1. [地质云]滑坡
层析介质孔径与配基密度对蛋白吸附性能影响及抗体分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层析是目前应用最广泛的蛋白分离方法,介质性能决定了层析分离过程的效率,关注点常集中于介质偶联的功能配基,而孔径和配基密度往往被忽视。本文以抗体分离为目标,探讨两种不同作用机制的层析方法,离子交换层析和疏水电荷诱导层析,制备不同配基密度与孔径的系列介质,比较吸附性能,分析配基密度与孔径的影响。主要结果如下:
     以3种不同孔径的琼脂糖凝胶(Bestarose3.5HF、4FF和6FF)为基质,优化配基偶联条件,制备了不同配基密度的阴离子交换层析介质(以diethylamuboethyl, DEAE为配基)和疏水电荷诱导层析介质(以2-mercapto-1-methylimidazole, MMI为配基)。对于DEAE介质,最高配基密度分别达到110、280和410μmol/g;对于MMI介质,分别达到50、110和130μmol/g。
     以牛免疫球蛋白(bIgG)和牛血清白蛋白(BSA)为模型蛋白,考察了系列DEAE介质和MMI介质的静态吸附性能,并采用Langmuir吸附等温式进行拟合。结果表明,对于DEAE介质,配基密度较低时,增加配基密度有利于蛋白质吸附;密度较高时,吸附量趋于稳定,甚至略有降低;较小孔径介质的比表面积较大,有利于蛋白质吸附;综合考虑孔径和配基密度影响,提出综合参数N,发现两种蛋白的饱和吸附容量均随log(N)呈线性变化。对于MMI介质,配基密度较低时,MMI介质无法有效吸附BSA和bIgG;当单位表面的配基数目较高(>15x10-12μmol/μm2)时,介质才能较好吸附BSA和blgG。
     考察了系列DEAE介质和MMI介质对bIgG和BSA的动态吸附性能,包括吸附动力学和穿透曲线。采用孔扩散模型对吸附动力学曲线进行拟合,对于DEAE介质,配基密度对有效扩散系数的影响不大,而孔径增大可促进孔内扩散;对于MMI介质,配基密度和孔径增大都可促进蛋白质的孔内扩散,主要原因在于提高了介质与蛋白之间的疏水作用力。根据穿透曲线获得蛋白的动态载量Q10%,系列DEAE介质对BSA动态载量都比较大,总体上随平衡吸附量而线性增大;而blgG动态载量达到最大值时的配基密度有所偏移,分析可能原因在于动态吸附过程降低了bIgG在介质内部孔道的可及区域,减小了介质内部能够与蛋白相互作用的有效配基。MMI介质对BSA的动态载量很小,对bIgG的动态载量则依赖于介质的配基密度和孔径,控制较低操作流速,配基密度较高、中等孔径的MMI-B-4FF-110介质可实现bIgG的高效吸附。
     考察了三种MMI介质MMI-B-3.5HF-50、MMI-B-4FF-110、MMI-B-6FF-110对bIgG和BSA混合蛋白的吸附等温线,发现吸附过程存在竞争性,具有优先吸附bIgG的能力,其中孔径适中、配基密度较大的MMI-B-4FF-110介质最佳,对bIgG的饱和吸附容量为93.51mg/g,而对BSA仅为43.69mg/g。进一步考察了MMI-B-4FF-110对混合蛋白的吸附动力学,发现BSA对bIgG的动态吸附影响不大,而当bIgG存在时改变了MMI介质对BSA的吸附,MMI对BSA的吸附量在吸附初始阶段大于其平衡吸附容量,随后逐渐减小到其平衡吸附量,可能是介质对两种蛋白吸附作用的强弱差异造成。
     以bIgG为分离目标,考察了MMI介质的分离性能,包括bIgG/BSA混合液中分离bIgG,以及牛血中分离bIgG。对于bIgG/BSA混合液,优化了层析分离的上样和洗脱条件,确定pH7.0上样和pH4.0洗脱,可以获得高纯度的bIgG;比较了不同配基密度和孔径的MMI介质,发现孔径适中、配基密度较大的MMI-B-4FF-110介质效果最好。进一步采用优化的分离条件,利用MMI-B-4FF-110从牛血中分离bIgG,结果表明,牛血经离心和硫酸铵沉淀预处理后,利用MMI介质一步层析分离,bIgG纯度约95%,收率大于85%。
     本文以DEAE离子交换层析为常规层析的典型代表,MMI疏水性电荷诱导层析为新型分离方法代表,系统考察了介质孔径和配基密度对bIgG和BSA吸附性能的影响,得到一些规律性认识,并且发现MMI介质对bIgG有优先吸附能力,优化了分离条件,用于抗体的分离纯化。相关结果有助于层析介质的进一步优化设计,提高抗体分离的效率。
Chromatography is a widely used technique in protein separation, and its separation efficiency is largely affected by chromatographic resins. Research usually focuses on structures of functional ligands coupled onto resins, while the pore size of resin matrices and ligand density are less discussed. This thesis investigated ion-exchange chromatography (IEC) resin and hydrophobic charge induction chromatography (HCIC) re' sins on their application in antibody separation. Series of diethylaminoethyl (DEAE) IEC resins and2-mercapto-l-methylimidazole (MMI) HCIC resins with different ligand densities and pore sizes were prepared. The adsorption performance of these resins was characterized with the influences of ligand density and pore size. The findings of this thesis can be summarized as:
     (1) Three cross-linked agarose gels with different pore sizes (Bestarose3.5HF,4FF and6FF) were used as the matrices. DEAE IEC resins and MMI HCIC resins with different ligand densities and pore sizes were prepared by the control of ligand coupling reactions. The results showed that the highest ligand density of DEAE resins could reach to110,280and410μmol/g gel, respectively, and that of MMI were50,110and130μmol/g gel, respectively.
