1. [地质云]滑坡
多时段间歇过程统计建模、在线监测及质量预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为工业生产中一种重要的生产方式,间歇过程与人们的生活息息相关,已被广泛应用于精细化工、生物制药、食品、聚合物反应、金属加工等领域。近年来,随着现代社会对多品种、多规格和高质量产品更迫切的市场需求,工业生产更加倚重于生产小批量、高附加值产品的间歇过程。间歇生产的安全可靠运行以及产品的高质量追求已成为人们关注的焦点。基于数据的多元统计分析技术因其只需要正常工况下的过程数据来建立模型,同时它们在处理高维、高度耦合数据时具有独特的优势,越来越受到研究人员和现场工程师的青睐。间歇过程的统计建模、在线监测、故障诊断及质量预测已成为广泛的研究课题。
     与连续工业过程相比,间歇生产的过程特性更加复杂,数据的统计特征亦更为丰富。同一操作周期内又分成多个子时段,每个时段都有其特定的控制目标,有不同的过程主导变量,呈现不同的过程相关特性。因此,面向多时段间歇生产过程的统计分析及在线应用更具挑战性,不仅仅要关注整个过程的运行状况及其与最终产品质量的因果关系,更应该深入分析过程的每一个子时段,揭示其不同的潜在过程特性并发掘它们对质量指标不同的影响效果和作用能力。
     本论文在深入研究间歇过程多时段特性的基础上,从解决实际问题的角度出发,提出了一系列基于时段的间歇过程统计建模、在线监测和质量预测算法:
     (1).针对多时段间歇过程中的时段过渡现象,引入模糊时段的概念,提出了一种基于过渡的软时段划分方法,将间歇过程按其潜在特性的不同详细划分成若干子时段及主要时段之间的过渡区域,并针对它们不同的数据特征建立了基于软划分的统计建模及在线监测算法。
     (2).针对建模数据不充分的问题,仅仅基于少量几个正常批次进行统计分析,从中提取子时段信息,提出了基于时段的统计建模及在线监测算法;同时建立了模型在线更新策略,利用逐渐增多的正常间歇操作批次不断自适应更新和完善监测模型以实现准确的过程监测。
     (3).受各种因素影响,间歇过程批次间通常呈现缓慢波动特性。对于慢时变间歇过程,本文提出了基于批次间“相对变化”的子时段统计建模和在线监测算法。该算法从表征“相对变化”的批次间差分轨迹中提取、训练慢时变运行模式本身的统计规律及演化特性,将慢时变模式主动容纳到初始监测系统,从而赋予初始模型对于批次间慢时变行为的自动适应能力而无需在线更新,增强了监测模型的鲁棒性。
     (4).针对“段型质量指标”,鉴于它只决定于某一个或几个特定的子时段,其他时段对其没有显著影响,本文建立了一种基于子时段PLS回归模型的质量分析及预测算法。一方面,从时段整体的角度识别了影响质量的各个关键时段及其关键变量,并建立了基于子时段的PLS在线质量预测模型;另一方面从时段平均运行水平的角度分析了各个关键时段对于质量指标的平均作用效果,建立了更为稳定的质量预测关系。
     (5).针对“过程型质量指标”,鉴于其受间歇操作周期内所有子时段的共同作用,本文进一步发展了基于时段的质量预测算法,深入理解并分析了各个子时段对质量指标的局部影响力及其共同作用效果。一方面,在各个局部时段内,该算法定量化提取了与质量指标相关的关键过程信息以及各个子时段分别独立表征的局部质量性能,增强了二者之间的因果关系;另一方面,从全过程的角度,它将各子时段的局部作用累加起来从而获得整个间歇过程对于质量指标的综合解释与预测能力。基于时段的统计分析策略可以更细致地反映过程运行状态及其潜在相关特性在时段间的发展变化,改善在线监测性能;同时它能够深入理解过程与质量二者之间的因果关联,揭示各个时段对质量指标的不同影响作用,有利于质量解释与预测。上述算法在间歇过程实验系统及仿真研究中验证了其有效性与可靠性,从而丰富了间歇过程统计建模、在线监测及质量预测的研究成果,并揭示了进一步研究的必要和可能。
As an important industry production way, batch processes, which have a close relationship with people's everyday life, have been widely applied to fine chemical, biopharmaceutical, food, polymer, and metal industries etc. Recently, with the urging market requirement for various product types and high product quality, the manufacturing of higher-value-added products that are mainly produced through batch processes have become increasingly important in many industries. The batch process safety and product quality have been the focus of people's attention. Data-based multivariate statistical analysis techniques only require the normal process data for modeling and show particular advantages to deal with the high-dimension and coupling data, which makes them specially and increasingly attractive. Multivariate statistical modeling, online monitoring, fault diagnosis and quality prediction have been under wide investigation for batch processes.
