1. [地质云]滑坡
导电/抗静电聚合物纳米复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用低熔点金属(Low Melting Point Metal, LMPM)、碳纳米管等导电填料制备得到导电/抗静电聚合物复合材料及纤维。通过四种不同的物理或化学的方法改性控制导电填料在聚合物中的形貌,研究聚合物纳米复合材料微观形貌与性能之间的关系。主要工作如下:
     1、提出了导电/抗静电聚合物复合纤维制备的新方法和新原理。采用电导率高、易加工的LMPM作为导电填料,通过熔融混合以及固相拉伸等方法,制备聚丙烯/LMPM和聚丙烯/纳米颗粒/LMPM导电/抗静电复合纤维。
     在合适的温度区间内,通过聚合物纤维固相拉伸,金属颗粒在聚合物纤维内部原位发生微纤化形变。通过微观结构的表征发现,随着拉伸倍率的提高,金属纤维直径减小、长径比增加,相邻金属纤维间距不断减小,并且金属纤维沿着纤维拉伸方向平行分布。聚合物/LMPM复合纤维具有其电阻率随着拉伸倍率的提高而降低的性质。与未含有LMPM纤维的复合纤维比较,含有超细金属纤维的复合纤维的强度和断裂伸长率都有所提高。而传统导电/抗静电聚合物纤维由于拉伸过程中导电填料间距增大,导电网络受到破坏,导致纤维中导电填料含量高,聚合物纤维断裂伸长率极低,并且不能通过拉伸取向提高纤维强度。
     通过在复合纤维中添加碳纳米管和纳米蒙脱土显著降低了金属颗粒粒径。制备了含有粒径更细、分布更均匀的超细金属纤维的聚合物/纳米颗粒/金属复合纤维,并且该纤维获得了更加优异的电性能和力学性能。
     2、提出了纳米粒子阻碍金属液滴凝并理论,制备了含有超细金属颗粒的超低逾渗值导电复合材料。利用超细粉末橡胶和碳纳米管,将平均粒径为30μm的金属颗粒原位转化为平均粒径为0.93μm的超细金属颗粒。由于碳纳米管与金属颗粒之间较低的接触电阻以及协同导电效应,显著的降低了复合材料的导电逾渗值。与普通导电复合材料相比,含有超细金属颗粒的导电复合材料的导电逾渗值仅为0.25vol%。并且当碳管和金属含量仅为1vol%和1.96vol%时,复合材料的体积电阻率降为89cm。通过进一步研究材料拉伸形变-电性能发现,在大拉伸形变时,含有超细金属颗粒的复合材料具有优良的电学稳定性能。
     3、本章利用传统的熔融加工方法,通过控制碳纳米管在二元全硫化热塑性弹性体中选择性分布,制备出具有三种不同微观结构的导电全硫化热塑性弹性体,即碳纳米管分布于两相界面处的全硫化热塑性弹性体、碳纳米管分布于基体中的全硫化热塑性弹性体和碳纳米管分布于分散相中的全硫化热塑性弹性体。通过比较三种导电全硫化热塑性弹性体的性能发现,在保持优良的回弹性条件下,碳纳米管分布于两相界面处的全硫化热塑性弹性体具有最低的逾渗值和最为优异的电性能。通过微观结构的详细分析,推论出二元全硫化热塑性弹性体的理想导电模型:导电粒子优先包裹橡胶相形成导电壳层;随着导电粒子含量的增加,导电粒子逐渐分散于基体中,起到连接各个导电壳层的作用;当导电粒子的含量进一步增加,整个体系中开始形成导电网络。
     4、为了增强聚合物材料,采用改性碳纳米管填充聚乙烯醇并制备聚乙烯醇/聚乙烯醇接枝碳纳米管复合材料。为了改善碳纳米管与聚乙烯醇界面作用力,在酸化碳纳米管表面,利用二元异氰酸酯作为桥接试剂接枝聚乙烯醇分子,并制备得到聚乙烯醇接枝碳纳米管。通过分析材料结晶行为和偏振拉曼光谱证明聚乙烯醇接枝碳纳米管与基体之间产生了强相互作用,提高了基体与碳纳米管之间应力传递的效率。力学性能测试表明,相对于未改性碳纳米管,当仅含有0.9wt%改性碳纳米管的聚乙烯醇/聚乙烯醇接枝碳纳米管复合材料的拉伸强度和杨氏模量分别提高了160.7%和109.2%。
In this thesis, the Low melting point metal (LMPM) and Carbonnanotubes (CNT) as conductive fillers had been used to prepareconductive/anti-static polymer composites and fibers. Four physical/Chemicalmethods were designed to control the morphology of composites. Therelationship between morphology and properties in the composite was studiedin detail.
     The main results of the thesis were as follows:
     (1) A new method and theory for preparing conductive/anti-staticpolymer fiber had been proposed. LMPM, due to its high electricalconductivity and easy processability, was employed as the conductive filler toprepare an anti-static polypropylene (PP)/in-situ Ultra-fine metal fibers(UFMF) and/or PP/CNT/UFMF composite fiber via melt blending and thensolid phase drawing processes. In appropriate temperature range, LMPMpowders were in-situ converted into UFMF without aggregation or oxidationin anti-static polymer fibers. The axes of UFMF and polymer fiber were inparallel and the interval of UFMFs decreased obviously, which promoted thepercolated network. In addition, the PP/UFMF fibers showed an increase inconductivity after solid phase drawing, in contrast to PP/CNTs fiber. Thepolymer fiber containing UFMF obtained the better mechanical propertiesthan the fiber without UFMF. Surprisingly, the diameter of UFMF decreasedwith incorporation of nano-filler, such as CNT and Montmorillonoid (MMT).The conductivity and mechanical properties of PP/nano-filler/UFMF composite fiber containing smaller and more uniform UFMF were better thanthat of the PP/UFMF composite fiber.
