1. [地质云]滑坡
三相三电平光伏并网发电系统中若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪以来,随着经济全球化步伐的不断加速,工业和经济迅猛发展,能源的需求急剧增加’。而石化能源的日益匮乏和环境的不断污染已经成为制约人类社会发展的两大重要因素,因此世界各国均把大力发展新能源作为重要的能源战略决策。其中太阳能以其无噪声、无污染、可持续利用等一系列优点,成为目前最具发展潜力的绿色能源之一。光伏并网发电是太阳能利用的主要形式之一,深入地研究光伏并网发电技术,对于解决能源危机,减少环境污染,促进经济健康发展具有重大的战略意义。本文基于二极管箝位式的三电平光伏并网逆变平台,对并网逆变器中的一些关键技术进行了深入的研究。
     针对光伏阵列最大功率点追踪的问题,分析了现有的各种最大功率点追踪方法,比较了各自的优缺点,指出扰动观察法是性价比较高的一种方法。针对扰动观察法在光照快速变化情况下的误判问题,在dP-P&O (dP-Perturbation and Observation\功率差值-扰动观察法)方法基础上,引入光照变化加速度的概念,对光照变化过程进行了更精确的建模,进一步减少最大功率跟踪过程中的误判现象。同时,利用功率守恒原理,对光伏阵列输出和逆变器输出功率之间的关系进行了分析,得出通过比较扰动前后并网电流的变化来实现最大功率点追踪的方法。这种方法不需要对光伏阵列的输出电压和电流进行检测,降低了系统的成本。仿真和实验结果表明,上述方法是可行的,并且系统在动态调节过程中能够保持稳定。
     针对逆变器并网前电网同步电压相序和缺相的检测问题,对目前常用的检测方法进行了归类分析,比较了各自的优缺点,并指出最适合并网逆变器的检测方法应该是:不需要搭建额外的硬件电路,只需利用控制时必须采集的数据,在数字控制芯片内部通过简单的算法就能实现相序检测,并且对三相电网电压畸变的情况不敏感。接着,在三相并网逆变器锁相环dq-PLL的基础上,提出了一种通过检测电网电压角频率来判断三相电网相序的方法。这种方法只需要使用并网逆变器正常工作时需要检测的三相电网电压,无需增加额外的硬件。仿真结果表明,这种相序检测方法是可行的,并且在电网存在直流分量、谐波、不平衡等畸变的情况下仍能正常工作。
     针对逆变器并网工作后的孤岛检测问题,对现有的孤岛检测方法进行了深入的分析和比较,指出孤岛检测技术的发展方向是:电网正常时,对输出电能质量的影响要小;电网断电时,能够迅速检测出“孤岛”现象。针对上述两点,提出了一种基于无功电流-频率正反馈的孤岛检测方法,推导了正反馈成立的参数条件,讨论了方法实施的具体步骤。仿真和实验证明,在电网正常时,该方法对系统几乎没有扰动,但是一旦电网出现“孤岛”的情况,无功电流和频率之间的正反馈会让频率迅速朝一个方向变化,直到触发孤岛保护。
     针对LCL滤波器的谐振问题,分析了目前常用的消除谐振的方法,比较了各自的优缺点,指出目前的方法存在损耗增加、引入噪声或者设计难度较大等问题。为了从瞬时功率的角度对谐振电流进行补偿,对目前几种坐标系下的瞬时功率理论进行了分析,得出的结论是p-q-r理论对三相电流的控制有足够的自由度。最后,在p-q-r理论基础上,分析了p-q-r中坐标变换及功率的定义,得出改善输出电流波形的方法,并将其应用在并网逆变器的控制中。仿真和实验证明,这种方法能够有效改善LCL滤波器的谐振问题,提高输出波形质量。应用在三相三电平光伏并网逆变器中,在降低电流THD的同时,系统还能够保持稳定。
Since the20th century, the industry and economy develop rapidly with the accelerating of economic globalization and the energy demand has increased dramatically. The scarcity of fossil fuels and environmental pollution has become the important factors to restrict the continuous development of human society, so many countries make the important strategic decision to develop new energy. As one of the new energy, solar energy has been developed rapidly because it is clean and not noisy. Photovoltaic power generation is one of the main ways to use solar energy, so studying on the grid-connected power generation technology is very useful to solve the energy crisis and to reduce environmental pollution. Based on the diode-clamped three-level PV grid-connected inverter, this paper studies some of the key technologies in-depth.
     Maximum power point tracking (MPPT) is the effective method to improve the efficiency of photovltaic devices. Perturbation and observation method (P&O) is one of the popular methods, but it is unable to determine the right tracking direction when the weather changes rapidly. In order to reduce the mistake during the process of MPPT, the concept of acceleration of illumination changes is introduced to rebuild the process of illumination changes based on dq-P&O method. Meanwhile, this paper analyzes the relationship between the power of PV cells and the power of the inverter by power equilibrium principle, and gets a conclusion that the MPPT method can be implemented by compare the output current of the inverter with before.This method is not required to detect the output voltage and current of photovoltaic cells, so the cost is reduced.Simulation and experimental results show that the method is available and the system can maintain stability.
     Before connecting to the grid, the synchronous voltage phase sequence of grid must be detected to ensure the inverter can work normally after connected. Based on the dq-PLL (Phase-locked loop based on dq coordianate transformation), this paper proposes a method to detect the phase sequence by using the dq-PLL output angular frequency. This method only needs to use the voltage of three-phase grid which is required to control grid-connected inverter normally without adding additional hardware. Simulation results show that the phase detection method is feasible, even if the grid voltage has harmonics or is unbalanced, this method works normally too.
