1. [地质云]滑坡
多元制造过程能力分析及质量诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际的制造过程中,被加工零部件或产品往往具有多个质量特性,且这些质量特性之间存在一定的相关性,如何确定该过程的过程能力指数以及对过程质量进行诊断,是迫切需要解决的问题,该问题的研究不仅对多元制造过程能力分析研究具有重要的意义,而且对多元制造过程的质量进行监控和诊断均具有一定的理论意义和实用价值。
     本文在实地调查的基础上,以制造生产过程为研究对象,针对具体的问题,采用主成分分析、支持向量机等方法和技术,系统地研究了多元制造过程中多元过程能力指数分析及质量诊断的理论方法和技术,这对于制造企业分析其过程现状,从而提高其产品的质量具有很重要的意义。本文的研究内容主要包括:
     1.生产过程质量控制与诊断体系构建。针对制造企业过程中的质量的问题,引起产品质量缺陷的既有过程运行参数也有设备及零部件因素,较完善地构建了生产过程质量控制与诊断体系与流程,更好地考虑了产品加工过程中导致产品质量缺陷的深层次原因,为制造过程波动溯源和质量改进提供有力和明确的支持。
     2.多元过程能力指数的度量与构建。产品的制造过程能力体现了过程稳定地实现加工质量的水平,过程能力分析的目的是研究制造过程的变异相对于设定公差的满足程度。由于产品需要多个质量特性进行描述,因而增加了多元过程能力分析的复杂性,需要对其进行降维,以简化分析过程。首先应用主成分分析法对多元过程进行降维,得到主成分分量的规格区间。在此基础上,首先提出基于体积比的改进Taam多元过程能力指数,并对其进行了统计假设检验。之后,利用主成分分量的概率密度函数,给出了多元过程的三种不合格品率,并基于此进行了过程能力分析。
     3.多元质量控制与诊断应用研究。在多元质量控制中,由于多个质量特性之间存在相关性的问题,多元控制图一旦发出报警信号,很难判断是哪个或者是那些变量的组合出现了问题。针对实际多元过程中均值偏移问题应用支持向量机方法进行了诊断研究,首先选取要研究的变量,每一个变量分为正常和异常两种情况,每一个变量分别用一个SVM分类模型来诊断该变量是否发生偏移,在对每一个变量的偏移进行诊断时,同时考虑了其他变量对该变量的影响,模型子个数与过程质量特性个数相等,最终结果将多元过程均值偏移划分成不同的模式组合,从而实现过程质量的诊断。
In manufacturing practice, the quality of a process or product is usually characterized by multiple correlated critical characteristic which are correlated. It is critical to assess the process capability and to diagnose the assignable causes in these cases in quality engineering. This dissertation mainly studies the multivariate process capability analysis (MPCA) and multivariate process diagnosis in manufacturing process with multivariate characteristics. Aiming at this objective, two multivariate process capability indices (MPCIs) are proposed to assess the process capability and a monitoring and diagnosis scheme is proposed and applied in multivariate manufacturing application.
     With the introduction of basic theories and methods of MPCIs and multivariate diagnosis approaches, the proposed MPCIs and the process monitoring and diagnosis scheme are proposed as follows:
     Firstly, a monitoring and diagnosis scheme is constructed based on statistical process control and multivariate quality diagnosis methods. The proposed scheme is well developed to detect the abnormal signal when the process is out of control, and to estimate the assignable causes which lead to the out-of-control of the manufacturing process.
     Secondly, two multivariate process capability indices based on principle component analysis (PCA) are proposed to estimate the process capability. Before measuring MPCIs, PCA is used to reduce the data dimension, and the tolerance of principle components (PCs) can be obtained. Then the MPCI proposed by Taam et al. is modified based on the PCs’tolerance, and the confidence interval is estimated through hypothesis test. Moreover, the estimation of non-conforming proportion on the basis of the probability density function of PCs is proposed to analyze the process capability. Case studies show that the two methods of MPCA are both convenient to assess multivariate process.
     Thirdly, the application of multivariate process control and diagnosis is studied in automobile manufacturing. The diagnosis approach based on support vector machine (SVM) is proposed to find the assignable causes after the multivariate control chart gives an alarm. The classification model based on SVM is suggested to detect the shift for each variable, while considering the effects of other variables. Therefore, different combinations of mean shifts of multivariate process are obtained and used to find the assignable causes. Case study shows that the identification of assignable causes is effective in diagnosing multivariate process.