     (2) Theory for nanoparticles-hindering coalescence of LMPM drops wasproposed. A conductive polymer/Ultra-fine full-vulcanized powdered rubber(UFPR)/CNT/in-situ ultra-fine metal particles (UFMP) composite withultra-low percolation threshold was prepared via melt blending. Incorporationof UFPR and CNT hindered the coalescing of metal particles and caused ashift to the breakup direction in the breakup/coalescence equilibrium of metalparticles. The prime metal particles with a diameter of about26.4μm werein-situ converted into the UFMPs with a diameter of about932nm. Theconductive network of carbon nanotubes had been perfected and thepercolated threshold decreased due to in-situ formation of UFMPs anddecrease of contact resistance between CNTs and UFMPs. The percolatedthreshold of this composite was only0.25vol%CNT and the volumeresistance of this composite with only1vol%carbon nanotubes and1.96vol%ultra-fine metal particles can reached to89cm. Moreover, the conductivecomposites with UFMP kept more stable electrical response under stretchablestrain than the conductive composite without UFMP.
     (3) Three types of conductive thermoplastic vulcanizates (TPVs) wereprepared by blending PP, CNT, and UFPR. The CNT locations were differentin these three types of TPVs, i.e., CNT were localized in polymer matrix, inUFPR dispersed-phase, or mainly in the interface. It had been found that TPVwith CNT localized mainly in the interface had the lowest conductivepercolation threshold among these three types of TPVs. Moreover, theconductive TPV possessed good mechanical properties. An ideal morphologyfor the conductive TPV had been found, i.e., most of CNT were localized inthe interface to form a conductive shell covered the rubber particle and a fewof CNTs were dispersed in polymer matrix as bridges to connect theconductive rubber particles to form conductive pathway.
     (4) The poly (vinyl alcohol)(PVA)-based composite embedded withmodified CNT were prepared. To enhanced the interfacial interaction between CNT and PVA, acid-treated CNTs were grafted with PVA chains,compatibilizing CNTs and the matrix. The better dispersion of CNTs in PVAmatrix was obtained by the introduction of Diphenylmethane4,4’-diisocyanate (MDI) reaction bridges and then PVA molecules onto thesurface of CNTs. Moreover, strong interaction between CNTs and PVA matrixwas evidenced through the measurement results of the melting behavior,polarized Raman measurement, and non-isothermal crystallization behavior ofthe composites. Owing to the reinforcement of CNTs, the tensile strength andmodulus of PVA composite containing0.9wt%CNT were increased by160.7and109.2%, respectively, compared to neat PVA.
引文
[1] Qiao J, Guo M, Wang L等. Recent advances in polyolefin technology[J]. PolymerChemistry,2011,2(8):1611-1623
    [2]陈国华,翁文桂.高分子材料抗静电技术[J].塑料,2000,(04):31-34
    [3]付军霞,王凤英.浅谈静电危害与静电防护[J].科技情报开发与经济,2007,(05):281-282
    [4]昌政.“白领族”谨防静电所致皮炎[J].中国食品学报,2012,(08):228
    [5]罗宏昌.静电防护专题讲座(续一)电子工业静电危害(讲座三)[J].洁净与空调技术,2002,(03):56-57
    [6]常天海.铁路危险品货场中静电危害模型及其防护的研究[D].广州:华南理工大学,2006
    [7]张国福.静电危害和如何在生产中防范[J].科技风,2008,(03):53-54
    [8]田智会.电装车间的静电危害及静电防护[J].电子工艺技术,2007,(02):97-99
    [9]王国建.功能高分子材料[M].上海:华东理工大学出版社,2006.406
    [10] MacDiarmid A G.“Synthetic Metals”: A Novel Role for Organic Polymers (NobelLecture)[J]. Angew Chem Int Ed Engl,2001,40(14):2581-2590
    [11]雀部博之.导电高分子材料[M].北京:科学出版社,1989.456
    [12]吴刚.填充类导电复合材料结构与动态粘弹行为研究[D].杭州:浙江大学,2004
    [13]郑强,税波,沈烈.炭黑填充多组分高分子导电复合材料的研究进展[J].高分子材料科学与工程,2006,(04):15-18
    [14] Shirakawa H. The Discovery of Polyacetylene Film: The Dawning of an Era ofConducting Polymers (Nobel Lecture)[J]. Angew Chem Int Ed Engl,2001,40(14):2574-2580
    [15]封伟,项昱红,韦玮. π-共轭导电高分子材料的研究进展及存在问题[J].化工新型材料,1998,(06):13-19
    [16]孙业斌,张新民.填充型导电高分子材料的研究进展[J].特种橡胶制品,2009,(03):73-78
    [17]贺丽丽,叶明泉,韩爱军.填充复合型导电高分子材料研究进展[J].材料导报,2008,(S2):294-296
    [18]叶明泉,贺丽丽,韩爱军.填充复合型导电高分子材料导电机理及导电性能影响因素研究概况[J].化工新型材料,2008,(11):13-15
    [19]王可.复合型导电高分子材料PTC/NTC效应的研究[D].长春:吉林大学,2006
    [20]杨建高,刘成岑,施凯.渗流理论在复合型导电高分子材料研究中的应用[J].化工中间体,2006,(12):13-17
    [21] Kirkpatrick S. Percolation and Conduction[J]. Rev Mod Phys,1973,45(4):574-588
    [22] Balberg I. A comprehensive picture of the electrical phenomena in carbonblack-polymer composites[J]. Carbon,2002,40(2):139-143