     Batch processes are fairly more complex with more rich data statistical characteristics compared with continuous processes. The operation process covers multiple phases, which have specific control objects, different dominant process variables and distinct process correlation characteristics. Therefore, it is more challenging to conduct statistical analysis and online application for multiphase batch processes. It should not only pay attention to the whole operation status and find the causal relationship between process variables and quality variables, but also focus on different phases to analyze their local nature and reveal their different effects on quality.
     Based on the further research on multiplicity of operation phase, this dissertation developes a series of phase-based statistical modeling, process monitoring and quality prediction methods for batch processes to solve the practical problems:
     (1). For the phase transition behaviors in multiphase batch processes, the concept of fuzzy phase is introduced and a transition-based soft phase partition algorithm is developed, which divides the process into different subphases and transition regions between neighboring phases according to the changes of underlying process correlations along time. Consequently, focusing on their different data nature, different statistical models are respectively developed as well as the corresponding online monitoring strategy.
     (2). For limited reference batches, a new statistical analysis strategy is proposed to explore the phase information and thus develop the phase-based statistical models for online monitoring. Meanwhile, an online adaptive updating strategy is adopted to adjust the monitoring models with the accumulation of new successful batches, which can enhance the reliability of monitoring results.
     (3). Under the influence of various factors, batch processes commonly involve normal slow variations over batches. For slow-varying batches, a phase-based statistical modeling and nonline monitoring algorithm is developed using between-batch "relative changes". It extracts and models the statistical rules and evolving characteristics of slow-varying behaviors from the between-batch difference trajectory that represents the batch-wise relative changes, which thus accommodates the slow-varying mode into the initial monitoring models. In this way, it endows the initial monitoring system with adaptive competency to batch-to-batch slow-varying behaviors, avoids the online updating requirement and enhances the robustness of monitoring models.
     (4). For phase-type quality, which is only determined by one or several specific phases and has no close relationship with others, a phase-based PLS regression modeling algorithm is developed for quality analysis and prediction. On the one hand, it identifies the critical-to-quality phases and key predictors from an overall phase viewpoint, and then develops phase-based PLS models for online quality prediction. On the other hand, it analyzes the average effects of process behaviors in each phase on quality based on phase-specific average trajectory and thus develops a stabler quality prediction relationship.
     (5). For process-type quality, which depends upon all phases within the batch operation, it further develops phase-based quality analysis strategy to comprehend and analyze the local and cumulative effects of various phases on quality more detailedly. On the one hand, it quantitatively extracts the critical-to-quality feature information within each phase and the part of quality attribute interpreted by each local phase, which, thus, enhances the causal relationship between them. On the other hand, it captures the overall effects of the whole process on quality interpretation and prediction by stacking the different local effects of various phases.
     Phase-based multivariate statistical analysis can more detailedly reveal the process operation status and the changes of underlying characteristics over different phases, which will help to improve the online monitoring performance. Moreover, it can further comprehend the causal relationship between process variables and quality attribute, and explore the different effects of various phases on quality, which will be of great benefit to quality interpretation and prediction. The successful applications to batch process systems and simulation experiments demonstrate the effectiveness of the present methods, which, thus, enrich the achievement of statistical modeling, online monitoring and quality prediction for batch processes and also suggest the necessarity and potential of further research.
引文
1. Dunteman G H. Principal component analysis [M], London: SAGE publication LTD, 1989.
    2. Jackson J E. A User's Guide to Principal Components [M], Wiley: New York,1991.
    3. Wang X Z. Data mining and knowledge discovery for process monitoring and control [M], Springer:London,1999.
    4. Kourti T, MacGregor J F. Process analysis, monitoring and diagnosis, using multivariate projection methods [J], Chemometrics and Intelligent Laboratory Systems,1995,28(19): 3-21.
    5. Comon P. Independent component analysis, a new concept. Signal Processing, [J],1994, 36(3):287-314.
    6. Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis [J], Neural Computation,1997,9(7):1483-1492.
    7. Hyvarinen, A.; Oja, E. Independent component analysis:algorithms and applications [J], Neural Networks,2000,13(4-5),411-430.
    8. Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection[J], AIChE J,2003,49(4):969-979.