     (2) The static adsorption behaviors of the DEAE and MMI resins were investigated using bovine immunoglobulin (bIgG) and bovine serum albumin (BSA) as model proteins. The adsorption isotherms obtained were fitted by Langmuir equation. The results showed that the adsorption capacity of DEAE increased with the increase of ligand density when the ligand density was relatively low, and it reached saturation then deceased slightly when the ligand density further increased. Meanwhile, the adsorption capacity increased with the decrease of pore size, as the specific surface area of the resins was higher with smaller pore size. A parameter N defined as the ratio of ligand density to the square of pore size was introduced to describe the integrative effects of pore size and ligand density, and it was found that the saturated adsorption capacity increased linearly with log (N). For MMI resins, the results showed that BSA and bIgG could not be adsorbed with low ligand densities, and resins with ligand density over15x10-12μmol/μm2were need for effective adsorption of BSA and bIgG
     (3) The dynamic adsorption performance for bIgG and BSA were investigated with the DEAE and MMI resins prepared. The adsorption kinetics curves were fitted with the pore diffusion model (PDM). For DEAE resins, the effective diffusion coefficient was found to be influenced by the pore size of DEAE resins, but independent on ligand density. The pore diffusion of proteins in the MMI resins was increased with the increase of ligand density and pore size, which is mainly due to stronger hydrophobic interaction between the resins and the proteins. The dynamic adsorption capacity Q10%could be calculated from the breakthrough curves. For DEAE resins, Q10%of BSA was high and generally increased linearly with the equilibrium adsorption capacity. However the maximum Q10%of bIgG was obtained at the ligand density around100μmol/g gel, which was lower than that in static adsorption process. This behavior could be explained as a result of decreasing accessible surface area for bIgG during the dynamic adsorption process. However, Q10%of BSA with MMI resin was low, but that of bIgG was depended significantly on ligand density and pore size of the resins. Under low operational flow rates, the resin with high ligand density and medium pore size (MMI-B-4FF-110) could efficiently adsorb bIgG
     (4) The adsorption isotherms of bIgG/BSA protein mixtures with the three MMI resins, MMI-B-3.5HF-50, MMI-B-4FF-110and MMI-B-6FF-110, were investigated. Competitive adsorption was found during the adsorption processes. The results showed that bIgG could be preferentially adsorbed and the performance of MMI-B-4FF-110was the best among the three resins. The qm of bIgG with MMI-B-4FF-110was93.51mg/g, while that of BSA was only43.69mg/g. It was found that the adsorption of BSA was influenced by the addition of bIgG. Due to the preferential adsorption of bIgG, the adsorption capacity of BSA with MMI resins exceeded the equilibrium adsorption capacity at the beginning of the adsorption, and then decreased to the equilibrium adsorption capacity. This effect may due to the strength difference of the hydrophobic interaction between the MMI resin and the two proteins.
     (5) The chromatographic separation processes were developed using MMI resins for IgG separation. The protein loading and elution conditions were optimized for bIgG/BSA mixtures. High purity of bIgG could be obtained when the protein was loaded at pH7.0and eluted at pH4.0. MMI resins with different ligand densities and pore sizes were investigated and MMI-B-4FF-110was found to have the best performance. Furthermore, the optimized conditions were used to purify bIgG from crude bovine serum with MMI-B-4FF-110. The result showed that after the pretreatment with ammonium sulfate precipitation, the purity of bIgG was close to95%and the yield was more than85%with only one-step HCIC separation using MMI-B-4FF-110.
     In summary, DEAE ion exchange chromatography and MMI hydrophobic charge induction chromatography were studied and compared as the representative for conventional chromatographic method and the novel separation technique, respectively. The influence of pore size and ligand density was explored. MMI resins were found to have preferential adsorption of IgG. By optimizing the separation conditions, these resins could be used for effective purification of antibodies. The results would be useful to design and optimize the resins and improve the the separation efficiency for antibody purification.
引文
[1 P Murad, J., A Lin, O., V Paez Espinosa, E., et al. Current and experimental antibody-based therapeutics:Insights, breakthroughs, setbacks and future directions [J]. Current Molecular Medicine, 2013,13(1):165.
    [2]Titchener-Hooker, N. J., Dunnill, P., Hoare, M. Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins [J]. Biotechnology and Bioengineering,2008,100(3):473.
    [3]Shukla, A. A., Thommes, J. Recent advances in large-scale production of monoclonal antibodies and related proteins [J]. Trends in Biotechnology,2010,28(5):253.
    [4]Cramer, S. M., Holstein, M. A. Downstream bioprocessing:Recent advances and future promise [J]. Current Opinion in Chemical Engineering,2011,1(1):27.
    [5]Guiochon, G., Beaver, L. A. Separation science is the key to successful biopharmaceuticals [J]. Journal of Chromatography A,2011,1218(49):8836.
    [6]Jungbauer, A. Chromatographic media for bioseparation [J]. Journal of Chromatography A,2005, 1065(1):3.
    [7]Lyddiatt, A. Process chromatography:Current constraints and future options for the adsorptive recovery of bioproducts [J]. Current Opinion Biotechnology,2002,13(2):95.
    [8]Burton, S. C., Harding, D. R. K. Hydrophobic charge induction chromatography:Salt independent protein adsorption and facile elution with aqueous buffers [J]. Journal of Chromatography A,1998, 814(1-2):71.
    [9]Burton, S., Haggarty, N., Harding, D. One step purification of chymosin by mixed mode chromatography [J]. Biotechnology and Bioengineering,1997,56(1):45.
    [10]Katiyar, A., Ji, L., Smirniotis, P., et al. Protein adsorption on the mesoporous molecular sieve silicate sba-15:Effects of ph and pore size [J]. Journal of Chromatography A,2005,1069(1):119.
    [11]Yao, Y, Lenhoff, A. M. Pore size distributions of ion exchangers and relation to protein binding capacity [J]. Journal of Chromatography A,2006,1126(1-2):107.