     Islanding detection is one of the most important functions in the photovoltaic power generation system. In order to eliminate the non-detection zone and meanwhile minimize the effect on the power quality, a novel islanding detection method using the positive feedback between reactive current and frequency is proposed based on the phase-locked loop of three-phase PV grid-connected inverter. The paremeters are calculated out to make the postive feedback successful and the flowchart of this method is given out. Simulation and experiments show that the method almost has no effect on the system when the grid is normal. But when the islanding happens, the positve feedback between reactive current and frequency will change the frequency quickly in one direction until triggering the islanding protection.
     LCL filter has been widely used in grid-connected inverter because it has a better filtering effect on high-frequency. But the extra pole introduced by LC circuit induces resonance which will cause the system unstable. Some methods have been proposed to solve this problem, but each method has its shortcoming. In order to solve this problem with instantaneous power, instantaneous power theories in diffient coordinates are analysed and the result is that the p-q-r theory has the sufficient degree of freedom to control three-phase currents. At lase, based on the p-q-r theory, this paper presents a method to improve this problem. Simulations and experiments show that the method can effectively improve the output of the three-phase grid-connected inverters and maintains the system stable during the working process.
引文
[1]赵争鸣,刘建政,孙晓瑛等.太阳能光伏发电及其应用[M],科学出版社,2005.
    [2]温鸿钧.世界天然铀资源可用多少年[J].中国核工业,2011.3:52-55.
    [3]可燃冰,百度百科.http://baike.baidu.com/view/32145.htm.
    [4]岩石气,百度百科.http://baike.baidu.com/view/2236850.htm.
    [5]黄其励.加快能源结构调整,积极发展可再生能源[J].现代电力,2007,24(5):1-5.
    [6]地热能.百度百科.http://baike.baidu.com/view/66264.htm.
    [7]海洋能.百度百科.http://baike.baidu.com/view/65613.htm.
    [8]我国海洋能总蕴藏量约8亿千瓦 海洋电力前景广阔. 中国新能源网.http://www.newenergy.org.cn/html/0084/4160816761.html.
    [9]孔令珍.中国地热能发展趋势[J].煤炭技术,2006,25(7):107-108.
    [10]江泽民.对中国能源问题的思考[J].中国能源,2008,30(4):5-19.
    [11]烧5吨垃圾能发3千多度电,抵1吨标准煤发电量.海都网.http://www.nhaidu.com/news/32/n-264532.html
    [12]吴理博,赵争鸣,刘建政等.具有无功补偿功能的单级式三相光伏并网系统[J].电工技术学报,2006,21(1):28-32.
    [13]赵为.太阳能光伏并网发电系统的研究[D].合肥工业大学博士学位论文,2003.
    [14]吕建,殷洪亮.太阳电池及其发展方向[J].中国建设动态:阳光能源,2005,10:78-80.
    [15]马胜红,陆虎俞.太阳能光伏发电技术(1)光伏发电与光伏发电系统[J].大众用电,2006,1:38-40.
    [16]李文婷,刘宏,陈慧玲.国内外太阳能光伏发电发展综述[J].青海电力,2004,23(4):3-6.
    [17]褚文博,隆涛.美国光伏产业路线图.新材料产业[J],2006,1:48-51.
    [18]2010年我国光伏电池产量占全球五成.中国制造网,2011-02-01.http://cn.made-in-china.com/info/article-617614.html.
    [19]张根发:高效太阳能电池的实验室效率已达到27%.索比太阳能,2010-08-13.http://www.solarbe.com/news/content/2010/8/12698.html.
    [20]友达光电展出全球最高效率光伏组件.太阳能光伏网,2011-02-22.http://solar.ofweek.com/2011-02/ART-260008-8460-28460125.html.
    [21]陈诚.制定阳光政策,享受阳光能源——发展我国太阳能光伏发电产业的政策措施[J]. 太阳能,2006(5):11-12.
    [22]中国光伏发电产业前景逆转,开始回温.中国电力物资门户,2011-08-29.http://www.zhongsou.net/电力物资/news/12582399.html.
    [23]熊远生.太阳能光伏发电系统的控制问题研究[J].浙江工业大学博士学位论文,2009.
    [24]张超.光伏并网发电系统MPPT及孤岛建成新技术的研究[J].浙江大学博士学位论文,2006.
    [25]焦在强,许洪华.单级式并网光伏逆变器[J].可再生能源,2004,5:34-36.
    [26]吴理博,赵争鸣,刘建政等.具有无功补偿功能的单级式三相光伏并网系统[J].电工技术学报,2006,21(1):28-32.
    [27]张超,王章权,蒋燕君等.无差拍控制在光伏并网发电系统中的应用[J].电力电子技术,2007,41(7):3-5.
    [28]余运江,李武华,邓焰等.光伏并网逆变器拓扑结构分析与性能比较[J].苏州市职业大学学报,2010,21(1):13-18.
    [29]王建军.太阳能光伏发电应用中的温度影响[J].青海师范大学学报:自然科学版,2005,1:28-30.
    [30]Hohm D P, ROPP M E. Comparative study of maximum power point traeking algorithms using an experimental, programmable, maximum power pointtracking test bed[C]. Photovoltaic Specialists Conference,2000.Conference Record of the Twenty-Eighth IEEE, 2000:1699-2702.
    [31]Femia N, Petrone G., Spagnuolo G, et al. Optimizing sampling rate of P&O MPPT technique. Power Eleetronies Speeialists Conferenee[C],2004. PESC04.2004 IEEE 35th Annual,2004: 1945-1949.
    [32]Huynh P, Cho B H. Design and analysis of microprocessor controlled peak power tracking system[J]. In Proc.27th IECEC,1992,1:67-72.
