1. [地质云]滑坡
刚性陶瓷/琼脂糖复合蛋白质层析介质的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相层析技术是生物分离过程中的一个重要单元,具有分辨率高、操作设备简单和有利于保持生物大分子的活性等优点,是一种最有效、最普遍采用的生物分离方式之一。而层析技术的关键就是层析介质,随着科技的进步和对生物产品需求的不断增长,层析介质的性能也得到了不断的提高。本文以刚性陶瓷/琼脂糖复合层析介质的制备、功能化及应用为目标,以复合介质的制备为中心,希望开发一种具有新型结构的层析介质,主要开展了以下几方面的工作:
     (1)制备多孔氧化硅陶瓷微球。以纳米氧化硅粉体为骨架材料,PEG10000为致孔剂,海藻酸钠溶液为胶黏剂,采用反相悬浮法制备陶瓷微球生胚,再通过高温烧结得到一种孔隙率高、机械强度大、球形度好的多孔陶瓷微球。经氮气吸附实验测定,其比表面积达28.75 m2/g,BJH平均孔径为33.3 nm,BJH孔容为0.246 m3/g;并且其流通性能良好,在764 cm/h的高操作流速下柱背压只有0.18 MPa。
     (2)制备了刚性陶瓷/琼脂糖复合层析介质。采用热渗透法将琼脂糖凝胶填充到多孔陶瓷微球中,再通过研磨、筛选和流化床淘洗的方式去除微球表面的琼脂糖凝胶,得到一种复合介质。其湿真密度为1.70 g/mL,平均粒径为65.3μm,经性能评估可知复合介质在耐受柱压、柱效、装柱速度等方面均优于传统琼脂糖基填料6FF,较适宜用于制备型蛋白质层析。
     (3)将复合介质功能化为阳离子交换剂并考察其蛋白质吸附性能。首先,采用二次交联法对复合介质进行化学修饰并偶联氯乙酸,制备得到CM-复合介质,其离子交换容量为72.4μmol/mL。然后,以溶菌酶为模型蛋白考察了其等温吸附曲线、吸附动力学曲线和不同流速下的穿透曲线。结果表明其静态饱和吸附容量为55.9 mg/mL,符合二级吸附动力学模型;在高操作流速时依然可对蛋白质进行有效吸附。
     (4)将复合介质功能化为具有谷胱甘肽功能基团的亲和层析介质,并实现了对谷胱甘肽转移酶融合蛋白的纯化。经优化,复合介质的环氧基团活化密度为13.1μmol/mL,GSH配基密度为10.2μmol/mL,偶联效率达77.8 %;之后考察了洗脱方式、上样量和操作流速对介质吸附性能的影响。结果表明,谷胱甘肽亲和作用具有专一性好的特点,目标蛋白可被完全吸附;线性洗脱或梯度洗脱都能达到目标纯度;并且复合介质具备较高的吸附容量,可在较高操作速度下应用,较适合融合蛋白的纯化。
Liquid chromatography, as an important unit in bioseparation process, is the most effective and widely used technology with the advantages of high resolution, simple operating equipment and high bioactivity preservation. The chromatographic media is the key of this technology. With the advance of technology and the increase of requirements for biological products, the performances of chromatographic packing materials have been continuously improved. The present work was aimed at developing a new chromatographic media with novel structure, mostly focused at preparation, functionalization and application of rigid ceramic/agarose composite adsorbents for liquid chromatography. The main works were carried out as follows:
     (1) Preparation of porous silica beads. Firstly, the ceramic pulp was fabricated by silica powders as skeleton, PEG10000 as porogenic agent and sodium alginate solution as binder. Later, the ceramic pulp was prepared into elemental silica particles by the method of oil emulsion and immobilized by calcium chloride. Then, the final porous silica beads with high porosity, strong bonds and good sphericity were obtained through high temperature sintering. Nitrogen adsorption-desorption analysis given a BET surface area of 28.75 m2/g, a BJH mean pore size of 33.3 nm and a porosity of 0.246 m3/g, respectively. The ceramic beads had good hydromechanics with the back pressure of 0.18 MPa at the flow velocity of 770 cm/h.
     (2) Preparation of porous ceramic/agarose composite beads. The porous of ceramic beads were filled with agarose solution. After mildly grinding with water in a mortar, the gel outside of the beads was removed by screening with standard sieve and elutriation in a fluidized bed. The composite particles had a wet density of 1.70 g/mL and a mean size of 65.3μm. The composite beads were superior to the traditional agarose based beads of 6FF in hydromechanics, column efficiency and column packing by the performance evaluation. Above all, it was appropriate for preparative chromatography.