    [23] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymerconductive composites[J]. Carbon,2009,47(1):2-22
    [24]何益艳,吴雪艳,杜仕国.复合型导电塑料中导电填料的开发现状与发展[J].塑料科技,2004,(03):50-53
    [25]张洪艳,王海泉,陈国华.新型导电填料——纳米石墨微片[J].塑料,2006,(04):42-45
    [26]付东升,张康助,张强.导电高分子材料研究进展[J].现代塑料加工应用,2004,(01):55-59
    [27]武猛,晋传贵,段好伟等.聚苯胺与金属镍粉复合导电填料的电磁屏蔽效能[J].安徽工业大学学报(自然科学版),2010,(03):257-261
    [28]陈步明.导电填料用非金属氧化物化学镀银的新工艺研究与应用[D].昆明:昆明理工大学,2006
    [29]杜淼,傅华康,郑强.纤维状填料/HDPE复合体系的导电渗流与流变渗流行为的关系[J].高分子学报,2009,(08):756-762
    [30]韩飞.抗静电纤维和导电纤维的研究与发展[J].广东化纤,2002,(03):28-31
    [31]陈国建,韩要星,胡勇等.纳米导电粉在抗静电纤维制备中的应用[J].纺织科学研究,2004,(01):15-19
    [32]松井雅男,村田太郎,张林.日本的最新功能性纤维[J].广东化纤技术通讯,1990,(04):48-51
    [33]松井雅男,肖长发.吸水性丙烯腈纤维阿夸纶[J].国外纺织技术(化纤、染整、环境保护分册),1983,(03):13-17
    [34]金玉顺.新型抗静电PET纤维的研究[D].成都:四川大学,2000
    [35]金玉顺,高绪珊,刘光臻.新型抗静电PET纤维的开发[J].合成纤维,2000,(06):26-28
    [36]松井雅男,施祖培.高感性纤维的纺丝[J].国外纺织技术,1997,(05):17-24
    [37]松井雅男,赵洪.微细纤维的历史、现状及未来[J].合成纤维,1992,(06):32-40
    [38]松井雅男,章谭莉,俞中兴.共轭纤维[J].国外纺织技术(化纤、染整、环境保护分册),1982,(05):1-5
    [39]迟雪.碳纳米管/尼龙6复合材料纤维的性能研究[D].大连:大连理工大学,2012
    [40]郦华兴,王松林,彭少贤等.金属填充导电高分子材料研究进展[J].中国塑料,1999,(01):20-23
    [41] Li C, Liang T, Lu W等. Improving the antistatic ability of polypropylene fibers byinner antistatic agent filled with carbon nanotubes[J]. Composites Science andTechnology,2004,64(13–14):2089-2096
    [42]余晓蔚,王华平,汤建中.皮芯复合纤维及其成形理论[J].聚酯工业,1999,(03):1-6
    [43]叶敏.含相变材料皮芯复合结构发制品纤维的制备与性能研究[D].上海:东华大学,2011
    [44]崔卫国,吴峰. PE/PP皮芯型复合纤维[J].化纤与纺织技术,2005,(04):18-22
    [45]张德权.低熔点皮芯型涤纶短纤维生产工艺研究[J].合成纤维,2009,(05):33-36
    [46]彭莹莹,王燕萍,王依民等.聚丙烯/新型聚烯烃弹性体皮芯型复合纤维的纺制[J].合成纤维,2009,(02):17-20
    [47]王鸣.国外复合纺丝技术发展概况[J].合成纤维工业,1981,(06):42-49
    [48]崔晓玲,王依民,胡申伟等. PPS/PA6偏心皮芯型复合纤维的研究[J].合成纤维,2008,(02):14-17
    [49] Hooshmand S, Soroudi A, Skrifvars M. Electro-conductive composite fibers by meltspinning of polypropylene/polyamide/carbon nanotubes[J]. Synthetic Metals,2011,161(15–16):1731-1737
    [50] Deng H, Skipa T, Bilotti E等. Preparation of High-Performance Conductive PolymerFibers through Morphological Control of Networks Formed by Nanofillers[J]. AdvFunct Mater,2010,20(9):1424-1432
    [51] Gao X, Zhang S, Mai F等. Preparation of high performance conductive polymerfibres from double percolated structure[J]. Journal of Materials Chemistry,2011,21(17):6401-6408
    [52] Hua D, Tetyana S, Emiliano B等. Preparation of High-Performance ConductivePolymer Fibers through Morphological Control of Networks Formed byNanofillers[J]. Adv Funct Mater,2010,20(9):1424-1432
    [53] Zhang Q H, Xiong H, Yan W X等. Electrical Conductivity and RheologicalBehavior of Multiphase Polymer Composites Containing Conducting CarbonBlack[J]. Polymer Engineering and Science,2008,48(11):2090-2097
    [54] Yu M-F, Lourie O, Dyer M J等. Strength and Breaking Mechanism of MultiwalledCarbon Nanotubes Under Tensile Load[J]. Science,2000,287(5453):637-640
    [55] Binh V T, Vincent P, Feschet F等. Local analysis of the morphological properties ofsingle-wall carbon nanotubes by Fresnel projection microscopy[J]. Journal ofApplied Physics,2000,88(6):3385-3391
    [56] Zou X, Abe H, Shimizu T等. Electrical measurement on individual multi-walledcarbon nanotubes[J]. Transactions of Nonferrous Metals Society of China,2006,16,Supplement2(0):s772-s775
    [57] Ata S, Kobashi K, Yumura M等. Mechanically Durable and Highly ConductiveElastomeric Composites from Long Single-Walled Carbon Nanotubes Mimicking theChain Structure of Polymers[J]. Nano Lett,2012,12(6):2710-2716
    [58] Quan H, Zhang S, Qiao J等. The electrical properties and crystallization ofstereocomplex poly(lactic acid) filled with carbon nanotubes[J]. Polymer,2012,53(20):4547-4552
    [59] Fang Y, Zhao J, Zha J等. Improved stability of volume resistivity in carbonblack/ethylene-vinyl acetate copolymer composites by employing multi-walledcarbon nanotubes as second filler[J]. Polymer,2012,53(21):4871-4878
    [60] Liao S, Yen C, Weng C等. Preparation and properties of carbonnanotube/polypropylene nanocomposite bipolar plates for polymer electrolytemembrane fuel cells[J]. Journal of Power Sources,2008,185(2):1225-1232
    [61] Lee G, Jagannathan S, Chae H G等. Carbon nanotube dispersion and exfoliation inpolypropylene and structure and properties of the resulting composites[J]. Polymer,2008,49(7):1831-1840
