1. [地质云]滑坡
基于统计回归的复杂制造过程健壮参数控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造过程越来越集成化、智能化,在很多大型制造企业都可以找到复杂制造过程。随着市场对产品质量要求的不断提高,企业需要越来越关注其制造过程的控制问题,因为质量是制造出来的。复杂制造过程往往具有过程变量多、变量交互影响复杂、多工序多平台等特点,因此很难或几乎不可能找到一个合适的差分或微分方程来描述过程响应和过程变量之间的关系,从而使得实施过程层面的质量控制变得困难。本文针对复杂制造过程的参数控制问题,在已有的“基于回归模型的健壮参数控制”方法基础上,进一步完善其方法学体系和框架,讨论了过程变量的新分类和实验设计效应排序新原则,提出了谨慎控制律的设计方法,开发了一类自适应可变参数控制图技术,提出了旨在降低在线调节频次的节约型控制律设计方法,解决了非计量型过程响应的在线观测问题。同时也通过介绍所提方法在钢铁行业、半导体制造业、成型过程中的应用分析,证明所提方法是有效且实用的。论文的主要研究工作包括以下五大部分:
     一、在现有健壮参数控制方法基础上,总结并完善了该方法学的理论框架,讨论了实验设计建模阶段需要考虑和改进的方面,并提出具有一般性的方法学求解模型。
     二、明确考虑模型系数估计误差和噪声观测误差的存在,在分析了两类误差对所提方法控制性能的影响机理之后,设计了相应的谨慎控制策略,该谨慎策略能使原先的基于统计回归的健壮参数控制方法不敏感于这两类误差,提高了该方法在不确定性环境下的控制性能。
     三、针对已经应用了健壮参数控制方法的过程,提出一类自适应可变参数控制图技术。通过整合控制律信息,对系统响应进行预测,基于预测进行控制图参数的在线自动调节。新的自适应控制图分为两类:一类主要提高过程变异的跟踪能力,另一类则着重优化控制图的使用成本。新发展的控制图能够有效地配合基于统计回归的健壮参数控制方法,共同改善复杂制造过程的质量。
     四、在健壮参数控制方法基础上,考虑尽量减少在线不必要的调节,提出一种节约型控制律的设计方法。首先提出两个新的概念:质量边际和噪声变化的自补偿,并定量分析了两个概念是如何创造了减少调节频次的可能。最后提出全新的控制律设计方法,通过和传统的控制方法进行比较,指出所提方法在保证工程要求的质量标准的前提下,能够用更少的调节频次达到控制目标。
     五、明确考虑非计量型过程响应的在线观测问题和在所提方法中的应用问题。非计量型过程响应往往不能在线进行直接测量,但对复杂制造过程进行统计回归建模时,一个必要条件就是过程响应(即过程质量指标)必须是可以定量观测的。针对这一问题,提出了使用机器视觉和图像处理技术,实现非计量型过程响应的在线观测。结合钢铁行业中的连铸过程,开发了高温连铸过程钢坯表面质量的在线检测系统的关键算法,为后续的回归建模提供了必要的过程响应数据。针对非计量型过程响应和计量型过程变量之间的不匹配关系,提出了使用逻辑回归方法对连铸过程进行建模,基于所得逻辑回归模型,应用所提健壮参数控制方法设计出优化控制律,最后得到钢厂现场工程师的支持,建议得到了成功应用。
     本文通过整合和应用统计方法、自动控制理论、谨慎控制理论、控制图技术、最优控制理论和图像处理方法,提高了基于统计回归的健壮参数控制方法的鲁棒性、自适应性、经济性和实际应用性。
When the manufacturing processes are getting more and more integrated and intelligent, there are a lot of complex manufacturing processes in various manufacturing companies. With the increasing demand on quality of products, manufacturers care more of the control performance of their manufacturing processes since the quality is produced. Generally, complex manufacturing processes are featured with a large number of process variables, complex interactions among those variables, multiple stages and platforms. Hence, it is pretty hard or even impossible to find an appropriate differential or difference equation to describe the complex manufacturing process, which makes controlling of complex manufacturing processes much harder. This article aims at the problem of process variable control in complex manufacturing processes. Based on the previous work on“regression model based robust parameter control”, this article further perfects its framework and system; discusses the new classification of process variables and the new effect hierarchy principle in experimental design; proposes the design approach of cautious control law; develops an adaptive control charts with variable parameters; proposes an economical control law with reduced adjustment frequency; solves the online observation of attributes data. By implementing the proposed methods in steel industry, semiconductor industry, forming industry, the methods are verified to be effective and practical. There are five main sections in this article.