     (3) Functionalization of the composite beads as cation ion-exchanger. Firstly, the beads were double cross-linked with glycol diglycidyl ether and epichlorohydrin. Then, carboxymethyl (CM) groups were coupled to the composite beads and the total ionic capacity reaches 72.4μmol/mL. Finally, The adsorption isothermal, adsorption dynamics, breakthrough curves were determined by using lysozyme as model protein. The saturated adsorption capacity was 55.9 mg/mL. The adsorption dynamics dates were well fitted with the pseudo second-order kinetic mode, and the composite beads could be operated at high velocity without loosing binding capacity.
     (4) Functionalization of the composite beads as GSH-adsorbents and purification of GST-ADAM15. Firstly, The BDGE activation efficiency and GSH ligand density reached 13.1 and 10.2μmol/mL, respectively. And the final coupling efficiency reached 77.8 %. Then, the chromatographic process of the GSH-adsorbents as function of elution mode, sample injection and operating velocity were evaluated. The results indicate that the GSH affinity adsorbents were provided with high specifity. The target protein could be adsorbed completely and target purity could be obtained with both of linear gradient and 100 % B solution elution. The composite adsorbents prepared were suitable for purification of fusion protein at high velocity.
引文
1 Boschetti E. Advanced sorbents for preparative protein separation purposes[J]. J Chromatogr A, 1994, 658(2): 207-236
    2 Howard G A, Martin A J P. The separation of the C12-C18 fatty acids by reversed-phase partition chromatography[J]. Biochem J, 1950, 46(5): 532-538
    3 Ettre L S. The nomenclature of chromatography: III. General rules for future revisions[J]. J Chromatogr, 1981, 220(1): 65-69
    4 Axén R, Porath J, Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides[J]. Nature, 1967, 214(5095): 1302-1304
    5 Porath J, Axen S, Ernback S. Chemical coupling of proteins to agarose[J]. Nature, 1967, 215(5109): 1491-1492
    6 Cuatrecasas P, Wilcheck M, Anfinsen C B. Selective enzyme purification by affinity chromatography[J]. Proc Natl Acad Sci USA, 1968, 61(2): 636-643
    7 Yamamoto S, Nomura M, Sano Y. Scaling up of medium-performance gel filtration chromatography of proteins[J]. J Chem Eng Jpn, 1986, 19(3): 227-231
    8 Ahrer K, Buchacher A, Iberer G, et al. Analysis of aggregates of human immunoglobulin G using size-exclusion chromatography, static and dynamic light scattering[J]. J Chromatogr A, 2003, 1009(1-2): 89-96
    9 Ahrer K, Buchacher A, Iberer G, et al. Detection of aggregate formation during production of human immunoglobulin G by means of light scattering[J]. J Chromatogr A, 2004, 1043(1): 41-46
    10 Gysler J, Mazereeuw M, Helk B, et al. Utility of isotachophoresis–capillary zone electrophoresis, mass spectrometry and high-performance size-exclusion chromatography for monitoring of interleukin-6 dimer formation[J]. J Chromatogr A, 1999, 841(1): 63-73
    11 Burton S C, Harding D R K. Salt-independent adsorption chromatography: new broad-spectrum affinity methods for protein capture[J]. J Biochem Biophys Methods, 2001, 49(1-3): 275-287
    12 Arpanaei A, Winther-Jensen B, Theodosiou E. Surface modification of chromatography adsorbents by low temperature low pressure plasma[J]. J Chromatogr A, 2010, 1217(44): 6905-6916
    13 Amersham Biosciences. 18-1132-29-Protein purification handbook[S]. Uppsala: Handbooks from Amersham Pharmacia Biotech, 2005
    14 Leonard M. New packing materials for protein chromatography[J]. J Chromatogr B, 1997, 699(1-2): 3-27