    [62] Van Der Schoot P, PopaNita V, Kralj S. Alignment of carbon nanotubes in nematicliquid crystals[J]. J. Phys. Chem. B,2008,112(15):4512-4518
    [63] Srivastava S K, Vankar V D, Kumar V等. Effect of substrate morphology on growthand field emission properties of carbon nanotube films[J]. Nanoscale ResearchLetters,2008,3(6):205-212
    [64] Jung H, Cho Y, Kang Y等. Effect of surface morphology and adhesion force on thefield emisson properties of carbon nanotube based cathode[J]. Korean Journal ofMaterials Research,2008,18(5):277-282
    [65] Barber A H, Cohen S R, Wagner H D. Static and Dynamic Wetting Measurements ofSingle Carbon Nanotubes[J]. Physical Review Letters,2004,92(18):186103
    [66] De Volder M F L, Tawfick S H, Baughman R H等. Carbon Nanotubes: Present andFuture Commercial Applications[J]. Science,2013,339(6119):535-539
    [67] Spitalsky Z, Tasis D, Papagelis K等. Carbon nanotube–polymer composites:Chemistry, processing, mechanical and electrical properties[J]. Prog Polym Sci,2010,35(3):357-401
    [68] Sahoo N G, Rana S, Cho J W等. Polymer nanocomposites based on functionalizedcarbon nanotubes[J]. Prog Polym Sci,2010,35(7):837-867
    [69] Rozenberg B A, Tenne R. Polymer-assisted fabrication of nanoparticles andnanocomposites[J]. Prog Polym Sci,2008,33(1):40-112
    [70]曹茂盛,刘海涛,李辰砂等.碳纳米管表面处理技术的研究[J].中国表面工程,2002,(04):32-36
    [71]徐涛,杨静晖,魏忠等.碳纳米管表面处理对碳纳米管/氟橡胶复合材料形貌及界面作用的影响[J].高分子材料科学与工程,2011,(05):71-74
    [72]周洪福.碳纳米管表面有机高分子改性及其纳米复合材料的制备与表征[D].北京化工大学,2011
    [73]徐涛,杨静晖,刘际伟等.碳纳米管的表面修饰及其对碳纳米管/氟橡胶复合材料导电性能的影响[J].复合材料学报,2010,(03):16-21
    [74]葛海峰,刘宝春,曹德峰.硝酸处理的碳纳米管吸附水溶液中汞离子的研究[J].环境科学与技术,2010,(03):158-161
    [75] Brostow W, Hagg Lobland H E, Reddy T等. Lowering mechanical degradation ofdrag reducers in turbulent flow[J]. Journal of Materials Research,2007,22(1):56-60
    [76] Xue Q. The influence of particle shape and size on electric conductivity ofmetal–polymer composites[J]. Eur Polym J,2004,40(2):323-327
    [77] Kyrylyuk A V, Hermant M C, Schilling T等. Controlling electrical percolation inmulticomponent carbon nanotube dispersions[J]. Nat Nano,2011,6(6):364-369
    [78] Sun Y, Bao H-D, Guo Z-X等. Modeling of the Electrical Percolation of MixedCarbon Fillers in Polymer-Based Composites[J]. Macromolecules,2008,42(1):459-463
    [79]孙尧,郭朝霞,于建.碳纳米管填充聚合物共混体系导电性能的研究进展[J].中国科技论文在线,2011,(02):142-147
    [80]孙尧,鲍哈达,郭朝霞等.导电型高分子/碳纳米管复合材料研究[J].高分子通报,2011,(04):34-41
    [81]尹贺滨,鲍哈达,李杰等.碳纳米管/炭黑混杂填充聚甲醛复合材料导电性能研究[J].高分子学报,2010,(09):1152-1156
    [82] Leclère P, Lazzaroni R, Gubbels F等. Scanning Probe Microscopy: A Useful Toolfor the Analysis of Carbon Black-Filled Polymer Blends[M]. New York:AmericanChemical Society,1998.7
    [83] Wu G, Asai S, Sumita M. A Self-Assembled Electric Conductive Network in ShortCarbon Fiber Filled Poly(methyl methacrylate) Composites with SelectiveAdsorption of Polyethylene[J]. Macromolecules,1999,32(10):3534-3536
    [84] Yui H, Sano H, Okamura M等. Morphologies and properties of injection moldedspecimens of polypropylene/high density polyethylene/carbon black composites[J].Kobunshi Ronbunshu,1996,53(11):745-753
    [85] Yamamoto T, Kubota E, Taniguchi A等. Electrically conductive metalsulfide-polymer composites prepared by using organosols of metal sulfides[J]. ChemMater,1992,4(3):570-576
    [86] Brouers F, Royen I, Blacher S等. AC properties of carbon black-filled polymerblends[J]. Mater. Res. Soc. Symp. Proc.,1996,411(Electrically BasedMicrostructural Characterization):339-343
    [87] Gubbels F, Blacher S, Vanlathem E等. Design of Electrical Composites:Determining the Role of the Morphology on the Electrical Properties of CarbonBlack Filled Polymer Blends[J]. Macromolecules,1995,28(5):1559-1566
    [88] Calberg C, Blacher S, Gubbels F等. Electrical and dielectric properties of carbonblack filled co-continuous two-phase polymer blends[J]. J. Phys. D: Appl. Phys.,1999,32(13):1517-1525
    [89] Soares B G, Gubbels F, Jerome R等. Electrical conductivity of polystyrene-rubberblends loaded with carbon black[J]. Rubber Chemistry and Technology,1997,70(1):60-70
    [90] Gubbels F, Jerome R, Vanlathem E等. Kinetic and thermodynamic control of theselective localization of carbon black at the interface of immiscible polymer blends[J].Chem Mater,1998,10(5):1227-1235
    [91] Gubbels F, Jerome R, Teyssie P等. Selective Localization of Carbon Black inImmiscible Polymer Blends: A Useful Tool To Design Electrical ConductiveComposites[J]. Macromolecules,1994,27(7):1972-1974