    [12]Hardin, A. M., Harinarayan, C., Malmquist, G., et al. Ion exchange chromatography of monoclonal antibodies:Effect of resin ligand density on dynamic binding capacity [J]. Journal of Chromatography A,2009,1216(20):4366.
    [13]Wrzosek, K., Gramblicka, M., Polakovic, M. Influence of ligand density on antibody binding capacity of cation-exchange adsorbents [J]. Journal of Chromatography A,2009,1216(25):5039.
    [14]Franke, A., Forrer, N., Butte, A., et al. Role of the ligand density in cation exchange materials for the purification of proteins. Journal of Chromatography A.2010.2216.
    [15]Killard, A. J., Deasy, B., O'Kennedy, R., et al. Antibodies:Production, functions and applications in biosensors [J]. Trends in Analytical Chemistry,1995,14(6):257.
    [16]Larson, B., Heary Jr, H., Devery, J. Immunoglobulin production and transport by the mammary gland [J]. Journal of Dairy science,1980,63(4):665.
    [17]Ayyar, B. V., Arora, S., Murphy, C., et al. Affinity chromatography as a tool for antibody purification [J]. Methods,2012,56(2):116.
    [18]Wang, W., Singh, S., Zeng, D. L., et al. Antibody structure, instability, and formulation [J]. Journal of Pharmaceutical Sciences,2007,96(1):1.
    [19]Davies, D. R., Metzger, H. Structural basis of antibody function [J]. Annual review of immunology, 1983,1(1):87.
    [20]于善谦,王洪海,朱乃硕,叶荣.免疫学导论[J].北京:高等教育出版社,1999:41.
    [21]Moretta, L., Webb, S. R., Grossi, C. E., et al. Functional analysis of two human t-cell subpopulations: Help and suppression of b-cell responses by t cells bearing receptors for igm or igg [J]. The Journal of experimental medicine,1977,146(1):184.
    [22]Itoh, K. Development of diagnostically and therapeutically useful human antibody medicines by phage display system [J]. Journal of the Pharmaceutical Society of Japan,2007,127(1):43.
    [23]Cahill, D. J. Protein and antibody arrays and their medical applications [J]. Journal of Immunological Methods,2001,250(1):81.
    [24]Voller, A., Bidwell, D., Bartlett, A. Enzyme immunoassays in diagnostic medicine:Theory and practice* [J]. Bulletin of the World Health Organization,1976,53(1):55.
    [25]Gen. Top 20 Best-Selling Drugs of 2012[OL].2013, http://www.genengnews.com/insight-and-intelligence/top-20-best-selling-drugs-of-2012/77899775/?page=2.
    [26]Shukla, A. A., Hubbard, B., Tressel, T., et al. Downstream processing of monoclonal antibodies-application of platform approaches [J]. Journal of Chromatography B,2007,848(1):28.
    [27]Low, D., O'Leary, R., Pujar, N. S. Future of antibody purification [J]. J Chromatography B,2007, 848(1):48.
    [28]Gagnon, P. Technology trends in antibody purification [J]. Journal of chromatography A,2012,1221: 57.
    [29]Fassina, G, Ruvo, M., Palombo, G., et al. Novel ligands for the affinity-chromatographic purification of antibodies [J]. Journal of Biochemical and Biophysical Methods,2001,49(1):481.
    [30]Huse, K., Bohme, H.-J., Scholz, G. H. Purification of antibodies by affinity chromatography [J]. Journal of Biochemical and Biophysical Methods,2002,51(3):217.
    [31]Roque, A. C., Silva, C. S., Taipa, M. A. Affinity-based methodologies and ligands for antibody purification:Advances and perspectives [J]. Journal of chromatography A,2007,1160(1):44.
    [32]Zhao, G, Dong, X. Y., Sun, Y. Ligands for mixed-mode protein chromatography:Principles, characteristics and design [J]. Journal of Biotechnology,2009,144(1):3.
    [33]Kuczewski, M., Schirmer, E., Lain, B., et al. A single-use purification process for the production of a monoclonal antibody produced in a per. C6 human cell line [J]. Biotechnology Journal,2011,6(1):56.
    [34]Venkiteshwaran, A., Heider, P., Teysseyre, L., et al. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration [J]. Biotechnology and Bioengineering,2008,101(5):957.
    [35]Wang, L., Mah, K. Z., Ghosh, R. Purification of human IgG using membrane based hybrid bioseparation technique and its variants:A comparative study [J]. Separation and Purification Technology,2009,66(2):242.
    [36]Azevedo, A. M., Rosa, P. A., Ferreira, I. F., et al. Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing [J]. Trends in biotechnology,2009,27(4): 240.
    [37]Rosa, P. A., Azevedo, A. M., Aires-Barros, M. R. Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies [J]. Journal of Chromatography A, 2007,1141(1):50.
    [38]Azevedo, A. M., Rosa, P. A., Ferreira, I. F., et al. Optimisation of aqueous two-phase extraction of human antibodies [J]. Journal of Biotechnology,2007,132(2):209.
    [39]Rosa, P., Azevedo, A., Ferreira, I., et al. Affinity partitioning of human antibodies in aqueous two-phase systems [J]. Journal of Chromatography A,2007,1162(1):103.
    [40]Andrews, B., Head, D., Dunthorne, P., et al. Peg activation and ligand binding for the affinity partitioning of proteins in aqueous two-phase systems [J]. Biotechnology Techniques,1990,4(1):49.
    [41]Birkenmeier, G., Vijayalakshmi, M, Stigbrand, T., et al. Immobilized metal ion affinity partitioning, a method combining metal-protein interaction and partitioning of proteins in aqueous two-phase systems [J]. Journal of Chromatography A,1991,539(2):267.
    [42]Zijlstra, G., Michielsen, M., De Gooijer, C., et al. Igg and hybridoma partitioning in aqueous two-phase systems containing a dye-ligand [J]. Bioseparation,1998,7(2):117.