    15 Myo T T, Tood W G. Prediction of diffusion coefficients of proteins[J]. Biotechnol Bioeng, 1990, 35(4): 327-338
    16 Jungbauer A. Chromatographic media for bioseparation[J]. J Chromatogr A, 2005, 1065(1): 3-12
    17 Peterson E A, Sober H A. Chromatography of proteins. I. cellulose ion-exchange adsorbents[J]. J Am Chem Soc, 1956, 78(4): 751-755
    18 Jungbauer A, Feng W. HPLC of biological macromolecules[M]. New York: Marcel Dekker Inc, 2002. 281-285
    19 Porath J, Flodin P. Gel filtration: a method for desalting and group separation[J]. Nature, 1959, 183: 1657-1659
    20 Janson J C. On the history of the development of Sephadex?[J]. Chromaotgraphia, 1987, 23(5): 361-365
    21孙彦.生物分离工程[M].北京:化学工业出版社, 1998. 162-163
    22 VolkováJ, K?ivákováM, PatzelováM, et al. Sorption characteristics of hydroxyethyl methacrylate gels[J]. J Chromatogr, 1973, 76(1): 159
    23 Mike? O, ?trop P, Zbro?ek J, et al. Ion-exchange derivatives of spheron: II. Diethylaminoethyl spheron[J]. J Chromatogr, 1979, 180(1): 17-30
    24 Mike? O, ?trop P, Smr? M, et al. Ion-exchange derivatives of spheron: III. Carboxylic cation exchangers[J]. J Chromatogr, 1980, 192(1): 159-172
    25 Boschetti E. Polyacrylamide derivatives to the service of bioseparations[J]. J Biochem Biophys Methods, 1989, 19(1): 21-26
    26 Johnson P R, Stern N J, Eitzman P D, et al. Reproducibility of physical characteristics, protein immobilization and chromatographic performance of 3M emphaze biosupport medium AB 1[J]. J Chromatogr A, 1994, 667(1-2): 1-9
    27 Hermanson G T, Mattson G R, Krohn R I. Preparation and use of immunoglobulin-binding affinity supports on emphaze beads[J]. J Chromatogr A, 1995, 691(1-2): 113-122
    28 Unger K, Schick-Kalb J, Krebs K F, et al. Preparation of porous silica spheres for column liquid[J]. J Chromatogr, 1973, 83: 5-9
    29 Unger K, Roumeliotis P, Mueller H, et al. Novel porous carbon packings in reversed-phase high-performance liquid chromatography[J]. J Chromatogr, 1980, 202(1): 3-14
    30 Unger K, Janzen R. Packings and stationary phases in preparative column liquid chromatography[J]. J Chromatogr, 1986, 373: 227-264
    31 Kadoya T, Isobe T, Okuyama T, et al. A New spherical hydroxyapatite for high performance liquid chromatography of proteins[J]. J Liq Chromatogr, 1986, 9(16): 3543-3557
    32 Hahn R, Schlegel R, Jungbauer A. Coparison of protein A affinity sorbents[J]. J Chromatogr B, 2003, 790(1-2): 35-51
    33 Th?mmes J, Halfar M, Lenz S, et al. Purification of monoclonal antibodies from whole hybridoma fermentation broth by fluidized bed adsorption[J]. Biotechnol Bioeng, 1995, 45(3): 205-211
    34 Stout R W, Sivakoff S I, Ricker R D, et al. New ion-exchange packing based on zirconium oxidesurface-stabilized, diol-bonded, silica substrates[J]. J Chromatogr, 1986, 352: 381-397
    35 Mullick A, Griffith C M, Flickinger M C. Expanded and packed bed albumin adsorption on fluoride modified Zirconia[J]. Biotechnol Bioeng, 1998, 60(3): 333-340
    36 Meiller F, Mirabe B. Method of separating proteins by ion exchange[P]. US Patent, 4100149. 1978-07-11
    37 Miyabe K, Guiochon G. Influence of the modification conditions of alkyl bonded ligands on the characteristics of reversed-phase liquid chromatography[J]. J Chromatogr A, 2000, 903(1-2): 1-12
    38 Horvath J, Boschetti E, Guerrier L, et al. High-performance protein separations with novel strong ion exchangers[J]. J Chromatogr A, 1994, 679(1): 11-22
    39 Xia H F, Lin D Q, Yao S J. Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography[J]. J Chromatogr A, 2007, 1145(1-2): 58-66