    [33]Wasynczuk O. Dynamic behavior of a class of photovoltaic power systems[J]. IEEE Trans. Power App.Syst,1983,102,3031-3037.
    [34]Tae Y K, HoG A, Seung K P, et al. A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation[C]. IEEE International Symposium on Industrial Electronics,2001.Proceedings.ISIE 2001 Pusan IEEE,2001: 1011-1014.
    [35]Sullivan C R, Powers M J. A high-efficiency maximum power point tracker for photovolatic array in a solar-powered race vehicle[C]. In Proc. IEEE PESC,1993:574-580.
    [36]Wu T F, Chang C H, Chen Y K. A fuzzy-logic-controlled single-stage converter for PV-powered lighting system application[J]. IEEE Trans.On Industrial Electronics,2000, 47(2):287-296.
    [37]胡义华,陈昊,徐瑞东等.一种两阶段变步长最大功率点控制策略[J].电工技术学报,2010,25(8):162-166.
    [38]朱铭炼,李臣松,陈新等.一种应用于光伏系统MPPT变步长扰动观察法[J].电力电子技术,2010,44(1):20-22.
    [39]郭明明,沈锦飞.基于改进变步长电导增量法光伏阵列MPPT研究[J].电力电子技术,2011,45(7):14-16.
    [40]刘敏安,王佳佳,陈湘等.基于变步长电导增量的光伏阵列MPPT控制策略的优化[J].大功率变流技术,2011,5:21-25.
    [41]Dezso S, Remus T, Jochen H, et al. Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions [J]. IEEE Trans. Industrial Electronics,2008,7, 55(7):2629-2637.
    [42]冯冬青,马军磊,沈大中.基于模糊神经网络的光伏系统MPPT控制方法[J].计算技术与自动化,2007,26(4):25-27,40.
    [43]张淼,吴捷.滑模技术在PV最大功率追踪系统中的应用[J].电工技术学报,2005,20(3):90-93.
    [44]唐彬,马颖,崔岩等.基于SVM的光伏最大功率跟踪的预测研究[J].西安工业大学学报,2007,27(4):371-375.
    [45]代璐.光伏并网发电系统中孤岛检测方法研究[D].重庆大学硕士学位论文,2011.
    [46]陈国强.三相单级光伏系统并网控制及孤岛保护[D].华中科技大学硕士学位论文2007.
    [47]陈柱峰.三相交流电相序、缺相检测保护电路设计[J].湖南农机,2009,36(1):34-36.
    [48]姚广平,蔡小颀.一种相序判定方法分析及实用电路[J].江苏工业学院学报,2003,15(2):50-52.
    [49]冷惠文,侯霞,王东兴.一种三相电源相序与断相自动检测电路[J].电测与仪表,2003,39(449):35-38.
    [50]张宋超,尹文庆,胡飞等.一种数字式可控整流电路相序相位检测方法[J].科学技术与工程,2009,9(17):5164-5157,5171.
    [51]王栋,刘利,薛宏民.一种新颖的三相电源相序检测电路[J].实验室研究与探索,2005,24(增刊):280-281,287.
    [52]张显基.利用单片机实现三相电源的相序检测[J].高压电器,1995,4:40-42.
    [53]王枢华,严东超,王宇波.相序检测的极速算法[J].工业仪表与自动化装置,2002,3:61-63.
    [54]孙旭光.三相正弦波相序的软件测试法[J].测控技术,1995,14(2):36-37.
    [55]袁超,吴刚,曾祥君,等.分布式发电系统继电保护技术[J].电力系统保护与控制,2009,37(2):99-105.
    [56]Ropp M, Larson D, Meendering S, et al. Discussion of a power line carrier communications-based anti-islanding scheme using a commercial automatic meter reading system[C]. Proceedings of the 4th IEEE Conference on Photovoltaic Energy Conversion. 2007,2:2351-2354.
    [57]Moziza C J. Interconnection protection of IPP generators at commercial/ industrial facilities[J]. IEEE Trans on Industry Applications,2001,37(3):681-689.
    [58]Referrn M A, Usta O, Fielding G. Protection against loss of utility grid supply for a dispersed storage and generation unit[J]. IEEE Transactions on Power Delivery,1993,8(3):948-954.
    [59]Ye Zhi-hong, Kolwalkar A, Zhang Yu, et al. Evaluation of anti-islanding sehemes based on nondetection zone concept[J]. IEEE Trans on Power Eleetronies,2004,19(5):1171-1176.
    [60]Francesco D M, Marco L, Alberto P. Overview of anti-islanding algorithms for PV systems. part I:passive methods[C]. Proceedings of 12th International Conference on Power Electronics and Motion Control Portoroz, Slovenia,2007:1878-1883.
    [61]陈厚岩.1kW具有零电流关断功能的并网逆变器的研制[D].中国科学院硕士学位论文,2005.
    [62]Ropp M E, Begovic M, Rohatgi A. Prevention of islanding ingrid-connected photovoltaic systems[J]. Progress in Photovoltaics,1999,7(1):39-59.
    [63]Zeineldin H, Marei M I, Saadany E F. Safe controlled islanding of inverter based distributed generation[C].2004 35th Annual IEEE Power Electronics Specialists Conference,2004: 2515-2520.
    [64]Jang S I, Kim K H. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current[J]. IEEE Trans on Power Delivery,2004, 19(2):745-752.
    [65]鹿婷,段善旭,康勇.逆变器并网的孤岛检测方法[J].通信电源技术,2006,23(3):38-41.
    [66]Kobayashi H, Takigawa K, Hashimoto E, et al. Method for preventing islanding phenomenon on utility grid with a number of small scale PV systems[C]. Proceeding of IEEE Conference on the Photovoltaic Specialists. Las Vegas, USA,1992,1:695-700.