    [43]Wu, Q., Lin, D.-Q., Yao, S.-J. Evaluation of poly(ethylene glycol)/hydroxypropyl starch aqueous two-phase system for immunoglobulin g extraction [J]. Journal of Chromatography B,2013,928:106.
    [44]武强,林东强,翁叶靖,姚善泾.用于双水相萃取的混合模式配基制备及对igg分配的影响[J].高校化学工程学报,2013,27(6):925.
    [45]Wu, Q., Lin, D.Q., Zhang, Q. L., Gao, D., Yao, S. J. Evaluation of polyethylene glycol)/hydroxypropyl starch aqueous two-phase system for the separation of monoclonal antibodies from cell culture supernatant [J]. Journal of Separation Science,2014, (37):447.
    [46]Orr, V., Zhong, L., Moo-Young, M., et al. Recent advances in bioprocessing application of membrane chromatography [J]. Biotechnology Advances,2013.
    [47]Van Reis, R., Zydney, A. Membrane separations in biotechnology [J]. Current Opinion in Biotechnology,2001,12(2):208.
    [48]Van Reis, R., Brake, J., Charkoudian, J., et al. High-performance tangential flow filtration using charged membranes [J]. Journal of Membrane Science,1999,159(1):133.
    [49]van Reis, R., Zydney, A. Bioprocess membrane technology [J]. Journal of Membrane Science,2007, 297(1):16.
    [50]Christy, C., Adams, G., Kuriyel, R., et al. High-performance tangential flow filtration:A highly selective membrane separation process [J]. Desalination,2002,144(1):133.
    [51]Carter-Franklin, J. N., Victa, C., McDonald, P., et al. Fragments of protein a eluted during protein a affinity chromatography [J]. Journal of Chromatography A,2007,1163(1):105.
    [52]Sheehan, D., FitzGerald, R. Ion-exchange chromatography:Protein purification protocols.1996, Springer,1996:145.
    [53]Ishihara, T., Yamamoto. S. Optimization of monoclonal antibody purification by ion-exchange chromatography:Application of simple methods with linear gradient elution experimental data [J]. Journal of Chromatography A,2005,1069(1):99.
    [54]Lajmi, A. R., Nochumson, S., Berges, A. Impact of antibody aggregation on a flowthrough anion-exchange membrane process [J]. Biotechnology Progress,2010,26(6):1654.
    [55]Phillips, M., Cormier. J., Ferrence, J., et al. Performance of a membrane adsorber for trace impurity removal in biotechnology manufacturing [J]. Journal of Chromatography A,2005,1078(1):74.
    [56]Follman, D. K., Fahrner, R. L. Factorial screening of antibody purification processes using three chromatography steps without protein a [J]. Journal of Chromatography A,2004,1024(1):79.
    [57]Queiroz, J., Tomaz, C., Cabral, J. Hydrophobic interaction chromatography of proteins [J]. Journal of Biotechnology,2001,87(2):143.
    [58]Lu, Y., Williamson, B., Gillespie, R. Recent advancement in application of hydrophobic interaction chromatography for aggregate removal in industrial purification process [J]. Current Pharmaceutical Biotechnology,2009,10(4):427.
    [59]Majors, R. E., Lees, A., Burkhardt, M. Improving protein separations with mixed-mode chromatography. Chromatography Solution Center,2009.
    [60]Pezzini, J., Joucla, G., Gantier, R., et al. Antibody capture by mixed-mode chromatography:A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins [J]. Journal of Chromatography A,2011,1218(45):8197.
    [61]Burton, S. C., Harding, D. R. K. High-density ligand attachment to brominated allyl matrices and application to mixed mode chromatography of chymosin [J]. Journal of Chromatography A,1997, 775(1-2):39.
    [62]Burton, S., Harding, D. Preparation of chromatographic matrices by free radical addition ligand attachment to allyl groups [J]. Journal of Chromatography A,1998,796(2):273.
    [63]赵珺.以环糊精为基质的扩张床吸附剂的制备及银杏黄酮的分离[D].杭州:浙江大学,2010.
    [64]Burton, S. C., Harding, D. R. Salt-independent adsorption chromatography:New broad-spectrum affinity methods for protein capture [J]. Journal of Biochemical and Biophysical Methods,2001,49(1): 275.
    [65]Porath, J., Maisano, F., Belew, M. Thiophilic adsorption-a new method for protein fractionation [J]. FEBS letters,1985,185(2):306.
    [66]Porath, J., Oscarsson, S. A new kind of "thiophilic" electron-donor-acceptor adsorbent [C]. Makromolekulare Chemie. Macromolecular Symposia. Wiley Online Library,1988:359.
    [67]Oscarsson, S., Porath, J. Protein chromatography with pyridine-and alkylthioether-based agarose adsorbents [J]. Journal of Chromatography A,1990,499:235.
    [68]Ghose, S., Hubbard, B., Cramer, S. M. Protein interactions in hydrophobic charge induction chromatography (HCIC) [J]. Biotechnology progress,2005,21(2):498.
    [69]Guerrier, L., Girot, P., Schwartz, W., et al. New method for the selective capture of antibodies under physiolgical conditions [J]. Bioseparation,2000,9(4):211.
    [70]Girot, P., Averty, E., Flayeux, I, et al.2-mercapto-5-benzimidazolesulfonic acid:An effective multimodal ligand for the separation of antibodies [J]. Journal of Chromatography B,2004,808(1): 25.
    [71]Guerrier, L., Flayeux, I., Boschetti, E. A dual-mode approach to the selective separation of antibodies and their fragments [J]. Journal of Chromatography B,2001,755(1):37.
    [72]Johansson, B. L., Belew, M., Eriksson, S., et al. Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions [J]. Journal of Chromatography A,2003,1016(1):21.