    40罗明华.多孔陶瓷实用技术[M].北京:中国建材工业出版社, 2006. 11-12
    41 Ravaglioli A, Krajewski A. Bioceramics: materials, properties, applications[C]. New York: Springer, 1992: 187-193
    42 Sepulveda P, Binner J G P. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers[J]. J Eur Ceram Soc, 1999, 19(2): 2059-2066
    43 Wismer M. Inorganic Foams[M]. New York: Marcel Dekker, 1973. 177-180
    44 Santos M M, Vasconcelos W L. Properties of porous silica glasses prepared via sol-gel process[J]. J Non-Cryst Solids, 2000, 273(1-3): 145-149
    45 Maca K, Dobsak P, Boccaccini A R. Fabrication of graded porous ceramics using alumina-carbon powder mixtures[J]. Ceram Int, 2001, 27(5): 577-584
    46 Heijnen J J, Mulder A, Weltevrede R, et al. Large scale anaerobic-aerobic treatment of complex industrial waste water using biofilm reactors[J]. Water Sci Tech, 1991, 23(7-9): 1427-1436
    47 Nawrocki J, Dunlap C, McCormick A, et al. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC[J]. J Chromatogr A, 2004, 1028(1): 1-30
    48 Unger K K. Porous silica, its properties and use as support in column liquid chromatography[M]. New York: Elsevier Scientific Publishing Company, 1979. 57-129
    49 Mohan S B, Lyddiatt A. Silica-based solid phases for affinity chromatography: Effect of pore size and ligand location upon biochemical productivity[J]. Biotechnol Bioeng, 1992, 40(5): 549-563
    50 Kopaciewicz W, Fulton S, Lee S Y. Influence of pore and particle size on the frontal uptake of proteins: Implications for preparative anion-exchange chromatography[J]. J Chromatogr, 1987, 409: 111-124
    51 Carr P W, Funkenbusch E F, Rigney M P, et al. High stability porous zirconium oxide spherules[P]. US Patent, 5015373. 1991-05-14
    52 Funkenbusch E F, Carr P W, Hanggi D A, et al. Polymer-coated carbon-clad inorganic oxide particles[P]. US Patent, 5271833. 1993-12-21
    53 Wax M J, Grasselli R K. Porous titania or zirconia spheres[P]. US Patent, 5128291. 1992-07-07
    54 Nelson T B, Skaates J M. Attrition in a liquid fluidized bed bioreactor[J]. Ind Eng Chem Res, 1988, 27(8): 1502-1505
    55 Unger K K. Porous silica, its properties and use as support in column liquid chromatography[M]. New York: Elsevier Scientific Publishing Company, 1979. 15-53
    56 Shalliker R A, Douglas G K. Controlling the pore structure of Zirconia for chromatographic applications[J]. J Liq Chromatogr Related Technol, 1997, 20(11): 1651-1666
    57 Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems[J]. Appl Microbiol Biotechnol, 2003, 60(5): 523-533
    58 Beck V, Herold H, Benge A, et al. ADAM15 decreases integrinαvβ3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion[J]. Int J Biochem Cell Biol, 2005, 37(3): 590-603
    59 Arribas J, Bech-Serra J J, Santiago-Josefat B. ADAMs, cell migration and cancer[J]. Cancer Metastasis Rev, 2006, 25(1): 57-68
    60吴静.重组人ADAM15去整合素结构域蛋白的制备及其作用机理[D]: [博士学位论文].无锡:江南大学生物工程学院, 2008
    61 Pernemalm P A, Carlsson M, Lindgren G. Separation material and its preparation[P]. European Patent, 0132244. 1986-12-17
    62 Ghetie V, Motet G.D, Schell D H. Synthesis derivatives of agarose having application in electrophoresis on gel and in chromatography[P]. US Patent, 3507851. 1970-04-21
    63张海龙,乔昕,姚红娟,等.多肽配基亲和吸附介质的配基密度控制规律[J].化学反应工程与工艺, 2007, 23(4): 289-295
    64中国国家标准管理管理委员会. GB/T8330287-离子交换树脂湿真密度测定方法[S].北京:中国标准出版社, 2008
    65中国国家标准管理管理委员会. GB/T5757286-阳离子交换树脂交换容量测定方法[S].北京:中国标准出版社, 2008
    66 Sundberg L, Porath J. Preparation of adsorbents for biospecific affinity chromatography: I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes[J]. J Chromatogr, 1974, 90(1): 87-98