    9. Geladi P, Kowalshi B R. Partial least squares regression:A tutorial [J], Analytica Chimica Acta,1986,185(1):1-17.
    10. Hoskuldsson A. PLS regression methods [J], J Chemometrics,1988,2(3):211-228.
    11. Dayal, B S, MacGregor J F. Improved PLS Algorithms [J], J Chemometrics,1997,11(1): 73-85.
    12.王惠文.偏最小二乘回归方法及其应用[M],北京:国防工业出版社,1999。
    13. Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis [J], AIChE J,1994,40(8):1361-1375.
    14. Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes [J], Chemometrics and Intelligent Laboratory Systems,1995(1):30,97-108.
    15. Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes [J]. Technometrics,1995,37(1):41-59.
    16. Wold S, Kettaneh N, Friden H, Holmberg A. Modelling and diagnostics of batch processes and analogous kinetic experiments [J], Chemometrics and Intelligent Laboratory Systems, 1998,44(1-2):331-340.
    17. Wold S. Multi-way principal components- and PLS-analysis [J], J Chemometrics,1987, 1(1):41-56.
    18. Wold S, Sjostrom M. Chemometrics, present and future success [J], Chemometrics and Intelligent Laboratory Systems,1998,44(1):3-14.
    19. Dong D, McAvoy T J. Multistage batch process monitoring [J], The Proceedings of American control conference,1995,1857-1861.
    20. Zheng L L, McAvoy T J, Huang Y, Chen G. Application of multivariate statistical analysis in batch processes [J], Industrial & Engineering Chemistry Research,2001,40(7):1641-1649.
    21. Undey C, Tatara E, Cinar A. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations [J], J Biotechnology,2004,108(1):61-77.
    22. Undey C, Cinar A. Statistical monitoring of multistage, multiphase batch processes [J], IEEE Control Systems Magazine,2002,22(55):40-52.
    23. Undey C, Ertunc S, Cinar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis [J], Industrial & Engineering Chemistry Research,2003,42(20):4645-4658.
    24. Zamprogna E, Barolo M, Seborg D E. Optimal Selection of Soft Sensor Inputs for Batch Distillation Columns using Principal Component Analysis [J], J Process Control,2005, 15(1):39-51.
    25. Zamprogna E, Barolo M, Seborg D E. Development of A Soft Sensor for A Batch Distillation Column Using Linear and Nonlinear PLS Regression Techniques [J], Control Engineering Practice,2004,12(7):917-929.
    26. Kourti T, Nomikos P, MacGregor J F. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS [J], J Process control,1995,5(4):277-284.
    27. Martin E B, Morris A J, Papazoglou M C, Kiparissides C. Batch Process monitoring for consistent production [J], Computers & Chemical Engineering,1996,20(supplement): 599-604.
    28. Martin E B, Morris A J. An overview of multivariate statistical process control in continuous and batch process performance monitoring [J], Transactions of the Institute of Measurement and Control,1996,18(1):51-60.
    29. Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process [J], J Process Control,2001,11(1):1-11.
    30. Meng X, Morris A J, Martin E B. On-line monitoring of batch processes using a PARAFAC representation [J], J Chemometrics,2003,17(1):65-81.
    31.陆宁云.间歇工业过程的统计建模、在线监测和质量预测[D]。东北大学博士论文
    32. Kosanovich K A, Piovoso M J, Dahl K S. Multi-way PCA applied to an industrial batch process [J], The Proceedings of American Control Conference,1994,1294-1298.
    33. Kosanovich K A, Dahl K S, Piovoso M J. Improved process understanding using multiway principal component analysis [J], Industrial & Engineering Chemistry Research, 1996,35(1):138-146.
    34. Lennox B, Hiden H, Montague G, Kornfeld G, Goulding P. Application of multivariate statistical process control to batch operations [J], Computers & Chemical Engineering, 2000,24(2-7):291-296.
    35. Lu N Y, Gao F R, Wang F L. A sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J,2004,50(1):255-259
    36. Lu N Y, Gao F R. Stage-Based Process Analysis and Quality Prediction for Batch Processes [J], Industrial & Engineering Chemistry Research,2005,44(10):3547-3555.
    37. Lu N Y, Gao F R. Stage-Based Online Quality Control for Batch Processes. Industrial & Engineering Chemistry Research,2006,45(7):2272-2280.
    38. Camacho J, Pico J. Online monitoring of batch processes using multi-phase principal component analysis [J], J Process Control,2006,16(10):1021-1035.
    39. Camacho J, Pico J. Multi-phase principal component analysis for batch processes modeling[J], Chemometrics and Intelligent Laboratory Systems,2006,81(2):127-136.
    40. Doan X T, Srinivasan R, Bapat, P M, Wangikar P P. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements:A case study with rifamycin B fermentation [J], J Biotechnology,2007,132(2):156-166.