    [73]Sasaki, I., GOTOH, H., YAMAMOTO, R., et al. Hydrophobic-ionic chromatography:Its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase, and cholesterol esterase [J]. Journal of biochemistry,1982,91(5):1555.
    [74]Lin, D. Q., Tong, H. F., Wang, H. Y., et al. Molecular insight into the ligand-lgG interactions for 4-mercaptoethyl-pyridine based hydrophobic charge-induction chromatography [J]. The Journal of Physical Chemistry B,2012,116(4):1393.
    [75]Ren, J., Jia, L., Xu, L.,et al. Removal of autoantibodies by 4-mercaptoethylpyridine-based adsorbent [J]. J Chromatography B,2009,877(11-12):1200.
    [76]Chen, J., Tetrault, J., Ley, A. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process [J]. Journal of Chromatography A,2008,1177(2):272.
    [77]Tong, H.-F., Lin, D.-Q., Yuan, X.-M., et al. Enhancing igg purification from serum albumin containing feedstock with hydrophobic charge-induction chromatography [J]. Journal of Chromatography A, 2012,1244:116.
    [78]Tong, H.-F., Lin, D.-Q., Gao, D., et al. Caprylate as the albumin-selective modifier to improve igG purification with hydrophobic charge-induction chromatography [J]. Journal of Chromatography A, 2013,1285:88.
    [79]Xia, H. F., Lin, D. Q., Wang, L. P., et al. Preparation and evaluation of cellulose adsorbents for hydrophobic charge induction chromatography [J]. Industrial & Engineering Chemistry Research, 2008,47(23):9566.
    [80]Coffinier, Y., Vijayalakshmi, M. A. Mercaptoheterocyclic ligands grafted on a poly (ethylene vinyl alcohol) membrane for the purification of immunoglobulin G in a salt independent thiophilic chromatography [J]. Journal of Chromatography B,2004,808(1):51.
    [81]Hamilton, G. E., Luechau, F., Burton, S. C., et al. Development of a mixed mode adsorption process for the direct product sequestration of an extracellular protease from microbial batch cultures [J]. Journal of Biotechnology,2000,79(2):103.
    [82]Zhao, G., Peng, G., Li, F., et al.5-aminoindole, a new ligand for hydrophobic charge induction chromatography [J]. Journal of Chromatography A,2008,1211(1-2):90.
    [83]Shi, Q. H., Shen, F. F., Sun, S. Studies of lysozyme binding to histamine as a ligand for hydrophobic charge induction chromatography [J]. Biotechnology Progress,2010,26(1):134.
    [84]Boschetti, E. Antibody separation by hydrophobic charge induction chromatography [J]. Trends in Biotechnology,2002,20(8):333.
    [85]Schwartz, W., Judd, D., Wysocki, M., et al. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein a for harvest and purification of antibodies [J]. Journal of Chromatography A,2001,908(1-2):251.
    [86]夏海峰.纤维素基复合层析基质的功能化与应用基础研究[D].杭州:浙江大学,2008.
    [87]庄甜甜.混合模式吸附层析从猪血浆中分离免疫球蛋白[J].化工学报,2010,61(2):336.
    [88]童红飞,林东强,姚善泾.疏水电荷诱导层析纯化免疫球蛋白IgY [J].化工学报,2011,62(6):1574.
    [89]Tong, H. F, Lin, D. Q., Pan, Y., et al. A new purification process for goose immunoglobulin igy(delta fc) with hydrophobic charge-induction chromatography [J]. Biochemical Engineering Journal,2011, 56(3):205.
    [90]Bensch. M., Schulze Wierling. P., von Lieres, E., et al. High throughput screening of chromatographic phases for rapid process development [J]. Chemical Engineering & Technology,2005,28(11):1274.
    [91]Stout, R., Sivakoff, S., Ricker, R., et al. New ion-exchange packing based on zirconium oxide surface-stabilized, diol-bonded, silica substrates [J]. Journal of Chromatography A,1986,352:381.
    [92]Kamihara, T., Omi, K. Increase in cyclic AMP content with enhanced phosphatidylinositol turnover in the cells of Candida tropicalis during mycelial growth caused by ethanol [J]. Yeast (Chichester, England),1989,5:S437.
    [93]Kato, Y., Nakamura, K., Hashimoto, T. Characterization of TSK-gel DEAE-Toyopearl 650 ion exchanger [J]. Journal of Chromatography A,1982,245(2):193.
    [94]Granwald, P., Hansen, K., GunBer, W. The determination of effective diffusion coefficients in a polysaccharide matrix used for the immobilization of biocatalysts [J]. Solid State Ionics,1997,101: 863.
    [95]Urry, D. W., Parker, T. M., Reid, M. C。, et al. Biocompatibility of the bioelastic materials, poly (gvgvp) and its γ-irradiation cross-linked matrix:Summary of generic biological test results [J]. Journal of Bioactive and Compatible Polymers,1991,6(3):263.
    [96]Majors, R. E. Effect of particle size on column efficiency in liquid-solid chromatography [J]. Journal of Chromatographic Science,1973,11(2):88.
    [97]Majors, R. E. High-performance liquid chromatography on small particle silica gel [J]. Analytical Chemistry,1972,44(11):1722.
    [98]Chase, H. A. Prediction of the performance of preparative affinity chromatography [J]. Journal of Chromatography A,1984,297:179.
    [99]Wei, G, Ma, P. X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering [J]. Biomaterials,2004,25(19):4749.
    [100]Schuster, S. A., Wagner, B. M., Boyes, B. E., et al. Optimized superficially porous particles for protein separations [J]. Journal of Chromatography A,2013,1315:118.
    [101]Gawdzik, B., Osypiuk, J. Characterization of the porous structure of polymeric packings for HPLC [J]. Chromatographia,2001,54(9-10):595.
    [102]Seaton, N., Walton, J. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements [J]. Carbon,1989,27(6):853.
    [103]Kruk, M., Jaroniec, M., Sakamoto, Y., et al. Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction [J]. The Journal of Physical Chemistry B,2000,104(2):292.