    [92] Bao H, Guo Z, Yu J. Effect of electrically inert particulate filler on electricalresistivity of polymer/multi-walled carbon nanotube composites[J]. Polymer,2008,49(17):3826-3831
    [93] Wang H, Zhang X, Zhu Y等. Reducing resistivity of polyamide-6/multi-walledcarbon nanotube composites by adding ultra-fine rubber particles on account ofnon-volume exclusion effect[J]. Mater Lett,2011,65(13):2055-2058
    [94] Jiang H, Moon K-s, Li Y等. Surface Functionalized Silver Nanoparticles forUltrahigh Conductive Polymer Composites[J]. Chem Mater,2006,18(13):2969-2973
    [95]张凯,傅强,黄渝鸿等.异方向导电膜用交联聚苯乙烯微球的研制[J].绝缘材料,2005,(03):1-4
    [96]张凯,曾慧,王宇光等.异方向导电膜用单分散聚苯乙烯微球的制备[J].绝缘材料,2003,(02):26-29
    [97] Zhang R, Dowden A, Deng H等. Conductive network formation in the melt ofcarbon nanotube/thermoplastic polyurethane composite[J]. Composites Science andTechnology,2009,69(10):1499-1504
    [98] Wang Y, Deng J, Wang K等. Morphology, crystallization, and mechanical propertiesof poly(ethylene terephthalate)/multiwall carbon nanotube nanocomposites via in situpolymerization with very low content of multiwall carbon nanotubes[J]. Journal ofApplied Polymer Science,2007,104(6):3695-3701
    [99]武希哲,李运康.低熔点合金[J].稀有金属材料与工程,1984,(01):53-56
    [100]贺江平,陈星运,唐明静等.低熔点合金/聚合物复合材料的研究进展[J].材料导报,2010,(03):33-36
    [101]周德俭,吴兆华,潘开林.电子电路表面组装柔性制造技术[J].制造技术与机床,1997,(10):32-34
    [102]舒平生,王玉鹏,郝秀云.电子表面组装技术与设备专业建设探讨[J].机械职业教育,2012,(08):22-24
    [103]徐向荣.电子元器件表面组装工艺质量改进研究[D].苏州:苏州大学,2010
    [104]鲜飞.波峰焊接工艺技术的研究[J].电子工艺技术,2009,(04):196-199
    [105] OSAMU S. Magnetic tape cassette and method of molding the same[P]. PCT Patent,EP0481468.1992-4-22
    [106] TETSUO M. Injection molding method, injection molding machine, injectionmolding die and half case of magnetic tape cassette[P]. PCT Patent, US5372770.1994-12-13
    [107] KENGO O, OSAMU S. Method of molding magnetic tape cassette body half[P].PCT Patent, US4919873.1990-4-24
    [108]金成俊,洪彰敏. EMI/RFI屏蔽树脂复合材料及使用其制得的模制品[P].中国专利, CN101747619A.2010-06-23
    [109]金成俊,洪彰敏. EMI/RFI屏蔽树脂复合材料及其制得的模制制品[P].中国专利, CN101747653A.2010-06-23
    [110]金成俊,柳聆湜.树脂组合物[P].发明专利, CN101768367A.2010-07-07
    [111]贺江平,刘涛,易勇等.低熔点金属/聚乙烯复合体系的密炼加工行为及导电性能[J].高分子材料科学与工程,2012,(12):110-113
    [112]刘静,潘颐,张向武. Sn-Pb合金填充聚合物导电复合材料的PTC效应[J].复合材料学报,2002,(06):116-119
    [113]张向武.低熔点合金聚合物基复合材料的制备与性能研究[D].杭州:浙江大学,2001
    [114]熊传溪. DISPERSION AND IN SITU FORMED FIBER OF LOW MELTINGPOINT METALS IN POLYMER[J]. Journal of Wuhan University ofTechnology-Materials Science,1998,(04):36-41
    [115]熊传溪,闻荻江. LMPM/PP原位复合材料微纤结构的形成[J].材料导报,1998,(03):60-64
    [116]熊传溪,杨小利,余剑英等. LMPM/PP原位复合材料的力学强度[J].武汉工业大学学报,1999,(04):15-17
    [117]熊传溪,闻荻江. LMPM/PP复合体系的加工性能[J].玻璃钢/复合材料,1999,(02):29-31
    [118]熊传溪,闻荻江. LMPM/PP复合材料中PP的晶体形态与晶胞结构[J].人工晶体学报,1998,(04):56-60
    [119]熊传溪,闻荻江. LMPM/PP复合材料中PP的晶型结构[J].中国塑料,1999,(04):24-29
    [120]熊传溪,闻荻江. LMPM/PP复合材料的导电性能[J].功能高分子学报,1998,(04):11-16
    [121]熊传溪,余剑英,杨小利. LMPM/PP复合材料的形态结构与透气性[J].武汉工业大学学报,1999,(01):4-6
    [122]董丽杰,熊传溪,陈娟. LMPM/PP复合材料的粘弹性能[J].武汉理工大学学报,2003,(09):7-10
    [123]熊传溪,闻荻江. PP/LMPM复合材料中PP的结晶行为[J].化工学报,1999,(02):267-272
    [124]熊传溪,王萍. PP及LMPM在复合过程中的化学反应[J].工程塑料应用,1999,(03):14-16
    [125] Xiong C. Preparation of Polyacrylate-based Conductive Coatings and Its PTCEffect[J]. Journal of Wuhan University of Technology-Materials Science,2004,(01):26-29
    [126] Xiong C. PROMOTER FLOW ACTION OF SOLID-STATE LOW MELT POINTMETAL ON THE POLYPROPYLENE[J]. Journal of Wuhan University ofTechnology-Materials Science,1997,(03):41-47
    [127] Zhao f, Xiong C, Wen g. ROLE OF TOUGH INTERFACIAL LAYERS IN FIBREREINFORCED COMPOSITES[J]. Journal of Wuhan University ofTechnology-Materials Science,1996,(02):38-43
    [128]熊传溪,闻荻江.低熔点金属与聚合物原位复合的构思[J].材料科学与工艺,1999,(02):55-59
    [129]权红英,谢小林,董丽杰等.共聚尼龙/PZT复合材料的压电和介电性能研究[J].电子元件与材料,2011,(08):9-11
    [130]杨小利,熊传溪,景玉舫等.导电填料对导电复合材料的影响[J].国外建材科技,1997,(02):41-43
    [131]熊传溪,万影,闻荻江.液态锡及锡铅合金对聚丙烯的促流作用[J].中国有色金属学报,1999,(02):60-64
    [132]熊传溪,闻荻江.聚丙烯-锡复合材料的研究[J].复合材料学报,1999,(03):41-46
    [133]熊传溪,闻荻江.聚合物基导电复合材料的导电机理[J].玻璃钢/复合材料,1998,(05):36-38
    [134]熊传溪,黄可知,张超等.锡粉/不饱和聚酯复合材料的力学性能研究[J].国外建材科技,1996,(04):36-39
    [135]陈党辉,顾瑛,陈曦.国外微电子组装用导电胶的研究进展[J].电子元件与材料,2002,(02):34-39