引文
[1] Wang F K, Quality evaluation of a manufactured product with multiple characteristics, Quality and Reliability Engineering International, 2006, 22: 225-236
    [2] Wu C W, Pearn W L, Kotz S, An overview of theory and practice on process capability indices for quality assurance, International Journal of Production Economics, 2009, 117: 338-359
    [3]王立岩,唐加福,宫俊,多元过程能力指数的研究综述,控制理论与应用, 2009, 26(10): 1118-1125
    [4]张根保,何桢,刘英,质量管理与可靠性,北京:中国科学技术出版社, 2005
    [5] Juran E D, Juran's qualtiy control handbook, New York: McGraw-Hill, 1974
    [6] Kane V E, Process capability indices, Journal of Quality Technology, 1986, 18: 41-52
    [7] Pearn W L, Kotz S, Johnson N L, Distributional and inferential properties of process capability indices, Journal of Quality Technology, 1992, 24(4): 216-231
    [8] Montgomery D C, Statistical quality control: A modern introduction, New York: Wiley, 2009, 345-366
    [9] Kotz S, Johnson N L, Process capability indices, London: Chapman & Hall, 1993
    [10] Raissi S, Multivariate process capability indices on the presence of priority for quality characteristics, Journal of Industrial Engineering International, 2009, 5(9): 27-36
    [11] Bothe D R, A capability study for an entire product, ASQC Quality Congress Transactions, Nashville, TN, 1992, 172-178
    [12] Bernardo J M, Irony T Z, A general multivariate bayesian process capability index, The Statistician, 1996, 45(4): 487-502
    [13] Niverthi M, Dey D K, Multivariate process capability: A bayesian perspective, Communications in Statistics: Simulation and Computation, 2000, 29(2): 667-687
    [14] Kotz S, Johnson N L, Process capability indices—a review, 1992-2000, Journal of Quality Technology, 2002, 34(1): 1-19
    [15] Chan L K, Cheng S W, Spiring F A, A new measure of process capability, cpm, Journal of Quality Technology, 1988, 20: 162-175
    [16] Chan L K, Cheng S W, Spiring F A, A multivariate measure of process capability, International Journal of Modeling and Simulation, 1991, 11: 1-6
    [17] Hubele N F, Shahriari H, Cheng C S, A bivariate capability vector, Keats J B, Montgomery D C, Statistical process control in manufacturing, New York: Marcel Dekker, 1991, 299-310
    [18] Davis R D, Kaminsky F C, Saboo S, Process capability analysis for processes with either a circular or a spherical tolerance zone, Quality Engineering, 1992, 5: 41-54
    [19] Wierda S J, Multivariate quality control-estimation of the percentage of good product, Groningen, Netherlands: University of Groningen, 1992
    [20] Taam W, Subbaiah P, Liddyy J W, A note on multivariate capability indices, Journal of Applied Statistics, 1993, 20(3): 339-351
    [21] Wierda S J, A multivariate process capability index, Transactions of the ASQC Quality Congress, 1993: 342-348
    [22] Karl D P, Morisette J, Taams W, Some applications of a multivariate capability index in geometric dimensioning and tolerancing, Quality Engineering, 1994, 6: 649-665
    [23] Mukherjee S P, Singh N K, Sampling properties of an estimate of the bivariate process capability index, Economic Quality Control, 1994, 9: 73-78
    [24] Wierda S J, Multivariate statistical process control—recent results and directions for future research, Statistica Neerlandica, 1994, 48(2): 147-168
    [25] Shahriari H, Hubele N F, Lawrence F P, A multivariate process capability vector, Proceedings of the 4th Industrial Engineering Research Conference, 1995, 304-309
    [26] Hellmich M, Wolff H, A new approach for describing and controlling process capability for a multivariate process, Proceedings of the ASA Section on Quality and Productivity, 1996: 44-48