    41. Chu Y H, Lee Y H, Han C. Improved Quality Estimation and Knowledge Extraction in a Batch Process by Bootstrapping-Based Generalized Variable Selection [J], Industrial & Engineering Chemistry Research,2004,43(11):2680-2690.
    42. Duchesne C, MacGregor J F. Multivariate analysis and optimization of process variable trajectories for batch process [J], Chemometrics and Intelligent Laboratory Systems,2000, 51(1):125-137.
    43. Smilde A K, Bro R, Geladi, P. Multi-way analysis, application in the Chemical Science [M], England:John Wiley & Sons,2003.
    44. Bro R. Parafac. Tutorial and applications [J], Chemometrics and Intelligent Laboratory Systems,1997,38(2):149-171.
    45. Tucker L R. The extension of factor analysis to three-dimensional matrices [M], In: Gulliksen, H., Frederiksen, N. (Eds.):Contributions to mathematical psychology. New York:Holt, Rinehart and Winston.1964,110-162.
    46. Bro R. Multiway calibration. Multi-linear PLS [J], J Chemometrics,1996,10(1):47-61.
    47. Sanchez E, Kowalshi B R. Tensorial resolution:a direct trilinear decomposition [J], J Chemometrics,1990,4(1):29-45.
    48. Louwerse D J, Smilde A K. Multivariate statistical process control of batch processes based on three-way models [J], Chemical Engineering Science,2002,55(7):1225-1235.
    49. Smilde A K. Comments on three-way analysis used for batch process data [J], J Chemometrics,2001,15(1):19-27.
    50. Westerhuis J A, Kourti T, MacGregor J F. Comparing alternative approaches for multivariate statistical analysis of batch process data [J], J Chemometrics,1999,13(3-4): 397-413.
    51. Lee J M, Yoo C K, Lee I B. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis [J], J Biotechnology, 2004,110(2):119-136.
    52. Albazzaz H, Wang X Z, Statistical process control charts for batch operations based on independent component analysis [J], Industrial & Engineering Chemistry Research,2004, 43(21):6731-6741.
    53. Lee J M, Yoo C K, Lee I B. On-line batch process monitoring using different unfolding method and independent component analysis [J], J Chemical Engineering of Japan,2003, 36(11):1384-1396.
    54. Gurden S P, Westerhuis J A, Bro R, Smilde A K. A comparison of multiway regression and scaling methods [J], Chemometrics and Intelligent Laboratory Systems,2001,59(1-2): 121-136.
    55. van Sprang E N M, Ramaker H J, Westerhuis J A, Gurden S P, Smilde A K. Critical evaluation of approaches for on-line batch process monitoring [J], Chemical Engineering Science,2002,57(18):3979-3991.
    56. Yoo C K, Lee J M, Vanrolleghem, P A, Lee I B. On-line monitoring of batch processes using multiway independent component analysis [J], Chemometrics and Intelligent Laboratory Systems,2004,71(2):151-163.
    57. Wold S. Cross-validatory estimation of the number of components in Factor and principal components models [J], Technometrics,1978,20(4):397-405.
    58. De Jong S, Ter Braak, C J F. Comments on the PLS kernel algorithm [J], J Chemometrics, 1994,8(2):169-174.
    59. Rannar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part Ⅰ:Theory and algorithm [J], J Chemometrics,1994,8(2): 111-125.
    60. Rannar S, Geladi P, Lindgren F, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part Ⅱ:Cross-validation, missing data and examples [J], J Chemometrics,1995,9(6):459-470.
    61. Lindgren F, Geladi P, Wold W. The kernel algorithm for PLS [J], J Chemometrics,1993, 7(1):45-59.
    62. Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J], IEEE Transactions on Neural Networks,1999(10):626-634.
    63. Hyvarinen A. Survey on independent component analysis [J], Neural Computing Surveys. 1999,2:94-128.
    64. Hyvarinen A. The fixed-point algorithm and maximum likelihood estimation for independent component analysis [J], Neural Processing Letters,1999,10(1):1-5.
    65. Girolami M. Self-organising neural networks:Independent component analysis and blind source separation [M], London:Springer,1999.
    66. Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis [J], AIChE J,2006,52(10):3501-3514.
    67. Amari S I. Natural gradient works efficiently in learning [J], Neural Computation,1998, 10(2):251-276.
    68. Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [J], Neural Computation,1995,7(6):1129-1159.
    69. Amari S I, Cardoso J F. Blind source separation-semiparametric statistical approach [J], IEEE Transactions on Signal Processing,1997,45(11):2692-2700.