    [136] Eom Y-S, Jang K, Moon J-T等. Electrical and mechanical characterization of ananisotropic conductive adhesive with a low melting point solder[J]. MicroelectronEng,2008,85(11):2202-2206
    [137] Kim J M, Yasuda K, Rito M等. New electrically conductive adhesives filled withlow-melting-point alloy fillers[J]. Materials Transactions,2004,45(1):157-160
    [138]孙义明,孟庆浩,彭少贤等.低熔点双组分合金填充聚烯烃力学性能研究[J].现代塑料加工应用,2004,(03):1-4
    [139] Bormashenko E, Sutovski S, Pogreb R等. Novel method of low-melting metalmicropowders fabrication[J]. J Mater Proce Techn,2005,168(2):367-371
    [140] Bormashenko E, Sutovski S, Pogreb R等. Development of novel binary and ternaryconductive composites based on polyethylene, low-melting-point metal alloy andcarbon black[J]. Journal of Thermoplastic Composite Materials,2004,17(3):245-257
    [141]孙义明,孟庆浩,彭少贤等.低熔点合金填充聚合物材料断口形貌研究[J].塑料科技,2004,(05):17-20
    [142]孙义明,孟庆浩,彭少贤等.低熔点双组分合金填充聚烯烃结晶性能研究[J].现代塑料加工应用,2004,(04):4-6
    [143]孙义明,孟庆浩,彭少贤等.低熔点合金填充聚合物材料热分析[J].塑料科技,2004,(06):25-27
    [144]王延伟,杨军忠,刘轶群.超细丁苯粉末橡胶增韧聚丙烯的研究[J].塑料工业,2005,(S1):92-95
    [145]潘国元,张薇,张师军.共混型HPVC/UFPNBR全硫化热塑性弹性体的制备及其结构与性能[J].聚氯乙烯,2008, v.36;No.222(12):29-33
    [146]张晓红,谭邦会,刘轶群等. PA6在受限条件下的非等温结晶行为[J].合成树脂及塑料,2005,(05):54-58
    [147] Qi G, Zhang X, Li B等. The study of rubber-modified plastics with higher heatresistance and higher toughness and its application[J]. Polymer Chemistry,2011,2(6):1271-1274
    [148]赖金梅,张晓红,刘轶群等.超细粉末羧基丁苯橡胶改性酚醛模塑料的性能研究[J].化工新型材料,2005,(05):30-32
    [149]王庆国,谢竞慧,乔金樑等.亲水性纳米白炭黑在橡胶基体中的良好分散与性能影响[J].中国科学:技术科学,2012,(05):590-596
    [150]宋庆梅,王琮,张晓红等.超细全硫化粉末丁苯橡胶/纳米碳酸钙复合粉末对丁苯橡胶性能的影响[J].橡胶工业,2012,(09):523-527
    [151]黄巍,张晓红,谭邦会.全硫化热塑性弹性体TPV的生产及应用[J].特种橡胶制品,2005,(05):54-58
    [152] Qiao J, Wei G, Zhang X等. Fully Vulcanized Powdery Rubber Having aControllable Particle Size, Preparation and Use Thereof[P]. PCT Patent, US6,423,760B1.2002-7-23
    [153]乔金樑,魏根栓,张晓红等.全硫化可控粒径粉末橡胶及其制备方法[P].中国专利, CN1402752.2003-03-12
    [154] Wang Q, Zhang X, Jin Y等. Preparation and Properties of PVC TernaryNanocomposites Containing Elastomeric Nanoscale Particles and ExfoliatedSodium-Montmorillonite[J]. Macromolecular Materials and Engineering,2006,291(6):655-660
    [155]王庆国.超细全硫化粉末橡胶及其纳米无机填料复合体系对硬质聚氯乙烯的改性研究[D].北京:北京化工大学,2006
    [156]王洪涛.黏土/超细全硫化粉末橡胶/橡胶三元纳米复合材料的制备与性能研究
    [D].北京:北京化工大学,2009
    [157]黄帆,刘轶群,张晓红等.弹性纳米粒子改性环氧树脂的研究[J].中国科学(B辑化学),2004,(05):432-440
    [158] Huang F, Liu Y, Zhang X等. Effect of Elastomeric Nanoparticles on Toughness andHeat Resistance of Epoxy Resins[J]. Macromolecular Rapid Communications,2002,23(13):786-790
    [159] Ma H, Wei G, Liu Y等. Effect of elastomeric nanoparticles on properties ofphenolic resin[J]. Polymer,2005,46(23):10568-10573
    [160]王好盛.聚合物/全硫化超细橡胶粒子/碳纳米管三元复合材料的制备及结构与性能研究[D].北京:北京化工大学,2011
    [161]徐晓冬,刘建清,高秀敏.聚丙烯类共混型热塑性弹性体的研究进展[J].化工新型材料,2008,(06):9-12
    [162]张晓红,谭邦会,高建明等.共混型聚丙烯/超细粉末丁苯橡胶全硫化热塑性弹性体的制备及其结构与性能[J].合成橡胶工业,2006,(02):91-95
    [163]徐晓冬,,殷敬华等.新型CNBR/PP全交联型热塑性弹性体的制备与形态、结构及性能研究[J].高等学校化学学报,2003,(11):2107-2112
    [164]东为富,张师军,刘轶群等.橡塑共混中橡胶相形态控制的研究进展[J].中国塑料,2003,(05):3-8
    [165] Zhang X, Liu Y, Gao J等. Crystallization behavior of nylon-6confined amongultra-fine full-vulcanized rubber particles[J]. Polymer,2004,45(20):6959-6965
    [166]王庆国,张晓红,乔金梁.钠基蒙脱土在丁腈橡胶中的剥离分散及性能影响[J].科学通报,2008,(12):1482-1484
    [167]彭晓玲,韦文领,马龙铭等.纳米级粉末橡胶协同阻燃HIPS[J].合成树脂及塑料,2009,(02):1-3
    [168] Dong W, Liu Y, Zhang X等. Preparation of High Barrier and Exfoliated-TypeNylon-6/Ultrafine Full-Vulcanized Powdered Rubber/Clay Nanocomposites[J].Macromolecules,2005,38(11):4551-4553
    [169]东为富.聚酰胺6/橡胶/天然粘土纳米复合材料的制备及其形态、结构与性能研究[D].北京:北京化工大学,2006
    [170] Gui H, Zhang X, Dong W等. Flame retardant synergism of rubber and Mg(OH)2inEVA composites[J]. Polymer,2007,48(9):2537-2541
    [171]桂华.聚合物/全硫化橡胶粒子/纳米氢氧化镁三元复合材料的微观结构与性能关系研究[D].北京:北京化工大学,2007
    [172] Wang X, Li Z, Cao X等. Abnormal increase of glass transition temperature ofpoly(propylene carbonate) modified with rubber particles[J]. Polymer Composites,2012,33(9):1530-1533
    [173] Wang X, Qi G, Zhang X等. The abnormal behavior of polymers glass transitiontemperature increase and its mechanism[J]. Sci. China Chem.,2012,55(5):713-717
    [1] Breuer O, Sundararaj U. Big returns from small fibers: A review of polymer/carbonnanotube composites[J]. Polymer Composites,2004,25(6):630-645
    [2]李辰砂,王清滨,张宝友等.碳纳米管对聚合物纤维抗静电能力的影响[J].哈尔滨工业大学学报,2004,(04):433-436