    [67]John V, Zhihong Y, Kolwalkar A. Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis[J]. IEEE Transactions on Powe Electronics,2004,19(5):1177-1183.
    [68]Karimi H, Yazdani A, Iravani R. Negative-sequence current injection for fast islanding detection of a distributed resource unit[J]. IEEE Trans on Power Electronics,2008,23(1): 298-307.
    [69]郭小强,赵清林,邬伟扬.光伏并网发电系统孤岛检测技术[J].电工技术学报,2007,22(4):157-162.
    [70]Jeong J B, Kim H J. Active anti-islanding method for PV system using reactive power control [J]. Electronics Letters,2006,42(17):1004-1005.
    [71]Ropp M E, Begovic M, Rohatgi A. Analysis and performance assessment of the active frequency drift method of islanding prevention[J]. IEEE Transactions on Energy Conversion, 1999,14(3):810-816.
    [72]袁玲,郑建勇,张先飞.光伏发电并网系统孤岛检测方法的分析与改进[J].电力系统自动化,2007,31(21):72-75.
    [73]杨海柱,金新民.基于正反馈频率漂移的光伏并网逆变器反孤岛控制[J]。太阳能学报,2005,26(3):409-412.
    [74]Vinod J, Ye Zhi-hong, Amol K. Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis[J]. IEEE Trans on Power Electronics,2004,19(5):1177-1182.
    [75]曹海燕,田悦新.并网逆变器孤岛控制技术[J].电力系统保护与控制,2010,38(9):72-75.
    [76]Wang Xiao-yu, Freitas W, Wilsun X, et al. Impact of DG interface controls on the Sandia frequency shift anti-islanding method[J]. IEEE Transactions on Energy Conversion,2007, 22(3):792-794.
    [77]Smith G A, Oninos P A. Infield D G. Predicting islanding operation of grid-connected PV inverters[J]. IEE Proc.-Gener. Transm. Distrib,2000,148(2):243-250.
    [78]Yu Y S, Lchinose T, Kimoto K, et al. A highspeed frequency shift method as a protection for islanding phenomena of utility interactive PV systems[J]. Solar Energy Materials and Solar Cells,1994,35:477-486.
    [79]Hung G K, Chang C C, Chen C L. Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters[J]. IEEE Transactions on Energy Conversion,2003, 18(1):169-173.
    [80]Lucian A, Remus T, Frede B. A digital controlled PV-inverter with grid impedance estimation for ENS detection[J]. IEEE Trans on Power Electronics,2005,20(6):1480-1489.
    [81]Francesco D M, Marco L, Alberto P. Overview of anti-islanding algorithms for PV systems. part Ⅱ:active methods[C]. Proceedings of 12th International Conference on Power Electronics and Motion Control. Portoroz, Slovenia,2007:1884-1889.
    [82]Xu Men, Melnik V N, Borup U. Modeling anti-islanding protection devices for photovoltaic systems[J]. Renewable Energy,2004,29(15):2195-2216.
    [83]Grebe T E. Application of distribution syatem capacitor banks and their impact on power quality[J]. IEEE Transactions on Industry Applications,1996,32(3):714-719.
    [84]Hamid R, Karshenas, Hadi S. Basic cirteria in designing LCL filter for grid connected inverter[C]. IEEE ISIE 2006,,Montreal, Quebec, Canada,2006:1996-2000.
    [85]刘飞,段善安,查晓明.基于LCL滤波器的并网逆变器双环控制设计[J].中国电机工程学报,2009,29:234-240.
    [86]朱炜锋,窦伟,徐正国等.基于PI控制的三相光伏并网逆变器电流控制器设计[J].可再生能源,2009,27(2):56-58.
    [87]杨恢宏,沈定坤,蒋怀贞等.基于改进锁相环的单相光伏并网逆变器研制[J].电力电子技术,2011,45(7):11-13.
    [88]金圆圆.基于准PR控制的并网逆变器的研究[D].浙江大学硕士学位论文,2008.
    [89]郭英.三相并网逆变器滞环控制技术研究[D].燕山大学硕士学位论文,2010.
    [90]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工 程学报,2006,26(9):108-112.
    [91]杜佳妮.基于自适应模糊控制的并网逆变器控制策略分析与研究[D].哈尔滨工业大学硕士学位论文,2010.
    [92]Dou Wei, Xu Zheng-guo Peng Yan-chang, et al. Current controller optimum design for three-phase photovoltaic grid-connected inverter[J].电工技术学报,2010,25(8):85-90.
    [93]吴华波.基于双闭环重复控制的并网逆变器的研究[J].电力电子技术,2010,44(11):7-9.
    [94]庹元科.可再生能源发电系统并网逆变器的单周控制方法研究[D].重庆大学硕士学位论文,2010.
    [95]胡荣强,姜久春,王健强等.单周控制并网逆变器设计[J].电力电子技术,2008,42(1):30-31,47.
    [96]王翀,邢岩,方宇等.理想电网条件下可再生能源发电三电平并网逆变器[J].电力系统自动化,2011,34(3):58-62.
    [97]赵钦.基于三电平的光伏并网逆变器电流控制器研究[D].合肥工业大学硕士学位论文,2010.
    [98]伊磊.三电平并网逆变器无差拍控制研究[D].哈尔滨工业大学硕士学位论文,2009.
    [99]Lin J K.A new approach of dead-time compensation for PWM voltage inverters [J]. IEEE Transactions on Circuits and Systems,2002,49(4):476-483.
    [100]Pekik A D. A control method to damp oscillation in the input LC filter of AD/DC PWM converters[C]. Power Electronics Specialists Conference,2002, IEEE 33th Annual Cairns, Australia,2002(4):1630-1635.