    70. Cardoso J F, Laheld B H. Equivariant adaptive source separation [J], IEEE Transactions On Signal Processing,1996,44(12):3017-3030.
    71. Cichocki A, Unbehauen R. Robust neural networks with on-line learning for blind identification and blind separation of sources [J], IEEE Transactions on Circuit and Systems,1996,43(11):894-906.
    72. Deco G, Brauer W. Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures [J], Neural Networks,1995,8(4):525-535.
    73. Pajunen P, Hyvarinen A, Karhunen J. Nonliner blind source separation by self-organizing maps [J], International Conference on Neural Information Processing,1996,1207-1210.
    74. Yang H H, Amari S, Cichocki A. Information backpropagation for blind separation of sources from nonlinear mixture [J], IEEE International Conference on Neural Networks, 1997,2141-2146.
    75. Yang H H, Amari S, Cichocki A. Information-theoretic approach to blind separation of sources in nonlinear mixture [J], Signal Processing,1998,64(3):291-300,.
    76. Taleb A, Jutten C. Source separation in post-nonlinear mixtures [J], IEEE Transactions on Signal Processing,1999,47(10):2807-2820,.
    77.张杰,阳宪惠.多变量统计过程控制[M],北京:化学工业出版社,2000。
    78. Cho H W, Kim K J. A method for predicting future observations in the monitoring of a batch process [J], J Quality Technology,2003,35(1):59-69.
    79. Tracy N D, Young J C, Mason R L. Multivariate control charts for individual observations [J], J Quality Technology,1992,24(2):88-95.
    80. Wierda S J. Multivariate statistical process control-recent results and directions for future research [J], Statistica Neerlandica,1994,48(2):147-168.
    81. Mason R L, Tracy N D, Young J C. Decomposition of T2 for multivariate control chart interpretation [J], J Quality Technology,1995,27(2):99-108.
    82. Lowry C A, Montgomery D C. A review of multivariate control charts [J], HE Transactions,1995,27(6):800-810.
    83. Jackson J E. Multivariate quality control [J], Communications in Statistics:Theory and Methods,1985,14(10):2657-2688.
    84. Box G E. Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in one-way classification [J], The Annals of Mathematical Statistics,1954,25(2):290-302.
    85. Jackson J E, Mudholkar G S. Control procedures for residuals associated with principal component analysis [J], Technometrics,1979,21(3):341-349.
    86. Donoho D L, Johnstone L M, Kerkyacharian G, Picard D. Density estimation by wavelet thresholding [J], Annals of Statistics,1996,24(2):508-539.
    87. Martin E B, Morris A J. Non-parametric confidence bounds for process performance monitoring charts [J], J Process Control,1996,6(6):349-358.
    88. Bagajewicz M. On the probability distribution and reconciliation of process plant data [J], Computers & Chemical Engineering,1996,20(6-7):813-819.
    89. Levinson W. Approximate confidence limits for Cpk and control limits form non-normal process capabilities [J], Quality Engineering,1997,9(4):635-640.
    90.李裕奇.非参数统计方法[M],成都:西南交通大学出版社,1998.
    91. Chen Q, Wynne R J, Goulding P, Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring, Control Engineering Practice,2000,8(5):531-543.
    92. Albert S, Kinley R D. Multivariate statistical monitoring of batch processes:an industrial case study of fermentation supervision [J], Trends in Biotechnology,2001,19(2):53-62.
    93. Wong C W L, Escott R, Martin E B, Morris A J. The integration of spectroscopic and process data for enhanced process performance monitoring [J], The Canadian Journal of Chemical Engineering,2008,86(5):905-923.
    94. Lu N Y, Yang Y, Wang F L, Gao F R. Stage-based multivariate statistical analysis for injection molding [J], Proceedings of International symposium on advanced control of chemical processes,2003,471-476.
    95. Lu N Y, Gao F R, Yang Y, Wang F L. PCA-based modeling and on-line monitoring strategy for uneven-length batch processes [J], Industrial & Engineering Chemistry Research,2004,43(13),3343-3352.
    96. Lu N Y, Yang Y, Wang F L, Gao F R. A Stage-based Monitoring Method for Batch Process with Limited Reference Data [J],7th International Symposium on Dynamics and Control of Process Systems,2004.
    97. Martin E B, Morris A J. Enhanced bio-manufacturing through advanced multivariate statistical technologies [J], J Biotechnology,2002,99(3):223-235.
    98. Jain A K, Murty M N, Flynn P J. Data Clustering: A Review [J], ACM Computing Surveys,1999,31(3):264-323.
    99. Miller P, Swanson R E, Heckler C E. Contribution plots:A missing link in multivariate quality control [J], Applied Mathematics and Computation Science,1998,8(4):775-792.