    [104]Tsakiroglou, C. D., Payatakes, A. C. Effects of pore-size correlations on mercury porosimetry curves [J]. Journal of Colloid and Interface Science,1991,146(2):479.
    [105]DePhillips, P., Lenhoff, A. M. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography [J]. Journal of Chromatography A,2000,883(1-2):39.
    [106]Yao, Y, Lenhoff, A. M. Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography [J]. Journal of Chromatography A,2004, 1037(1-2):273.
    [107]Urban, J., Eeltink, S., Jandera, P., et al. Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry [J]. Journal of Chromatography A,2008,1182(2):161.
    [108]Suh, C. W., Kim, M. Y, Choo, J. B., et al. Analysis of protein adsorption characteristics to nano-pore silica particles by using confocal laser scanning microscopy [J]. Journal of Biotechnology,2004, 112(3):267.
    [109]Diao, X., Wang, Y., Zhao, J., et al. Effect of pore-size of mesoporous sba-15 on adsorption of bovine serum albumin and lysozyme protein [J]. Chinese Journal of Chemical Engineering,2010,18(3): 493.
    [110]Sarvi, M. N., Budianto Bee, T., Gooi, C. K., et al. Development of functionalized mesoporous silica for adsorption and separation of dairy proteins [J]. Chemical Engineering Journal,2014,235:244.
    [111]Coquebert de Neuville, B., Tarafder, A., Morbidelli, M. Distributed pore model for bio-molecule chromatography [J]. Journal of Chromatography A,2013,1298:26.
    [112]Coquebert de Neuville, B., Thomas, H., Morbidelli, M. Simulation of porosity decrease with protein adsorption using the distributed pore model [J]. Journal of Chromatography A,2013,1314:77.
    [113]Chang, C., Lenhoff, A. M. Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials [J]. Journal of Chromatography A,1998,827(2):281.
    [114]Gutenwik, J., Nilsson, B., Axelsson, A. Effect of hindered diffusion on the adsorption of proteins in agarose gel using a pore model [J]. Journal of Chromatography A,2004,1048(2):161.
    [115]Yang, H., Gurgel, P. V., Carbonell, R. G. Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography [J]. Journal of Chromatography A,2009,1216(6): 910.
    [116]McCue, J. T., Engel, P., Thommes, J. Effect of Phenyl Sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography [J]. Journal of Chromatography A,2009,1216(6):902.
    [117]To, B., Lenhoff, A. M. Hydrophobic interaction chromatography of proteins:I. The effects of protein and adsorbent properties on retention and recovery [J]. Journal of Chromatography A,2007,1141(2): 191.
    [118]Deitcher, R. W., Rome, J. E., Gildea, P. A., et al. A new thermodynamic model describes the effects of ligand density and type, salt concentration and protein species in hydrophobic interaction chromatography [J]. Journal of Chromatography A,2010,1217(2):199.
    [119]Wrzosek, K., Polakovic, M. Effect of ph on protein adsorption capacity of strong cation exchangers with grafted layer [J]. Journal of Chromatography A,2011,1218(39):6987.
    [120]Hart, D. S., Harinarayan, C, Malmquist, G., et al. Surface extenders and an optimal pore size promote high dynamic binding capacities of antibodies on cation exchange resins [J]. Journal of Chromatography A,2009,1216(20):4372.
    [121]Bowes, B. D., Lenhoff, A. M. Protein adsorption and transport in dextran-modified ion-exchange media. Iii. Effects of resin charge density and dextran content on adsorption and intraparticle uptake [J]. Journal of Chromatography A,2011,1218(40):7180.
    [122]Fogle, J., Mohan, N., Cheung, E., et al. Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. Ⅰ. Mechanistic evaluation [J]. Journal of Chromatography A,2012,1225:62.
    [123]Fogle, J., Persson, J. Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. Ⅱ.Process characterization [J]. Journal of Chromatography A, 2012,1225:70.
    [124]Zhang, L., Bai, S., Sun, Y. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography [J]. Journal of Molecular Graphics and Modelling,2010,28(8):863.
    [125]Zhang, L., Zhao. G. Sun, Y. Effects of ligand density on hydrophobic charge induction chromatography:Molecular dynamics simulation [J]. J Physical Chemistry B,2010,114(6):2203.
    [126]Busch, H., Hurlbert, R. B., Potter, V. R. Anion exchange chromatography of acids of the citric acid cycle [J]. Journal of Biological Chemistry,1952,196(2):717.
    [127]Evered, D. The excretion of amino acids by the human. A quantitative study with ion-exchange chromatography [J]. Biochemical Journal,1956,62(3):416.
    [128]Staby, A., Jensen, I. H., Mollerup, Ⅱ. Comparison of chromatographic ion-exchange resins. Ⅱ. Strong anion-exchange resins [J]. Journal of Chromatography A,2000,897(1-2):99.
    [129]Staby, A., Jensen, I. H. Comparison of chromatographic ion-exchange resins. Ⅱ. More strong anion-exchange resins [J]. Journal of Chromatography A,2001,908(1-2):149.
    [130]Staby, A., Sand, M. B., Hansen, R. G, et al. Comparison of chromatographic ion-exchange resins. Ⅲ. Strong cation-exchange resins [J]. Journal of Chromatography A,2004,1034(1-2):85.
    [131]Staby, A., Sand, M. B., Hansen, R. G., et al. Comparison of chromatographic ion-exchange resins Ⅳ. Strong and weak cation-exchange resins and heparin resins [J]. Journal of Chromatography A,2005, 1069(1):65.
    [132]Staby, A., Jacobsen, J. H., Hansen, R. G., et al. Comparison of chromatographic ion-exchange resins v. Strong and weak cation-exchange resins [J]. Journal of Chromatography A,2006,1118(2):168.