    67周楠迪,李寅,陈坚,等.从酵母中提取谷胱甘肽的初步研究[J].生物技术, 1997, 7(4): 30-33
    68师治贤,王俊.生物大分子的液相色谱分离和制备[M].第二版.北京:科学出版社, 1996. 12-34
    69吴静,雷楗勇,金坚,等.改善稀有密码子和氨基酸残基限制提高重组人ADAM15去整合素结构域蛋白表达水平[J].微生物学报, 2008, 48(8): 1067-1074
    70 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227: 680-685
    71 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1-2): 248-254
    72 Grant G T, Morris E R, Rees D A, et al. Biological interactions between polysaccharides and divalent cations: the egg-box model[J]. FEBS Lett, 1973, 32(1): 195-198
    73 Jang S H, Han M G, Im S S. Preparation and characterization of conductive polyanilinersilica hybrid composites prepared by sol-gel process[J]. Synth Met, 2000, 110(1): 17-23
    74 Calacal E L, Whittemore O J. The sintering of diatomite[J]. Am Ceram Soc Bull, 1987, 66(5): 790-793
    75 Wang F Y, Zhang H F, Feng H, et al. A mineralogical study of diatomite in Leizhou peninsula[J]. Chinese journal of geochemistry, 1995, 14(2): 140-151
    76谷景华,吴波玲,张跃.多孔二氧化硅块材的制备[J].稀有金属材料与工程, 2007,
    36(增1): 546-548
    77 Berthod A. Silica: backbone material of liquid chromatographic column packings[J]. J Chromatogr, 1991, 549: 1-28
    78 Morse J W, Casey W H. Ostwald processes and mineral paragenesis in sediments[J]. Am J Sci, 1988, 288: 537-560
    79肖万生,陈晋阳,彭文世,等.方石英的亚稳态形成机制探讨[J].矿物岩石, 2003, 23(4): 5-10
    80 Roy D M, Roy R. Tridymite-cristobalite relations and stable solid solutions[J]. Am Mineral, 1964, 49: 952-962
    81 Wang L H, Tsai B J. The sintering and crystallization of colloidal silica gel[J]. Mater Lett, 2000, 43(5-6): 309-314
    82 Yao X, Zhang Li Y, Wang S S. Pore size and pore-size distribution control of porous silica[J]. Sens Actuators B, 1995, 25(1-3): 1-29.
    83 Afeyan N B, Gordon N F, Mazsaroff I, et al. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: Perfusion chromatography[J]. J Chromatogr, 1990, 519(1): 1-29
    84 Du K F, Bai S, Dong X Y, et al. Fabrication of superporous agarose beads for protein adsorption: Effect of CaCO3 granules content[J]. J Chromatogr A, 2010, 1217(37): 5808-5816
    85 Voute N, Boschetti E, Girot P, et al. Large pore volume composite mineral oxide beads, There preparation and their applications for adsorption and chromatography[P]. US Patent, 20020005383. 2002-01-17
    86 Righetti P G, Gelfi C, Sebastiano R, et al. Surfing silica surfaces superciliously[J]. J Chromatogr A, 2004, 1053(1-2): 15-26
    87 Boschetti E. Advanced sorbents for preparative protein separation purposes[J]. J Chromatogr A, 1994, 658(2): 207-236
    88 Rowlen K L, Duell K A, Avery J P, et al. Measurement of column efficiency in whole column detection chromatography[J]. Anal Chem, 1991, 63 (6): 575-579
    89 Bidlingmeyer B A, Warren Jr F V. Column efficiency measurement[J]. Anal Chem, 1984, 56 (14): 1583-1596
    90 Zhai Y Q, Zhou W Q, Wei W, et al. Functional gigaporous polystyrene microspheres facilitating separation of poly(ethylene glycol)-protein conjugate[J]. Anal Chim Acta, 2012, 712: 152-161
    91王冬梅.新型超大空纤维素介质的制备及其在蛋白质色谱中的应用[D]: [博士学位论文].天津:天津大学化工学院, 2007
    92夏海锋,金雄华,饶志明,等.国产弱阳离子琼脂糖交换介质的性能及其用于蛋清溶菌酶的分离纯化[J].食品与生物技术学报, 2009, 28(6): 799-803
    93 Guimar?es G C, Garcia Rojas E E, Coelho Júnior C C, et al. Adsorption kinetics and thermodynamic parameters of egg white proteins[J]. Eur Food Res Technol, 2011, 232(6): 985-993
    94 Van Sommeren A P G, Machielsen P A G M, Gribnau T C J. Comparison of three activated agaroses for use in affinity chromatography: effects on coupling performance and ligand leakage[J]. J Chromatogr A, 1993, 639(1): 23-31