    100.Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring [J], Chemometrics and Intelligent Laboratory Systems,2000, 51(1):95-114.
    101.陆宁云.多变量过程在线监测算法的研究以及在三水箱实验装置中的应用[D],沈阳:东北大学,2000.
    102.Johnson R A, Wichern D W. Applied multivariate statistical analysis [M], New Jersey: Prentice Hall,2002.
    103.Kano M, Tanaka S, Ohno H, Hasebe S, Hashimoto I. The use of independent component analysis for multivariate process control [J], Proceedings of International Symposium on Advanced Control of Industrial Processes,2002,423-428.
    104.Richards J E. Recovering dipole sources from scalp-recorded event-related-potentials using component analysis:principal component analysis and independent component analysis [J], International Journal of Psychophysiology,2004,54(3):201-220.
    105.Ahn H, Choi E, Han I. Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing [J], Expert Systems with Application,2007,33(1):181-191.
    106.Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis[J], J Process Control,2004,14(5):467-485.
    107.Chen J. Wang X Z. A New Approach to Near-Infrared Spectral Data Analysis Using Independent Component Analysis [J], J Chemical Information and Computer Sciences, 2001,41(4):992-1001.
    108.Lee J M, Yoo C K, Lee I B. Statistical process monitoring with multivariate exponentially weighted moving average and independent component analysis [J], J Chemical Engineering of Japan,2003,36(5):563-577.
    109.Kano M, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control:application of independent component analysis and external analysis [J], Computers & Chemical Engineering,2004,28(6-7):1157-1166.
    110. Lee J M, Yoo C K, Lee I B. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J], Chemical Engineering Science,2004,59(14):2995-3006.
    111.Camacho J. New methods based on the projection to latent structures for monitoring, prediction and optimization of batch processes [D], Technical University of Valencia, 2007.
    112.Eastment H T, Krzanowski W J. Cross-validatory choice of the number of components from a principal component analysis [J], Technometrics,1982,24(1):73-55.
    113.Giancarlo D, Tommasi C. Cross-validation methods in principal component analysis:a comparison [J], Statistical Methods and Applications,2002,11(1):71-82.
    114.Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models [J], J Chemometrics,1999,13(5):491-510.
    115.Birol G, Undey C, Parulekar S J, Cinar A. A morphologically structured model for penicillin production [J], Biotechnology and Bioengineering,2002,77(5):538-552.
    116.Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production [J], Computers & Chemical Engineering,2002,26(11):1553-1565.
    117.Zangirolami T C, Johansen C L, Nielsen J. Simulation of penicillin production in fed-batch cultivations using a morphologically structured model [J], Biotechnology and Bioengineering,1996,56(6):593-604.
    118.Lee J M, Yoo C K, Lee I B. On-line batch process monitoring using a consecutively updated multiway principal component analysis method [J], Computers & Chemical Engineering,2003,27(12):1903-1912.
    119.Li W H, Yue H H, Valle-Cervantes S, Qin S J. Recursive PCA for adaptive process monitoring [J], J Process Control 2000,10(5):471-486.
    120.Qin S J. Recursive PLS algorithms for adaptive data modeling [J], Computers & Chemical Engineering,1998,22(4-5):503-514.
    121.Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes [J], Control Engineering Practice,2003,11(6):613-632.
    122.Rannar S, Macgregor J F, Wold S. Adaptive batch monitoring using hierarchical PCA [J], Chemometrics and Intelligent Laboratory Systems,1998,41(1):73-81.
    123.Dayal B S, MacGregor J F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction [J], J Process Control,1997,7(3):169-179.
    124.Lennox J, Rosen C. Adaptive multiscale principal components analysis for online monitoring of wastewater treatment [J], Water Science Technology,2002,45(4-5):227-235.
    125.Lee D S, Vanrolleghem P A. Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis [J], Biotechnology and Bioengineering,2003, 82(4):489-497.
    126.Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA [J], Industrial & Engineering Chemistry Research,2005,44(15):5691-5702.
    127.Choi S W, Martin E B, Morris A J, Lee I B. Adaptive multivariate statistical process control for monitoring time-varying processes [J], Industrial & Engineering Chemistry Research,2006,45(9):3108-3118.
    128.Jin H D, Lee Y H, Lee G, Han C H. Robust recursive principal component analysis modeling for adaptive monitoring [J], Industrial & Engineering Chemistry Research, 2006,45(2):696-703.
    129.Lee H W, Lee M W, Park J M. Robust adaptive partial least squares modeling of a full-scale industrial wastewater treatment process [J], Industrial & Engineering Chemistry Research,2007,46(3):955-964.