    [101]Pekik A D, Yogi R B, Yukihiko S, et al. Damping of transient oscillations on the ouput LC filter of PWM inverters by using a virtual resistor[J]. IEEE,2001:403-407.
    [102]Dahono P A. A control method for DC/DC converter that has an LCL output filter based on new virtual capacitor and resistor concepts[C]. Proc. of PESC'04,2004,1:36-42.
    [103]Blasko V, Kaura V. A novel control to actively damp resonance in input LC filter of a three phase coltage sourc converter[J]. IEEE Transactions on Industry Applications,1997,33(2): 542-550.
    [104]Liserre M, Dell A A, Blaabjerg F. Stability improvements of an LCL-filter based three-phase cative rectifier[C]. Power Electronics Specialists Conference, PESC 2002,3: 1195-1201.
    [105]郑恩让,聂诗良.控制系统仿真.中国林业大学出版社[M].北京大学出版社,2006.
    [106]王要强,吴凤江,孙力等.带LCL输出滤波器的并网逆变器控制策略研究[J].中国电机工程学报,2011,31(12):34-39.
    [107]刘芳.LCL-VSR的控制与设计[D].合肥工业大学硕士学位论文,2008.
    [108]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学硕士学位论文,2007.
    [1]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Trans. Ind. Electron,2006,53(5):1398-1409.
    [2]Esram T, Chapman P L. Comparison of photovoltaic array maximum power point tracking techniques. Energy Conversion[J]. IEEE Trans. Power Electronics,2007,22(2):439-449.
    [3]Nicola F, Giovanni P, Giovanni S, et al. Optimization of perturb and observe maximum power point tracking method [J]. IEEE Trans. Power Electronics,2005,7,20(4):963-973.
    [4]徐萍.光伏并网逆变器设计[D].山东大学硕士学位论文,2006.
    [5]Nobuyoshi M, Masahiro O, Takayoshi I. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation system[J]. IEEE Transactions on Electronics,2006,53(4):1055-1065.
    [6]苏建徽,余世杰,赵为等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):409-412.
    [7]Mutoh N, Ohno M, Inoue T. A Method for MPPT control while searehing for parameters corresPonding to weather conditions for PV generation systems[J]. IndustrialEleetronies, IEEE Transaetions on,2006,53(4):1055-1065.
    [8]杨海柱,金新民.并网光伏系统最大功率点跟踪控制的一种改进措施及其仿真和实验研究[J].电工电能新技术,2006,25(1):63-67.
    [9]Hohm D P, Ropp M E. Comparative study of maximum power point traeking algorithms using an experimental, programmable, maximum power pointtracking test bed[C]. Photovoltaic Specialists Conference,2000.Conference Record of the Twenty-Eighth IEEE, 2000:1699-2702.
    [10]Femia N, Petrone G., Spagnuolo G, et al. Optimizing sampling rate of P&O MPPT technique. Power Eleetronies Speeialists Conferenee[C].2004. PESC04.2004 IEEE 35th Annual,2004: 1945-1949.
    [11]Tae Y K, HoG A, Seung K P, et al. A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation[C]. IEEE International Symposium on Industrial Electronics,2001. Proceedings.ISIE 2001 Pusan IEEE,2001: 1011-1014.
    [12]冯冬青,马军磊,沈大中.基于模糊神经网络的光伏系统MPPT控制方法[J].计算技术与自动化,2007,26(4):25-27,40.
    [13]张淼,吴捷.滑模技术在PV最大功率追踪系统中的应用[J].电工技术学报,2005,20(3):90-93.
    [14]唐彬,马颖,崔岩等.基于SVM的光伏最大功率跟踪的预测研究[J].西安工业大学学报,2007,27(4):371-375.
    [15]胡义华,陈昊,徐瑞东等.一种两阶段变步长最大功率点控制策略[J].电工技术学报,2010,25(8):162-166.
    [16]朱铭炼,李臣松,陈新等.一种应用于光伏系统MPPT变步长扰动观察法[J].电力电子技术,2010,44(1):20-22.
    [17]任碧莹,申明,孙向东.一种新颖的光伏电池最大功率点跟踪方法[J].电力电子技术,2010,44(11):10-12.
    [18]蒋永和.光伏并网电压型逆变器电压控制策略及MPPT研究[D].合肥工业大学硕士学位论文,2007.
    [19]钱嘉怡,朱东柏,王梓.光伏系统MPPT控制方法的研究[J].价值工程,2011,10(10):157-158.
    [20]罗明,杨金明.双级式光伏系统最大功率点跟踪研究[J].电力电子技术,2009,5(5):20-21.
    [21]Dezso S, Remus T, Jochen H, et al. Optimized maximum power point tracker for fast-changing environmental conditions[J]. IEEE Trans. Industrial Electronics,2008,7,55(7): 2629-2637.
    [22]Petrone G, Spagnolo G, Teodorescu R, et al. Reliability issues in photovoltaic power processing systems[J]. IEEE Trans. Ind. Electron,2008,55 (7):2569-2580.
    [23]Sera D, Kerekes T, Teodorescu, et al. Improved MPPT method for rapidly changing environmental conditions[J]. IEEE International Symposium on Power Electronics,2006,2: 1420-1425.
    [24]Femia N, Petrone G, Spagnuolo G., et al. A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems[J]. IEEE Transactions on Industrial Electronics,2009,1.56 (11):4473-4482.
    [25]Matsui M, Kitano T, Xu De-hong, et al. A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link[C]. Conf. Rec. IEEE Industry Application Conference,1999:804-809.