    [27] Li Y, Lin C, Multivariate cp value, Chinese Journal of Applied Probability and Statistics, 1996, 12: 132-138
    [28] Beck C, Ester S, Multicriteria capability indexes, Spektrum, 1998, 24: 179-187
    [29] Wang F K, Chen J C, Capability index using principal components analysis, Quality Engineering, 1998, 11(1): 21-27
    [30] Tang P F, Barnett N S, Capability indices for multivariate processes, Division of Computation, Mathematics, and Science, Melbourne, Australia: Victoria University, 1998
    [31] Veevers A, Viability and capability indices for multiresponse processes, Journal of Applied Statistics, 1998, 25(4): 545-558
    [32] Wang F K, Hubele N F, Quality evaluation using geometric distance approach, International Journal of Reliability, Quality and Safety Engineering, 1999, 6: 139-153
    [33] Veevers A, Capability indices for multiresponse processes, Park S H, Vining G G, Statistical process monitoring and optimization, New York: Marcel Dekker, 1999, 241-256
    [34] Wang F K, Du T C T, Using principal component analysis in process performance for multivariate data, Omega-International Journal of Management Science, 2000, 28(2): 185-194
    [35] Wang F K, Hubele N F, Quality evaluation of geometric tolerance regions in form and location, Quality Engineering, 2001, 14: 203-209
    [36] Chen H, A multivariate process capability index over a rectangular solid tolerance zone, Statistica Sinica, 1994, 4: 749-758
    [37] Foster E J, Barton R R, Gautam N, Truss L T, TEW J D, The process-oriented multivariate capability index, International Journal of Production Research, 2005, 43(10): 2135-2148
    [38]吴海英,生产过程评价指标的统计分析: [博士学位论文],郑州:郑州大学, 2005
    [39]蒋家东,冯允成,商广娟,多元过程能力指数方法的比较研究,航空标准化与质量, 2006, 3: 16-20
    [40] Pearn W L, Wang F K, Yen C H, Multivariate capability indices: Distributional and inferential properties, Journal of Applied Statistics, 2007, 34(8): 941-962
    [41] Yen C H, Pearn W L, Select better suppliers based on manufacturing precision for processes with multivariate data, International Journal of Production Research, 2009, 47(11): 2961-2974
    [42] Wang F K, Hubele N F, Lawrence F P, Miskulin J O, Shariari H, Comparison of three multivariate process capability indices, Journal of Quality Technology, 2000, 32: 263-275
    [43] Pan J N, Lee C Y, New capability indices for evaluating the performance of multivariate manufacturing processes, Quality and Reliability Engineering International, 2010, 26: 3-15
    [44] Polansky A, A smooth nonparametric approach to multivariate process capability, Technometrics, 2001, 43: 199-211
    [45] Yeh A B, Chen H, A nonparametric multivariate process capability index, International Journal of Modeling and Simulation, 2001, 21(3): 218-223
    [46]马义中,李言俊,多元质量特性过程能力的一种评价方法,系统工程, 2002, 20(1): 77-81
    [47] Castagilola P, Castellanos J-V G, Capability indices dedicated to the two quality characteristics case, Quality Technology and Quantitative Management, 2005, 2(2): 201-220
    [48] Ahmad S, Abdollahian M, Zeephongsekul P, Abbasi B, Multivariate nonnormal process capability analysis, The International Journal of Advanced Manufacturing Technology, 2009, 44: 757-765
    [49] González I, Sánchez I, Capability indices and nonconforming proportion in univariate and multivariate process, The International Journal of Advanced Manufacturing Technology, 2009, 44: 1036-1050
    [50]马义中,多元质量特性的过程能力指数,工业工程, 2001, 4(4): 22-24
    [51]陈涛,基于因子分析的多元工序能力指数,机床与液压, 2003, 31(1): 284-286