    [3]李辰砂,刘海涛,邱成军等.碳纳米管应用于聚合物抗静电纤维的研究[J].高技术通讯,2002,(12):39-44
    [4]刘小波,安树林,卢佳楠.炭黑/聚氨酯熔纺导电纤维结构与性能的研究[J].合成纤维,2006,(12):23-25
    [5]丁运生,陈大为,王僧山等.制备工艺对抗静电聚丙烯抗静电性能影响的研究[J].中国塑料,2004,(07):34-36
    [6]熊传溪,闻荻江.低熔点金属与聚合物原位复合的构思[J].材料科学与工艺,1999,(02):55-59
    [7]贺江平,刘涛,易勇等.低熔点金属/聚乙烯复合体系的密炼加工行为及导电性能[J].高分子材料科学与工程,2012,(12):110-113
    [8]熊传溪,闻荻江. LMPM/PP原位复合材料微纤结构的形成[J].材料导报,1998,(03):60-64
    [9] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymerconductive composites[J]. Carbon,2009,47(1):2-22
    [10]贺江平,陈星运,唐明静等.低熔点合金/聚合物复合材料的研究进展[J].材料导报,2010,(03):33-36
    [11]杨思佳,曹春雷,宋海贺等.原位增容界面强度对PA6/PMMA共混物性能的影响[J].高分子材料科学与工程,2013,(01):63-66
    [12] Han D, Jang J, Cho B等. Melt complex viscosity and molecular weights forhomo-polypropylene modified by grafting bifunctional monomers under electronbeam irradiation[J]. Polymer,2006,47(19):6592-6597
    [13] Tan M, Xiufang B, Xianying X等. Correlation between viscosity of molten Cu–Snalloys and phase diagram[J]. Physica B: Condensed Matter,2007,387(1–2):1-5
    [14]刘春艳,周持兴,俞炜.流场中聚乳酸/聚碳酸酯共混体系的酯交换反应及其形态结构研究[J].高分子学报,2012,(11):1225-1233
    [15] Wilbrink M W L, Argon A S, Cohen R E等. Toughenability of Nylon-6with CaCO3filler particles: new findings and general principles[J]. Polymer,2001,42(26):10155-10180
    [16]丘龙斌,孙雪梅,仰志斌等.取向碳纳米管/高分子新型复合材料的制备及应用[J].化学学报,2012,(14):1523-1532
    [17]陈绪煌,马桂秋,盛京.聚合物共混相态形成过程及其理论研究进展[J].高分子通报,2009,(01):31-36
    [18] Tokita N, Pliskin I. The Dependence of Processability on Molecular WeightDistribution of Elastomers[J]. Rubber Chemistry and Technology,1973,46(5):1166-1187
    [19] Tokita N. Analysis of Morphology Formation in Elastomer Blends[J]. RubberChemistry and Technology,1977,50(2):292-300
    [20] Fenouillot F, Cassagnau P, Majesté J C. Uneven distribution of nanoparticles inimmiscible fluids: Morphology development in polymer blends[J]. Polymer,2009,50(6):1333-1350
    [1]伍贺东,陈为亮,孟德龙等.超细镍粉制备技术研究进展[J].冶金丛刊,2007,(01):37-41
    [2]贾巧英,马晓燕.纳米材料及其在聚合物中的应用[J].塑料科技,2001,(02):6-10
    [3] Rozenberg B A, Tenne R. Polymer-assisted fabrication of nanoparticles andnanocomposites[J]. Prog Polym Sci,2008,33(1):40-112
    [4]尚东升,吴强.金属超细粉体制备的研究进展[J].化学推进剂与高分子材料,2010,(02):33-37
    [5] Bormashenko E, Sutovski S, Pogreb R等. Novel method of low-melting metalmicropowders fabrication[J]. J Mater Proce Techn,2005,168(2):367-371
    [6]贺江平,刘涛,易勇等.低熔点金属/聚乙烯复合体系的密炼加工行为及导电性能[J].高分子材料科学与工程,2012,(12):110-113
    [7]乔金樑,魏根栓,张晓红等.全硫化可控粒径粉末橡胶及其制备方法[P].中国专利, CN1402752.2003-03-12
    [8] Wang H, Zhang X, Zhu Y等. Reducing resistivity of polyamide-6/multi-walledcarbon nanotube composites by adding ultra-fine rubber particles on account ofnon-volume exclusion effect[J]. Mater Lett,2011,65(13):2055-2058
    [9] Wang H, Zhang X, Zhu Y等. ONE-STEP PROCESS TO MAKE ELECTRICALLYCONDUCTIVE THERMOPLASTIC VULCANIZATES FILLED WITHMWCNTs[J]. Chinese J Polym Sci,2012,(01):138-142
    [10] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymerconductive composites[J]. Carbon,2009,47(1):2-22
    [11]陈绪煌,马桂秋,盛京.聚合物共混相态形成过程及其理论研究进展[J].高分子通报,2009,(01):31-36
    [12] Wang Q, Zhang X, Jin Y等. Preparation and Properties of PVC TernaryNanocomposites Containing Elastomeric Nanoscale Particles and ExfoliatedSodium-Montmorillonite[J]. Macromolecular Materials and Engineering,2006,291(6):655-660
    [1]郑强,税波and沈烈.炭黑填充多组分高分子导电复合材料的研究进展[J].高分子材料科学与工程,2006,(04):15-18
    [2] Sun Y, Guo Z X and Yu J. Effect of ABS Rubber Content on the Localization ofMWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites [J].Macromolecular Materials and Engineering,2010,295(3):263-268
    [3] Gubbels F, Jerome R, Teyssie P, et al. Selective Localization of Carbon Black inImmiscible Polymer Blends: A Useful Tool To Design Electrical ConductiveComposites [J]. Macromolecules,1994,27(7):1972-1974
    [4]徐晓冬,刘建清and高秀敏.聚丙烯类共混型热塑性弹性体的研究进展[J].化工新型材料,2008,(06):9-12
    [5] Logakis E, Pollatos E, Pandis C, et al. Structure-property relationships in isotacticpolypropylene/multi-walled carbon nanotubes nanocomposites [J]. CompositesScience and Technology,2010,70(2):328-335
    [6]方鲲,白树林,高校维, et al. EMI/RFI热塑性导电弹性体的特点及应用[J].安全与电磁兼容,2007, No.82(01):41-44
    [7]刘丛丛,伍社毛and张立群.热塑性弹性体的研究进展[J].化工新型材料,2008,(08):17-21