    [26]Zare F, Ledwich G. A hysteresis current control for single-phase multilevel voltage source inverters:PLD implementation [J]. IEEE Trans. on Power Electronics,2002,17 (5):731-738.
    [27]Femia N, Peterone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Trans. Power Electronics,2005,120 (4):963-973.
    [28]仇志凌,杨恩星,孔洁等.基于LCL滤波器的并联有源电力滤波器电流闭环控制方法[J].中国电机工程学报,2009,29(18):15-20.
    [1]龚春英.并网孤岛检测方法的研究[D].南京航空航天大学硕士学位论文,2009.
    [2]陈柱峰.三相交流电相序、缺相检测保护电路设计[J].湖南农机,2009,36(1):34-36.
    [3]姚广平,蔡小颀.一种相序判定方法分析及实用电路[J].江苏工业学院学报,2003,15(2):50-52.
    [4]冷惠文,侯霞,王东兴.一种三相电源相序与断相自动检测电路[J].电测与仪表,2003,39(449):35-38.
    [5]张宋超,尹文庆,胡飞,潘光显.一种数字式可控整流电路相序相位检测方法[J].科学技术与工程,2009,9(17):5164-5157,5171.
    [6]王栋,刘利,薛宏民.一种新颖的三相电源相序检测电路[J].实验室研究与探索,2005,24(增刊):280-281,287.
    [7]张显基.利用单片机实现三相电源的相序检测[J].高压电器,1995,4:40-42.
    [8]王枢华,严东超,王宇波.相序检测的极速算法[J].工业仪表与自动化装置.2002,3:61-63.
    [9]孙旭光.三相正弦波相序的软件测试法[J].测控技术.1995,14(2):36-37.
    [10]刘翔,张爱玲.一种基于TMS320F2812的软件锁相环实现方法[J].电力电子技术,2010,44(8):60-61.
    [11]张蕾,赵玺.光伏并网逆变器三相锁相环技术与仿真[J].科学技术与工程,2010,10(28):7011-7013.
    [1]代璐.光伏并网发电系统中孤岛检测方法研究[D].重庆大学硕士学位论文,2011.
    [2]陈国强.三相单级光伏系统并网控制及孤岛保护[D].华中科技大学硕士学位论文,2007.
    [3]伍文城,吴安平,黎岚.特高压直流换流站接入系统设计[J].继电器,2008,36(10):65-73.
    [4]袁超,吴刚,曾祥君,等.分布式发电系统继电保护技术[J].电力系统保护与控制,2009,37(2):99-105.
    [5]Ropp M, Larson D, Meendering S, et al. Discussion of a power line carrier communications-based anti-islanding scheme using a commercial automatic meter reading system[C]. Proceedings of the 4th IEEE Conference on Photovoltaic Energy Conversion. 2007,2:2351-2354.
    [6]Moziza C J. Interconnection protection of IPP generators at commercial/industrial facilities[J]. IEEE Trans on Industry Applications,2001,37(3):681-689.
    [7]Referrn M A, Usta O, Fielding G. Protection against loss of utility grid supply for a dispersed storage and generation unit[J]. IEEE Transactions on Power Delivery,1993,8(3):948-954.
    [8]Ye Zhi-hong, Kolwalkar A, Zhang Yu, et al. Evaluation of anti-islanding sehemes based on nondetection zone concept[J]. IEEE Trans on Power Eleetronies,2004,19(5):1171-1176.
    [9]Ropp M E, Begovic M, Rohatgi A. Prevention of islanding ingrid-connected photovoltaic systems[J]. Progress in Photovoltaics,1999,7(1):39-59.
    [10]Zeineldin H, Marei M I, Saadany E F. Safe controlled islanding of inverter based distributed generation[C].2004 35th Annual IEEE Power Electronics Specialists Conference,2004: 2515-2520.
    [11]Francesco D M, Marco L, Alberto P. Overview of anti-islanding algorithms for PV systems. part Ⅰ:passive methods[C]. Proceedings of 12th International Conference on Power Electronics and Motion Control Portoroz, Slovenia,2007:1878-1883.
    [12]陈厚岩.1kW具有零电流关断功能的病危逆变器的研制[D].中国科学院硕士学位论文,2005.
    [13]Jang S I, Kim K H. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current[J]. IEEE Trans on Power Delivery,2004, 19(2):745-752.
    [14]鹿婷,段善旭,康勇.逆变器并网的孤岛检测方法[J].通信电源技术,2006,23(3):38-41.
    [15]Kobayashi H, Takigawa K, Hashimoto E, et al. Method for preventing islanding phenomenon on utility grid with a number of small scale PV systems[C]. Proceeding of IEEE Conference on the Photovoltaic Specialists. Las Vegas, USA,1992,1:695-700.
    [16]John V, Zhihong Y, Kolwalkar A. Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis[J]. IEEE Transactions on Powe Electronics,2004,19(5):1177-1183.
    [17]Karimi H, Yazdani A, Iravani R. Negative-sequence current injection for fast islanding detection of a distributed resource unit[J]. IEEE Trans on Power Electronics,2008,23(1): 298-307.
    [18]郭小强,赵清林,邬伟扬.光伏并网发电系统孤岛检测技术[J].电工技术学报,2007,22(4):157-162.
    [19]Jeong J B, Kim H J. Active anti-islanding method for PV system using reactive power control[J]. Electronics Letters,2006,42(17):1004-1005.
    [20]Ropp M E, Begovic M, Rohatgi A. Analysis and performance assessment of the active frequency drift method of islanding prevention [J]. IEEE Transactions on Energy Conversion, 1999,14(3):810-816.
    [21]袁玲,郑建勇,张先飞.光伏发电并网系统孤岛检测方法的分析与改进[J].电力系统自动化,2007,31(21):72-75.