    [52] Shinde R L, Khadse K G, Multivariate process capability using principal component analysis, Quality and Reliability Engineering International, 2009, 25: 69-77
    [53]何曙光,齐二石,何桢,多元质量特性过程能力分析的投影寻踪方法,管理科学, 2007, 20(2): 9-14
    [54] Luce?o A, A process capability index with reliable confidence intervals, Communications in Statistics: Simulation and Computation, 1996, 25: 235-245
    [55]朱慧明,韩玉启,吴正刚,基于随机参数的贝叶斯过程能力指数评价模型,湖南大学学报, 2004, 31(6): 105-109
    [56]朱慧明,韩玉启,多元质量特性的贝叶斯过程能力指数,哈尔滨工业大学学报, 2005, 37(4): 498-500
    [57] Boyles R A, The taguchi capability index, Journal of Quality Technology, 1991, 23(1): 17-26
    [58] Spring F, An alternative to taguchi's loss functionASQC Quality Congress Transactions, ASQC Quality Press, Year, 660-665
    [59]魏世振,韩玉启,过程能力指数在质量损失研究中的应用,管理工程学报, 2002, 4(16): 64-66
    [60]白宝光,张世英,基于经济性设计的过程能力指数优化,内蒙古工业大学学报, 2003, 22(3): 237=240
    [61]赵丽萍,王明东,经济性多元质量控制诊断模型的研究与应用,设计与研究, 2005, (1): 1-3
    [62]杨剑锋,徐济超,贺金凤,等,基于不同质量损失函数的过程能力指数比较,工业工程与管理, 2006, 3: 37-45
    [63]常广蔗,杨剑锋,几种典型过程能力指数的比较,制造技术与机床, 2006, 10: 92-96
    [64] Efron B, Tibshirani R J, Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy, Statistical Science, 1986, 11: 54-77
    [65]田志友,田澎,王涣尘,基于bootstrap抽样的多元过程能力指数估计,管理工程学报, 2006, 2(2): 74-77
    [66]何桢,王晶,李湧范,基于bootstrap方法的过程能力指数区间估计,工业工程, 2008, 11(6): 1-4
    [67]何桢,李国春,石金桥,工序质量分析与控制中的多变异分析方法,系统工程理论与实践, 2000, 20(5): 42-46
    [68]孔祥芬,何桢,宗志宇,基于多变异分析方法检验常用的过程能力指数,设计与研究, 2006, 4: 15-19
    [69]何桢,孔祥芬,宗志宇,董延峰,基于mva分析的过程能力指数的置信区间研究,管理科学学报, 2007, 10(3): 30-36
    [70]孔祥芬,何桢,宗志宇,基于矩法的非正态过程能力指数估算方法的研究,工业工程, 2007, 10(1): 53-55,102
    [71]孔祥芬,何桢,车建国,供应商进行正态样本截尾处理的过程能力判断,系统工程理论与实践, 2008, 28(6): 75-80
    [72]孔祥芬,何桢,车建国,靳慧斌,不同标准差估计方法下的过程能力指数的置信区间的比较研究,应用概率统计, 2009, 25(2): 164-170
    [73]张公绪,质量控制与诊断七十年,质量与可靠性, 1998, 4: 23-27
    [74]卓德保,徐济超,质量诊断技术及其应用综述,系统工程学报, 2008, 23(3): 338-346
    [75]卢晓春,软锋,产品质量管理方法研究述评,机床与液压, 2004, 13: 13-15
    [76] Jackson J E, Principal component and factor analysis: Part i- pricipal component, Journal of Quality Technology, 1980, 12(4): 201-213
    [77] Alt F B, Multivariate quality control, Johnson N L, Kotz S, Encyclopedia of statistical sciences, New York: Wiley, 1985
    [78] Murphy B J, Screening out-of-control variables with t-square multivariate quality control procedures, The Statistician, 1987, 36(5): 571-583
    [79] Chua M, Montgomery D C, Investigation and characterization of a control scheme for multivariate quality control, Quality and Reliability Engineering International, 1992, 8(1): 37-44
    [80] Runger G C, Alt F B, Montgomery D C, Contribution to a multivariate statistical process control signal, Communications in Statistics: Theory and Methods, 1996, 25(10): 2203-2213
    [81] Tracy N D, Yong J C, Mason R L, Multivariate control charts for individual observations, Journal of Quality Technology, 1996, 24(2): 88-95
    [82] Pugh G A, Synthetic neural networks for process control, Computer and Industrial Engineering, 1989, 17(1): 24-26
    [83] Yu J B, Xi L F, A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes, Expert Systems with Applications, 2009, 36(1): 909-921
    [84] Niaki S T A, Abbasi B, Fault diagnosis in multivariate control charts using artificial neural networks, Quality and Reliability Engineering International, 2005, (21): 825–840
    [85] Guh R S, A hybird learning-based model for on-line detection and analysis of control chart patterns, Computer and Industrial Engineering, 2005, 49(1): 35-62
    [86] Guh R S, On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach, Quality and Reliability Engineering International, 2007, 23: 367-385