    130.Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J], Industrial & Engineering Chemistry Research,2006,45(9):3095-3107.
    131.Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Combination of independent component analysis and principal component analysis for multivariate statistical process control [J], Proceedings of International Symposium on Design, Operation and Control of Chemical Plants,2002,319-324.
    132.He N, Zhang J M, Wang S Q. Combination of independent component analysis and multi-way principal component analysis for batch process monitoring [J], IEEE International Conference on Systems, Man & Cybernetics,2004,530-535.
    133.Ramaker H J, van Sprang E N M, Westerhuis J A, Smilde A K. Fault detection properties of global, local and time evolving models for batch process monitoring [J], J Process Control,2005,15(7):799-805.
    134.Joseph B, Brosliw C. Inferential control of processes:part Ⅰ, Ⅱ, Ⅲ [J]. AIChE J,1978, 24(3):485-509.
    135.Gulandoust M T, Morris A J, Tham M T. An adaptive estimation algorithm for inferential control [J], Industrial & Engineering Chemistry Research,1988,27(9):1658-1664.
    136.Tham M T, Montague G A, Morris A J, Lant P A. Soft-sensors for process estimation and inferential control [J], J Process Control,1991,1(1):3-14.
    137.Mejdell T, Skogestad S. Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression [J], Industrial & Engineering Chemistry Research,1991,30(12):2543-2555.
    138.Martens H, Naes T. Multivariate calibration (Second Edition) [M], Chichester:Wiley, 1994.
    139.Kresta J V, Marlin T E, MacGregor J F. Development of inferential process models using PLS [J], Computers & Chemical Engineering,1994,18(7):597-611.
    140.Hartnett M K, Lightbody G, Irwin G W. Dynamic inferential estimation using principal components regression (PCR) [J], Chemometrics and Intelligent Laboratory Systems, 1998,40(2):215-224.
    141.Brereton R G. Introduction to multivariate calibration in analytical chemistry [J], The Analyst,2000,125(11):2125-2154.
    142.Zhang J. Inferential feedback control of distillation composition based on PCR and PLS models [J], Proceedings of American Control Conference,2001,1196-1201.
    143.Li B, Hassel P A, Martin E B, Morris A J. A non-linear nested PLS algorithm [J], Computational Statistics & Data Analysis,2003,48(1):87-101.
    144.Westad F. Independent component analysis and regression applied on sensory data, J Chemometrics,2005,19(3):171-179.
    145.Trygg J. Prediction and spectral profile estimation in multivariate calibration [J], J Chemometrics,2004,18(3-4):166-172.
    146.Li B, Morris A J, Martin E B. Generalized partial least squares regression based on the penalized minimum norm projection [J], Chemometrics and Intelligent Laboratory Systems,2004,72(1):21-26.
    147.Ergon R. Reduced PCR/PLSR models by subspace projections [J], Chemometrics and Intelligent Laboratory Systems,2006,81(1):68-73.
    148.Jonsson S, Eriksson L A, van Bavel B. Multivariate characterisation and quantitative structure-property relationship modeling of nitroaromatic compounds [J], Analytica Chimica Acta,2008,621 (2):155-162.
    149.Kleinbaum D G, Kupper L L, Muller K E, Nizam A. Applied Regression Analysis and Other Multivariable Methods(Third Edition) [M], Beijing:China Machine Press,2003.
    150.Kutner M H, Nachtsheim C J, Neter J. Applied Linear Regression Models(Fourth Edition) [M], Beijing: Higher Education Press,2005.
    151.Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection [J], Pattern Recognition Letters,1994,15(11):1119-1125.
    152.H6skuldsson A. Variable and subset selection in PLS regression [J], Chemometrics and Intelligent Laboratory Systems,2001,55(1):23-38.
    153.Eklov T, Lundstrom I. Selection of variables for interpreting multivariate gas sensor data [J], Analytica Chimica Acta,1999,381(2-3):221-232.
    154.Walmsley A D. Improved variable selection procedure for multivariate linear regression [J], Analytica Chimica Acta,1997,354(1-3):225-232.
    155.Xu L, Zhang W J. Comparison of different methods for variable selection [J], Analytica Chimica Acta,2001,446(1-2):477-483.
    156.Abrahamsson C, Johansson J, Sparen A, Lindgren F. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets [J], Chemometrics and Intelligent Laboratory Systems,2003,69(1-2):3-12.
    157.Gusnanto A, Pawitan Y, Huang J, Lane B. Variable selection in random calibration of near-infrared instruments:ridge regression and partial least squares regression settings [J], J Chemometrics,2003,17(3):174-185.