    [133]Staby, A., Jensen, R. H., Bensch, M., et al. Comparison of chromatographic ion-exchange resins Ⅵ. Weak anion-exchange resins [J]. Journal of Chromatography A,2007,1164(1-2):82.
    [134]Giles, C. H., D'Silva, A. P., Easton, Ⅰ. A. A general treatment and classification of the solute adsorption isotherm part. Ⅱ. Experimental interpretation [J]. Journal of Colloid and Interface Science,1974,47(3):766.
    [135]Giles, C. H., Smith, D., Huitson, A. A general treatment and classification of the solute adsorption isotherm. Ⅰ. Theoretical [J]. Journal of Colloid and Interface Science,1974,47(3):755.
    [136]Veith, J., Sposito, G. On the use of the langmuir equation in the interpretation of "adsorption" phenomena [J]. Soil Science Society of America Journal,1977,41(4):697.
    [137]Xia, H. F., Lin, D. Q., Yao, S. J. Chromatographic performance of macroporous cellulose-tungsten carbide composite beads as anion-exchanger for expanded bed adsorption at high fluid velocity [J]. Journal of Chromatography A,2008,1195(1-2):60.
    [138]沈醉.逆体积排阻层析法分析层析介质的孔径分布[M].杭州:浙江大学,2011.
    [139]Peterson, E. A., Sober, H. A. Chromatography of proteins. Ⅰ. Cellulose ion-exchange adsorbents [J]. Journal of the American Chemical Society,1956,78(4):751.
    [140]Raper, A. H. Unoriented particulate deae-cellulose.1963, Google Patents.
    [141]Gao, D., Lin, D. Q., Yao, S. J. Measurement and correlation of protein adsorption with mixed-mode adsorbents taking into account the influences of salt concentration and pH [J]. Journal of Chemical and Engineering Data,2006,51(4):1205.
    [142]Xia, H. F., Lin, D. Q., Yao, S. J. Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography [J]. Journal of Chromatography A,2007,1145(1-2):58.
    [143]王国祥,聂峰光,苏志国.琼脂糖凝胶偶联DEAE基团反应的影响因素[J].化学反应工程与工艺,2002,18(1):80.
    [144]Chen, W. D., Dong, X. Y., Sun, Y. Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent [J]. Journal of Chromatography A,2002,962(1-2):29.
    [145]Chen, W. D., Dong, X. Y, Bai, S., et al. Dependence of pore diffusivity of protein on adsorption density in anion-exchange adsorbent [J]. Biochemical Engineering Journal,2003,14(1):45.
    [146]Tsai, A. M., Englert, D., E Graham, E. Study of the dynamic binding capacity of two anion exchangers using bovine serum albumin as a model protein [J]. Journal of Chromatography A,1990, 504:89.
    [147]Hart, D. S., Harinarayan, C., Malmquist, G., et al. Surface extenders and an optimal pore size promote high dynamic binding capacities of antibodies on cation exchange resins [J], Journal of Chromatography A,2009,1216(20):4372.
    [148]Yoshida, H., Yoshikawa, M., Kataoka, T. Parallel transport of bsa by surface and pore diffusion in strongly basic chitosan [J].Aiche Journal,1994,40(12):2034.
    [149]Pedersen, H., Furler, L., Venkatasubramanian, K., et al. Enzyme adsorption in porous supports:Local thermodynamic equilibrium model [J]. Biotechnology and Bioengineering,1985,27(7):961.
    [150]Tyn, M. T., Gusek, T. W. Prediction of diffusion coefficients of proteins [J]. Biotechnology and Bioengineering,1990,35(4):327.
    [151]Yun, J., Lin, D.-Q., Yao, S.-J. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds [J]. Journal of Chromatography A,2005,1095(1):16.
    [152]Xu, R. Shear plane and hydrodynamic diameter of microspheres in suspension [J]. Langmuir,1998, 14(10):2593.
    [153]Hunter, R. J. Zeta potential in colloid science:Principles and applications [M]. Academic press London,1981.
    [154]Grassi, R., Daghetti, A., Trasatti, S. Application of the gouy-chapman-stern-grahame model of the electrical double layer to the determination of single ion activities of kf aqueous solutions [J]. Journal of electroanalytical chemistry and interfacial electrochemistry,1987,226(1):341.
    [155]Chan, D. Y., Healy, T. W., Supasiti, T., et al. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and stern-grahame layers [J]. Journal of colloid and interface science,2006,296(1):150.
    [156]Lin, D. Q., Zhong, L. N., Yao, S. J. Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application [J]. Biotechnology and Bioengineering,2006,95(1):185.
    [157]Faude, A., Zacher, D., Muller, E., et al. Fast determination of conditions for maximum dynamic capacity in cation-exchange chromatography of human monoclonal antibodies [J]. Journal of Chromatography A,2007,1161(1-2):29.
    [158]He, L. Z., Dong, X. Y., Sun, Y. A diffusion model of protein and eluant for affinity filtration [J]. Biochemical Engineering Journal,1998,2(1):53.
    [159]Griffith, C., Morris, J., Robichaud, M., et al. Fluidization characteristics of and protein adsorption on fluoride-modified porous zirconium oxide particles [J]. Journal of Chromatography A,1997,776(2): 179.
    [160]Lin, D. Q., Dong, J. N., Yao, S. J. Target control of cell disruption to minimize the biomass electrostatic adhesion during anion-exchange expanded bed adsorption [J]. Biotechnology Progress, 2007,23(1):162.
    [161]Weaver Jr, L. E., Carta, G. Protein adsorption on cation exchangers:Comparison of macroporous and gel-composite media [J]. Biotechnology Progress,1996,12(3):342.
    [162]Gao, D., Yao, S. J., Lin, D. Q. Preparation and adsorption behavior of a cellulose-based, mixed-mode adsorbent with a benzylamine ligand for expanded bed applications [J]. Journal of Applied Polymer Science,2008,107(1):674.