    [87] Guh R S, Simultaneous process mean and variance monitoring using artifical neural networks, Computer and Industrial Engineering, 2010, 58(4): 739-753
    [88] Yu J B, Xi L F, Zhou X J, Intelligent monitoring and diagnosis of manufacturing processes using an integrated approach of kbann and ga, Computers in Industry, 2008, 59(5): 489-501
    [89] Wang T Y, Chen L H, Mean shifts detection and classification in multivariate process: A neural-fuzzy approach, Journal of Intelligent Manufacturing, 2002, 13: 211-221
    [90] Zobel C W, Cook D F, Nottingham Q J, An augmented neural network classification approach to detect mean shifts in correlated manufacturing process parameters, International Journal of Production Research, 2004, 42(4): 741-758
    [91] Hwarng H B, Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme, International Journal of Production Research, 2004, 42(3)
    [92] Heavlin W D, Statistical properties of capability indices, Sunnyvale, CA: Devices A M, 1998
    [93] Zhang N F, Steinback G A, Wardrop D M, Interval estimation of process capability index c_pk, Communications in Statistics: Theory and Methods, 1990, 19(12): 4455-4470
    [94] Marcucci M O, Beazley C C, Capability indices: Process performance measures, ASQC Quality Congress Transactions, 1988, Dallas: 516-523
    [95] Chan L K, Xiong Z, Zhang D, On the asymptotic distributions of some process capability indices, Communications in Statistics: Theory and Methods, 1990, 19(1): 11-18
    [96] Jackson J E, A user's guide to principal components, New York: Wiley-Interscience, 1991
    [97] Mason R L, Tracy N D, Young J C, A practical approach for interpreting multivariate t2 control chart, Journal of Quality Technology, 1997, 29(4): 396-406
    [98] Mason R L, Tracy, N. D., and Young, J. C., Decomposition of t2 for multivariate control chart interpretation., Journal of Quality Technology, 1995, (27): 99-108
    [99] Mason R L, Young J C, Improving the sensitivity of the t2 statistic in multivariate process control, Journal of Quality Technology, 1999, 31(2): 155-165
    [100] Hecht-Nielsen R, Theory of back propagation neural network, International Joint Conference on Neural Networks, 1989, 1(1): 593-603
    [101]魏勇,基于具有模糊输出bp网络的决策分类模型的研究: [硕士学位论文],北京:北京工业大学, 2002
    [102] Aoki T, Ceravolo R, Stefano A D, al. e, Seismic vulnerability assessment of chemicalplants through probabilistic neural networks, Reliability Engineering and System Safety, 2002, 77(9): 263-268.
    [103] Zhao Y M, He Z, Applications of cascade correlation neural networks for manufacturing process monitoring, 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, 2010, 47-50
    [104]马义中,减小和控制多元质量特性波动的理论和方法: [博士学位论文],西安:西北工业大学, 2002
    [105]张杰,阳宪惠,多变量统计过程控制,北京:化学工业出版社, 2000
    [106] LIANG J, Qian J X, Multivariate statistical process monitoring and control: Recent developments and applications to chemical industry, Chinese journal of Chemical Engineering, 2003, 11(2): 191-203
    [107]郭明,基于数据驱动的流程工业性能监控与故障诊断研究: [博士学位论文],杭州:浙江大学, 2004
    [108]钱仲侯,王成斌,孟玉珂,多元质量控制,北京:中国铁道出版社, 1995
    [109]何曙光,齐二石,何桢,基于投影变换的多元统计过程控制与诊断模型,天津大学学报, 2008, 41(12): 1512-1517
    [110]何曙光,齐二石,何桢,基于投影寻踪方法的多元质量控制图,工业工程, 2008, 11(1): 25-28
    [111]钟秉林,黄仁,机械故障诊断学,北京:机械工业出版社, 2006
    [112] Kotz S, Lovelace C R, Process capability indices in theory and practices, London: Amold, 1998
    [113] Seber G A F, Multivariate observations, New York: John Wiley, 1984
    [114]何曙光,何桢,齐二石,控制图均值偏移诊断的支持向量机模型研究,数理统计与管理, 2011,已录用
    [115] Cristianini N, Shawe-Taylor J,支持向量机导论(李国正,王猛,曾华军译),北京:电子工业出版社, 2007
    [116]何桢,高雪峰,周延虎,张炎,基于支持向量机原料乳细菌总数分类检测研究,计算机工程与应用, 2007, 43(22): 186-190,213