    158.Galvao R K H, Araujo M C U, Fragoso W D, Silva E C, Jose G E, Soares S F C, Paiva H M. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm [J], Chemometrics and Intelligent Laboratory Systems, 2008,92(1):83-91.
    159.Ye S F, Wang D, Min S G. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection [J], Chemometrics and Intelligent Laboratory Systems,2008,91(2):194-199.
    160.Rubin 11. Injection molding theory and practice [M], New York:Wiley,1972.
    161.Yang Y, Gao F. Cycle-to-cycle and within-cycle adaptive control of nozzle pressures during packing-holding for thermoplastic injection molding [J], Polymer Engineering and Science,1999,39(10):2042-2063.
    162.Yang Y, Gao F. Adaptive control of injection velocity of thermoplastic injection molding [J]. Control Engineering Practice,2000,8(11):1285-1296.
    163.陈曦.基于质量的注塑过程建模方法研究[D],杭州:浙江大学,2002。
    164.Wold S, Antti H, Lindgren F, Ohman J. Orthogonal signal correction of near-infrared spectra [J], Chemometrics and Intelligent Laboratory Systems,1998,44(1-2):175-185.
    165.Sjoblom J, Svensson O, Josefson M, Kullberg H, Wold S. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra [J], Chemometrics and Intelligent Laboratory Systems,1998,44(1-2):229-244.
    166.Fearn T. On orthogonal signal correction [J], Chemometrics and Intelligent Laboratory Systems,2000,50(1):47-52.
    167.Zarei K, Atabati M, Malekshabani Z, Simultaneous spectrophotometric determination of iron, nickel and cobalt in micellar media by using direct orthogonal signal correction-partial least squares method [J], Analytica Chimica Acta,2006,556(1):247-254.
    168.Ghorbani R, Ghasemi J, Abdollahi B. Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares [J], J Hazardous Materials,2006,131(1-3):13-18.
    169.Nizai A, Yazdanipour A. Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares [J], J Hazardous materials,2007,146(1-2):421-427.
    170.Boulet J C, Doco T, Roger J M. Improvement of calibration models using two successive orthogonal projection methods. Application to quantification of wine mannoproteins [J], Chemometrics and Intelligent Laboratory Systems,2007,87(2):295-302.
    171.Centner V, Massart D L, Noord O E D, Jong S D, Vandeginste B M, Sterna C. Elimination of Uninformative Variables for Multivariate Calibration [J], Analytical Chemistry,1996, 68(21):3851-3858.
    172.Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS) [J], J Chemometrics, 2002,16(3):119-128.
    173.Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J. OPLS methodology for analysis of pre-processing effects on spectroscopic data [J], Chemometrics and Intelligent Laboratory Systems,2006,84(1-2):153-158.
    174.Eriksson L, Toft M, Johansson E, Wold S, Trygg J. Separating Y-predictive and Y-orthogonal variation in multi-block spectral data [J], J Chemometrics,2006,20(8-10): 352-361.
    175.Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J. The OPLS methodology for analysis of multi-block batch process data [J], J Chemometrics,2006, 20(8-10):362-369.
    176.Trygg J, Wold S.02-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter [J], J Chemometrics,2003,17(1):53-64.
    177.Trygg J.02-PLS for qualitative and quantitative analysis in multivariate calibration [J], J Chemometrics,2002.16(6):283-293.
    178.Efron B, Tibshirani R J. An Introduction to the Bootstrap [M], New York:Chapman & Hall,1993.
    179.Wehrens R, Putter H, Buydens L M C. The bootstrap:a tutorial [J], Chemometrics and Intelligent Laboratory Systems,2000,54(1):35-52.
    180.Zhang J, Martin E B, Morris A J, Kiparissies C. Inferential estimation of polymer quality using stacked neural networks [J], Computers & Chemical Engineering,1997,21 (sup): 1025-1030.
    181.Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks [J], Neural Networks,1999,12(6):927-928.
    182.Zhang J. Developing robust non-linear models through bootstrap aggregated neural networks [J], Neurocomputing,1999,25(1):93-113.
    183.Zhang J, Morris A J, Martin E B, Kiparissies C. Prediction of polymer quality in batch polymerization reactors using robust neural networks [J], Chemical Engineering J,1998, 69(2):135-143.
    184.Shen Q, Jiang J H, Shen G L, Yu R Q. Ridge estimated orthogonal signal correction for data preprocessing prior to PLS modeling:QSAR studies of cyclooxygenase-2 inhibitors [J], Chemometrics and Intelligent Laboratory Systems,2006,82(1-2):44-49.