    [22]杨海柱,金新民.基于正反馈频率漂移的光伏并网逆变器反孤岛控制[J].太阳能学报,2005,26(3):409-412.
    [23]Vinod J, Ye Zhi-hong, Amol K. Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis [J]. IEEE Trans on Power Electronics,2004,19(5):1177-1182.
    [24]曹海燕,田悦新.并网逆变器孤岛控制技术[J].电力系统保护与控制,2010,38(9):72-75.
    [25]Wang Xiao-yu, Freitas W, Wilsun X, et al. Impact of DG interface controls on the Sandia frequency shift anti-islanding method[J]. IEEE Transactions on Energy Conversion,2007, 22(3):792-794.
    [26]Smith G A, Oninos P A, Infield D G. Predicting islanding operation of grid-connected PV inverters[J]. IEE Proc.-Gener. Transm. Distrib,2000,148(2):243-250.
    [27]Yu Yuma S, Lchinose T, Kimoto K, et al. A highspeed frequency shift method as a protection for islanding phenomena of utility interactive PV systems[J]. Solar Energy Materials and Solar Cells,1994,35:477-486.
    [28]Hung G K, Chang C C, Chen C L. Automatic phase-shift method for islanding detection of grid- connected photovoltaic inverters[J]. IEEE Transactions on Energy Conversion,2003, 18(1):169-173.
    [29]Lucian A, Remus T, Frede B. A digital controlled PV-inverter with grid impedance estimation for ENS detection[J]. IEEE Trans on Power Electronics,2005,20(6):1480-1489.
    [30]Francesco D M, Marco L, Alberto P. Overview of anti-islanding algorithms for PV systems. part Ⅱ:active methods[C]. Proceedings of 12th International Conference on Power Electronics and Motion Control. Portoroz, Slovenia,2007:1884-1889.
    [31]Xu M, Melnik V N, Borup U. Modeling anti-islanding protection devices for photovoltaic systems[J]. Renewable Energy,2004,29(15):2195-2216.
    [32]Grebe T E. Application of distribution syatem capacitor banks and their impact on power quality[J]. IEEE Transactions on Industry Applications,1996,32(3):714-719.
    [33]刘方锐,余蜜,张宇等.主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究[J]。中国电机工程学报,2009,29(12):47-51.
    [34]Ye Z, Walling L, Garces L, et al. Study and development of anti-islanding control for grid-connected inverters[D]. New York:General Electric Global Research Center Niskayuna, 2004.
    [35]光伏系统并未技术要求,中国国家标准GB/T 19939-2005,2005.
    [36]林百娟.三相电压不平衡条件下锁相环的设计与实现[D].内蒙古工业大学硕士学位论文,2009.
    [37]张王莹.三相并网逆变器的无功扰动孤岛检测技术研究[D].燕山大学硕士学位论文,2009.
    [38]张俊.基于间歇性双边无功功率扰动的三相并网逆变器孤岛检测研究[D].浙江大学硕士学位论文,2011.
    [1]Hamid R, Karshenas, Hadi S. Basic cirteria in designing LCL filter for grid connected inverter[C]. IEEE ISIE 2006, Montreal, Quebec, Canada,2006:1996-2000.
    [2]余世杰,沈工梁.具有MPPT的光伏并网逆变器的研究[J].电力电子技术,2003(5):4-5.
    [3]张兴,张崇巍,孙本新.采用电流寻优的MPPT光伏阵列并网逆变器的研究[J].太阳能学报,2001,22(3):306-310.
    [4]王飞,余世杰,苏建徽等.光伏并网发电系统的研究及实现[J].太阳能学报,2006,26(5):605-608.
    [5]王赞,肖岚,姚志垒等.并网独立双模式控制高性能逆变器设计与实现[J].中国电机工程学报,2007,27(1):54-59.
    [6]Magueed F A, Svensson J. Control of VSC connected to the grid through LCL-filter to achieve balanced currents[C]. Fourtieth IAS Annual Meeting Conference Record,2005,1: 572-578.
    [7]Halimi B, Dahono P A. A current control method for phase-controlled rectifier that has an LCL filter[C]. Proceedings of 4th IEEE International Conference,2001,1:20-25.
    [8]Liserre M, Blaabjerg F, Teodorescu R. Grid impedance estimation via excitation of LCL-filter resonance[J]. Industry Applications, IEEE Transactions on,2007,43(5):1401-1407.
    [9]Routimo M, Tuusa H. LCL type supply filter for active power filter-comparison of an active and a passive method for resonance damping[C]. Power Electronics Specialists Conference, PESC 2007,2007:2939-2945.
    [10]Serpa L A, Ponnaluri S, Barbosa P M, et al. A modified direct power control strategy allowing the connection of three-phase inverters to the grid through LCL filters [J]. Industry Applications, IEEE Transactions on,2007,43(5):1388-1400.
    [11]Cobreces S, Bueno E, Rodriguez F J, et al. Influence analysis of the effects of an inductive-resistive weak grid over L and LCL filter current hysteresis controllers[J]. Power Electronics and Applications,2007 European Conference on 2-5.
    [12]Valdivia V, Pleite J, Gonzalez C, et al. New approach to integrate an LCL filter and a transformer for grid connected converters following a simple design procedure[C]. Industrial Electronics Society,2007. IECON 2007.33rd Annual Conference of the IEEE 5-8,2007: 1299-1303.
    [13]Papavasiliou A, Papathanassiou S A, Manias S N, et al. Current control of a voltage source inverter connected to the grid via LCL filter[C]. Power Electronics Specialists Conference[C], PESC 2007.2007:2379-2384.