    [163]Ayers, J. S., Bethell, G S., Hancock, W. S., et al. Activated matrix and method of activation.1982, Google Patents.
    [164]Noel, R., O'Hare, W., Street, G Thiophilic nature of divinylsulphone cross-linked agarose [J]. Journal of Chromatography A,1996,734(2):241.
    [165]Scoble, J. A., Scopes, R. K. Assay for determining the number of reactive groups on gels used in affinity chromatography and its application to the optimisation of the epichlorohydrin and divinylsulfone activation reactions [J]. Journal of Chromatography A,1996,752(1):67.
    [166]Scoble, J. A., Scopes, R. K. Ligand structure of the divinylsulfone-based t-gel [J]. Journal of Chromatography A,1997,787(1):47.
    [167]Burton, S. C., Harding, D. R. K. Bifunctional etherification of a bead cellulose for ligand attachment with allyl bromide and allyl glycidyl ether [J]. Journal of Chromatography A,1997,775(1-2):29.
    [168]Zakrzewski, R. Determination of methimazole in urine with the iodine-azide detection system following its separation by reversed-phase high-performance liquid chromatography [J]. Journal of Chromatography B,2008,869(1):67.
    [169]Lin, D.Q., Tong, H.-F., Wang, H.-Y., et al. Molecular mechanism of hydrophobic charge-induction chromatography:Interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG [J]. Journal of Chromatography A,2012,1260:143.
    [170]Yang, K., Sun, Y. Structured parallel diffusion model for intraparticle mass transport of proteins to porous adsorbent [J]. Biochemical Engineering Journal,2007,37(3):298.
    [171]Cano, T., Offringa, N., Willson, R. C. The effectiveness of three multi-component binding models in describing the binary competitive equilibrium adsorption of two cytochrome b5 mutants [J]. Journal of Chromatography A,2007,1144(2):197.
    [172]Cano, T., Of iringa, N. D., Willson, R. C. Competitive ion-exchange adsorption of proteins: Competitive isotherms with controlled competitor concentration [J]. Journal of Chromatography A, 2005,1079(1):116.
    [173]Finette, G. M., Baharin, B. S., Mao, Q. M., et al. Adsorption behavior of multicomponent protein mixtures containing alpha 1-proteinase inhibitor with the anion exchanger, 2-(diethylamino)ethyl-spherodex [J]. Biotechnology Progress,1997,13(3):265.
    [174]Liang, J., Fieg, G, Shi, Q. H., et al. Single and binary adsorption of proteins on ion-exchange adsorbent:The effectiveness of isothermal models [J]. Journal of Separation Science,2012, 35(17):2162.
    [175]Lisec, O., Hugo, P., Seidel-Morgenstern, A. Frontal analysis method to determine competitive adsorption isotherms [J]. Journal of Chromatography A,2001,908(1):19.
    [176]Seidel-Morgenstern, A. Experimental determination of single solute and competitive adsorption isotherms [J]. Journal of Chromatography A,2004,1037(1):255.
    [177]Tao, Y. Y., Carta, G., Ferreira, G., et al. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers:I. Adsorption equilibrium [J]. Journal of Chromatography A, 2011,1218(11):1519.
    [178]Xu, X., Lenhoff, A. M. Binary adsorption of globular proteins on ion-exchange media [J]. Journal of Chromatography A,2009,1216(34):6177.
    [179]Zhang, Y., Hidajat, K., Ray, A. K. Determination of competitive adsorption isotherm parameters of pindolol enantiomers on [alpha] 1-acid glycoprotein chiral stationary phase [J]. Journal of Chromatography A,2006,1131(1-2):176.
    [180]Blade, W. H., Boulton, R. Adsorption of protein by bentonite in a model wine solution [J]. American Journal of Enology and Viticulture,1988,39(3):193.
    [181]Goksungur, Y., Uren, S., Guvenc, U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass [J]. Bioresource Technology,2005,96(1):103.
    [182]Jain, J. S., Snoeyink, V. L. Adsorption from bisolute systems on active carbon [J]. Journal of Water Pollution Control Federation,1973:2463.
    [183]Mao, Q., Hearn, M. Optimization of affinity and ion-exchange chromatographic processes for the purification of proteins [J]. Biotechnology and Bioengineering,1996,52(2):204.
    [184]James, E., Do, D. Equilibria of biomolecules on ion-exchange adsorbents [J]. Journal of Chromatography A,1991,542:19.
    [185]Golshan-Shirazi, S., Guiochon, G. Analytical solution for the ideal model of chromatography in the case of a pulse of a binary mixture with competitive Langmuir isotherm [J]. The Journal of Physical Chemistry,1989,93(10):4143.
    [186]Allen, S., Mckay, G., Porter, J. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems [J]. Journal of Colloid and Interface Science,2004,280(2):322.
    [187]Al-Asheh, S., Banat, F., Al-Omari, R., et al. Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data [J]. Chemosphere,2000,41 (5):659.
    [188]Lewus, R. K., Carta, G. Binary protein adsorption on gel-composite ion-exchange media [J]. Aiche Journal,1999,45(3):512.
    [189]Tao, Y., Carta, G., Ferreira, G., et al. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers:Ⅱ. Adsorption kinetics [J]. Journal of Chromatography A,2011, 1218(11):1530.
    [190]Tao, Y., Chen, N., Carta, G., et al. Modeling multicomponent adsorption of monoclonal antibody charge variants in cation exchange columns [J]. Aiche Journal,2011.
    [191]Martin, C., Iberer, G., Ubiera, A., et al. Two-component protein adsorption kinetics in porous ion exchange media [J]. Journal of Chromatography A,2005,1079(1):105.
    [192]Xia, H.-F., Lin, D.-Q., Chen, Z.-M., et al. Influences of ligand structure and ph on the adsorption with hydrophobic charge induction adsorbents:A case study of antibody IgY [J]. Separation Science and Technology,2011,46(12):1957.