,1991,113(8):2826-2833.
    [53]Li Dianqing, Hu Jingwei, Fan Faying, et al. Quantum-sized ZnO nanoparticles synthesized in aqueous medium for toxic gases detection [J]. Journal of Alloys and Compounds,2012.
    [54]Monticone S, Tufeu R, Kanaev AV. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles [J]. The Journal of Physical Chemistry B,1998,102(16): 2854-2862.
    [55]Brus Louis. Electronic wave functions in semiconductor clusters:Experiment and theory [J]. The Journal of Physical Chemistry,1986,90(12):2555-2560.
    [56]Pesika Noshir S, Stebe Kathleen J, Searson Peter C. Determination of the particle size distribution of quantum nanocrystals from absorbance spectra [J]. Advanced Materials,2003, 15(15):1289-1291.
    [57]Ahmed Sk Faruque, Moon Myoung-Woon, Kim Chansoo, et al. Optical properties of surface modified polypropylene by plasma immersion ion implantation technique [J]. Applied Physics Letters,2010,97:081908.
    [58]刘猛。水溶性Zn0量子点的制备研究[D]。西南科技大学,2006。
    [59]Kanaze FI, Kokkalou E, Niopas I, et al. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes:A comparative study [J]. Journal of applied polymer science,2006,102(1):460-471.
    [60]Mishra Rakesh K, Datt Mahesh, Banthia Ajit K. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system [J]. Aaps Pharmscitech,2008,9(2): 395-403.
    [61]Shah Jigar, Vasanti S, Anroop B, et al. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP k 30 & PEG 4000:Preparation and in vitro evaluation [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2009,63(1):69-75.
    [62]Ahn Hosang, Wang Yaqi, Hyun Jee Seung, et al. Enhanced UV activation of electrochemically doped Ni in ZnO nanorods for room temperature acetone sensing [J]. Chemical Physics Letters,2011,511(4):331-335.
    [63]Li Xin Jian, Chen Shao Jun, Feng Chun Yue. Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor [J]. Sensors and Actuators B: Chemical,2007,123(1):461-465.
    [64]Li Long Yu, Jiang Wei Fen, Xiao Shun Hua, et al. Effect of electrode configuration on capacitive humidity sensitivity of silicon nanoporous pillar array [J]. Physica E: Low-dimensional Systems and Nanostructures,2009,41(4):621-625.
    [65]Qi Qi, Zhang Tong, Zheng Xuejun, et al. Preparation and humidity sensing properties of Fe-doped mesoporous silica SBA-15 [J]. Sensors and Actuators B:Chemical,2008,135(1): 255-261.
    [66]Tsuchida Eishun, Ohno Hiroyuki, Kobayashi Norihisa. Single-ion conduction in poly [(oligo (oxyethylene) methacrylate)-co-(alkali-metal methacrylates)] [J]. Macromolecules,1988, 21(1):96-100.
    [67]Watanabe M, Sanui K, Ogata N, et al. Ionic conductivity and mobility in network polymers from poly (propylene oxide) containing lithium perchlorate [J]. Journal of applied physics, 1985,57(1):123-128.
    [68]宋丽丽,韩建峰。湿度和频率对湿敏元件电学特性的影响[J]。电子器件,2012,(04):387-389。
    [69]应皆荣,万春荣,何培炯。频率和温度对陶瓷湿敏元件感湿特性的影响[J]。无机材料学报,2000,(03):461-466。
    [70]刘莹。电阻型湿度传感器伏安特性测试及其导电机理[J]。华南理工大学学报(自然科学版),1999,(07):82-86。
    [71]Agarwal Seema, Sharma GL. Humidity sensing properties of (Ba,Sr) TiO3 thin films grown by hydrothermal-electrochemical method [J]. Sensors and Actuators B:Chemical,2002, 85(3):205-211.
    [72]Bie LiJian, Yan XiaoNa, Yin Jing, et al. Nanopillar ZnO gas sensor for hydrogen and ethanol [J]. Sensors and Actuators B:Chemical,2007,126(2):604-608.
    [73]Atanas Jean Pierre, Al Asmar Roy, Khoury Antonio, et al. Optical and structural characterization of ZnO thin films and fabrication of bulk acoustic wave resonator (BAW) for the realization of gas sensors by stacking ZnO thin layers fabricated by e-beam evaporation and RF magnetron sputtering techniques [J]. Sensors and Actuators A:Physical, 2006,127(1):49-55.
    [74]Connolly EJ, O'Halloran GM, Pham HTM, et al. Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications [J]. Sensors and Actuators A:Physical,2002,99(1):25-30.
    [75]Zhang Yan Yan, Fu WuYou, YANG HaiBin, et al. A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery [J]. Sensors and actuators. B, Chemical,2009, 135(1):317-321.