    [14]Gabe I J, Massing J R, Montagner V F, et al. Stability an-alysis of grid-connected voltage source inverters with LCL-filters using partial state feedback[C]. Power Electronics and Applications,2007 European Conference,2007:1-10.
    [15]Sangmin J, Youngsang B, Sewan C, et al. A low cost utility interactive inverter for residential fuel cell generation. Power Electronics [J]. IEEE Transactions on,2007,22(6):2293-2298.
    [16]Wei Li-xiang, Lukaszewski R A. Optimization of the main inductor in a LCL filter for three phase active rectifier. Industry Applications Conference[C].2007.42nd IAS Annual Meeting. Conference Record of the 2007 IEEE 23-27,2007:1816-1822.
    [17]Dannehl J, Fuchs F W, Hansen S. PWM rectifier with LCL-filter using different current control structures[C]. Power Electronics and Applications,2007 European Conference,2007: 1-10.
    [18]Figueres E, Garcera G, Sandia J, et al. Modelling and control of a 100kW photovoltaic inverter with an LCL grid filter for distributed power systems[C]. Power Electronics and Applications,2007 European Conference,2007:1-10.
    [19]Chen Chien-Liang, Park S Y, Lai J S, et al. Admittance compensation in current loop control for a grid-tie LCL fuel cell inverter[C]. Power Electronics Specialists Conference,2007. PESC 2007. IEEE 17-21,2007:520-526.
    [20]Taesik Y, Sewan C, Hyosung K. Indirect current control algorithm for utility interactive inverters for seamless transfer[C]. Power Electronics Specialists Conference,2006.PESC 2006.IEEE 18-22,2006:1-6.
    [21]Shen Guo-qiao, Xu De-hong, Xi Dan-ji, et al. An improved control strategy for grid-connected voltage source inverters with a LCL filter[J]. IEEE 21th Annual,2006:1067-1073.
    [22]Zhang Qiang, Qian Lei, Zhang Chong-wei, et al. Study on grid connected inverter used in high power wind generation system[C]. Forty-first IAS Annual meeting Conference Record of the 2006 IEEE,2006,2:1053-1058.
    [23]Teodorescu R, Blaabjerg F, Borup U, et al. A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation[C]. Applied Power Electronics Conference and Exposition.2004. APEC'04 Nineteenth Annual IEEE, 2004,1:580-581.
    [24]Twining E, Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter[J]. IEEE 33rd Annual Volume,2002,3:1189-1194.
    [25]Pekik A D. A control method to damp oscillation in the input LC filter of AD/DC PWM converters[C]. Power Electronics Specialists Conference,2002, IEEE 33th Annual Cairns, Australia,2002(4):1630-1635.
    [26]Pekik A D, Yogi R B, Yukihiko S, et al. Damping of transient oscillations on the ouput LC filter of PWM inverters by using a virtual resistor[J]. IEEE,2001:403-407.
    [27]Dahono P A. A control method for DC/DC converter that has an LCL output filter based on new virtual capacitor and resistor concepts[C]. Proc. of PESC'04,2004,1:36-42.
    [28]Blasko V, Kaura V. A novel control to actively damp resonance in input LC filter of a three phase coltage sourc converter[J]. IEEE Transactions on Industry Applications,1997,33(2): 542-550.
    [29]Liserre M, Dell A A, Blaabjerg F. Stability improvements of an LCL-filter based three-phase cative rectifier[C]. Power Electronics Specialists Conference, PESC 2002,3:1195-1201.
    [30]郑恩让,聂诗良.控制系统仿真[M].中国林业大学出版社,北京大学出版社,2006.
    [31]王要强,吴凤江,孙力等.带LCL输出滤波器的并网逆变器控制策略研究[J].中国电机工程学报.2011,31(12):34-39.
    [32]刘芳.LCL-VSR的控制与设计[D].合肥工业大学硕士学位论文,2008.
    [33]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学硕士学位论文,2007.
    [34]Fang Zheng Peng, Lai J S. Generalized instaneous reactive power theory for three-phase power systems. IEEE Transactions on instrumentation and measurement,1996,45(1): 293-297.
    [35]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power theory in three-phase circuits[C]. IEEJ IPEC, Tokyo,1983.
    [36]Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components [J]. IEEE Transactions on Industry Applications,1984, IA-20(3):625-629.
    [37]李庚银,陈志业,丁巧林等.dq0坐标系下广义瞬时无功功率定义及其补偿.中国电机工程学报,1996,16(3):176-179.
    [38]Kim H S, Akagi H. The theory of instantaneous power in three-phase four-wire systems[C]. In proc. PCC'97 Conf. Nagaoka, Japan,1997,1:361-366.
    [39]Kim H S, Ogasawara S, Akagi H. The instantaneous power theory on the rotating p-q-r reference frames[C]. In Proc. IEEE/PEDS'99 Conf., Hong Kong,1999:422-427.
    [40]Kim H, Blaabjerg F, Bak-jeensen B. Spectral analysis of instantaneous powers in single-phase and three-phase systems with use of p-q-r theory[J]. IEEE Trans. Power Electron,2002,17:711-720.
    [41]Kim H, Blaabjerg F, Bak-Jensen B. Instantaneous power compensation in three-phase systems by using p-q-r theory[J]. IEEE Transactions on Power Electronics,2002,17(5): 701-710.
    [42]Malinowski M, Kazmierkowski M P, Hansen S, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers [J]. IEEE Trans. Ind. Appl.2001.37(4):1019-1027.
    [43]仇志凌,杨恩星,孔洁等.基于LCL滤波器的并联有源电力滤波器电流闭环控制方法[J].中国电机工程学报,2009,29(18):15-20.