    [8] Li Y and Shimizu H. Toward a stretchable, elastic, and electrically conductivenanocomposite: Morphology and properties ofpoly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotubecomposites fabricated by high-shear [J]. Macromolecules,2009,42(7):2587-2593
    [9] Katbab A A, Nazockdast H and Bazgir S. Carbon black-reinforced dynamically curedEPDM/PP thermoplastic elastomers. I. Morphology, rheology, and dynamicmechanical properties [J]. Journal of Applied Polymer Science,2000,75(9):1127-1137
    [10] Xiaodong X, Jinliang Q, Jinghua Y, et al. Preparation of fully cross-linkedCNBR/PP-g-GMA and CNBR/PP/PP-g-GMA thermoplastic elastomers and theirmorphology, structure and properties [J]. Journal of Polymer Science Part B: PolymerPhysics,2004,(6):1042-1052
    [11] Barber A H, Cohen S R and Wagner H D. Static and Dynamic Wetting Measurementsof Single Carbon Nanotubes [J]. Physical Review Letters,2004,92(18):186103
    [12] Fenouillot F, Cassagnau P and MajestéJ C. Uneven distribution of nanoparticles inimmiscible fluids: Morphology development in polymer blends [J]. Polymer,2009,50(6):1333-1350
    [13]陈红军,刘长维,宋加金, et al.接枝共聚物对聚丙烯/尼龙6共混物结构和性能的影响[J].塑料,2007, No.192(06):25-28
    [1] Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes--the Route TowardApplications[J]. Science,2002,297(5582):787-792
    [2] De Volder M F L, Tawfick S H, Baughman R H等. Carbon Nanotubes: Present andFuture Commercial Applications[J]. Science,2013,339(6119):535-539
    [3] Gao C, Jin Y Z, Kong H等. Polyurea-Functionalized Multiwalled Carbon Nanotubes:Synthesis, Morphology, and Raman Spectroscopy[J]. The Journal of PhysicalChemistry B,2005,109(24):11925-11932
    [4] McCullen S D, Stevens D R, Roberts W A等. Morphological, Electrical, andMechanical Characterization of Electrospun Nanofiber Mats Containing MultiwalledCarbon Nanotubes[J]. Macromolecules,2007,40(4):997-1003
    [5] Bartholome C, Miaudet P, DerréA等. Influence of surface functionalization on thethermal and electrical properties of nanotube–PVA composites[J]. CompositesScience and Technology,2008,68(12):2568-2573
    [6] Brostow W, Cassidy P E, Macossay J等. Connection of surface tension with multipletribological properties in epoxy/fluoropolymer systems[J]. Polymer International,2003,52(9):1498-1505
    [7] Ebbesen T W, Lezec H J, Hiura H等. Electrical conductivity of individual carbonnanotubes[J]. Nature,1996,382(6586):54-56
    [8] Ebbesen T W, Ajayan P M, Hiura H等. Purification of nanotubes[J]. Nature,1994,367(6463):519-519
    [9] Dujardin E, Ebbesen T W, Krishnan A等. Purification of single-shell nanotubes[J].Adv Mater,1998,10(8):611-613
    [10] Alexopoulos N D, Bartholome C, Poulin P等. Damage detection of glass fiberreinforced composites using embedded PVA–carbon nanotube (CNT) fibers[J].Composites Science and Technology,2010,70(12):1733-1741
    [11] Zhu Y, Du Z, Li H等. Preparation and crystallization behavior of multiwalled carbonnanotubes/poly(vinyl alcohol) nanocomposites[J]. Polymer Engineering&Science,2011,51(9):1770-1779
    [12] Liu Y-X, Du Z-J, Li Y等. Surface covalent encapsulation of multiwalled carbonnanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol)[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2006,44(23):6880-6887
    [13] Voyiatzis G A, Andrikopoulos K S, Papatheodorou G N等. Polarized ResonanceRaman and Ftir reflectance Spectroscopic Investigation of the [J]. Macromolecules,2000,33(15):5613-5623
    [14] Willocq C, Hermans S, Devillers M. Active Carbon Functionalized with ChelatingPhosphine Groups for the Grafting of Model Ru and Pd Coordination Compounds[J].The Journal of Physical Chemistry C,2008,112(14):5533-5541
    [15] Yu Y, Lin K, Zhou X等. New C H Stretching Vibrational Spectral Features in theRaman Spectra of Gaseous and Liquid Ethanol [J]. The Journal of PhysicalChemistry C,2007,111(25):8971-8978
    [16] Ji J, Sui G, Yu Y等. Significant Improvement of Mechanical Properties Observed inHighly Aligned Carbon-Nanotube-Reinforced Nanofibers[J]. The Journal of PhysicalChemistry C,2009,113(12):4779-4785
    [17] Minus M L, Chae H G, Kumar S. Single wall carbon nanotube templated orientedcrystallization of poly(vinyl alcohol)[J]. Polymer,2006,47(11):3705-3710
    [18] Ago H, Uehara N, Ikeda K-i等. Synthesis of horizontally-aligned single-walledcarbon nanotubes with controllable density on sapphire surface and polarized Ramanspectroscopy[J]. Chemical Physics Letters,2006,421(4–6):399-403