     1. Based on the existing method, we summarize and perfect its framework. Additionally, modeling approaches regarding experimental design are researched to improve and revise. The concrete solving procedures of the proposed method are also given.
     2. It is explicitly pointed out that the estimation error of regression model coefficients and the observation error of observable noises should be considered. A cautious control strategy is developed after the influence of those two types of errors on control performance is studied. The proposed cautious control law is capable of improving the robustness of control performance to uncertainties.
     3. An adaptive control charts with variable parameters is designed for a robust parameter control method applied process. Integrated with the applied control law, the proposed control charts can automatically adjust control chart parameters based on the prediction of system responses. There are two types of adaptive control charts developed. One enhances the tracking performance of process changes. The other one reduces the SPC run cost. The proposed SPC monitoring strategy, together with the robust parameter control method, effectively improves the process quality of complex manufacturing processes.
     4. An economical control law with reduced adjustment frequency is proposed based on the robust parameter control method. New concepts quality margin and self-compensation of noise change are proposed. We analyze the chances for adjustment frequency reduction that those two concepts could create. The innovative design of control law fully utilizes those two concepts which is quite different from the existing control law design. With a comparison study, we show that the proposed reduced control law requires much less in-line adjustments while guarantees the specified process quality.
     5. It is explicitly to consider the observation problem and implementing problem of attributes data process responses. Generally, attributes data process responses are hard to be measured online. However, one of the prerequisites for conducting regression modeling in complex manufacturing processes is process response should be quantified and observed in real time. In order to solve this problem, an image processing algorithm based on sensing camera is developed, which is able to realize the online observation of attributes data. By implementing this technique into continuous casting process, a core algorithm capable of automatically detecting surface defects of casting billets is developed. Then, a full form of data structure can be expected. In order to solve the modeling of attributes process response and variables process data, a logistical regression is built for casting process modeling. Based on this logistical regression, the proposed control method is implemented and optimal control law is obtained. The suggestions on control are accepted by steel plant, which verifies a successful implementation case of the proposed method in casting processes.
     Through integrating statistical methods, automatic process control, cautious control, control charts, optimal control, and image processing method, the article makes the proposed method more robust, adaptive, economical, and practical.
引文
[1] Wu C.F.J., Hamada M., 2000, Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley and Sons, New York, NY.
    [2] Hinkelmann, K. Kempthorne, O., 1994, Design and Analysis of Experiments, Vol. 1, John Wiley and Sons, New York, NY.
    [3] Taguchi, G., 1986, Introduction to Quality Engineering: Designing Quality into Products and Processes, Unipub/Kraus, White Plains, NY.
    [4] Taguchi, G., 1987, System of Experimental Design, Vol. 1 & Vol. 2, Unipub/Kraus, White Plains, NY.
    [5] Bingham, D., Sitter, R.R., 1999,“Minimum Aberration Two-Level Fractional Factorial Split-Plot Designs,”Technometrics, Vol. 41, pp. 62-70.
    [6] Box, G.E.P., Jones, S., 1992,“Split-Plot Design for Robust Product Estimation,”Journal of Applied Statistics, Vol. 19, pp. 3-26.
    [7] Box, G.E.P., 1988,“Signal-to-Noise Ratios, Performance Criteria, and Transformations,”(with discussion), Technometrics, Vol. 30, pp. 1-40.
    [8] Engel, J., 1992,“Modeling Variation in Industrial Experiments,”Journal of Applied Statistics, Vol. 41, pp. 579-593.
    [9] Nelder, J.A., Lee, Y., 1991,“Generalized Linear Models for the Analysis of Taguchi-Type Experiments,”Applied Stochastic Models and Data Analysis, Vol. 7, pp. 107-120.
    [10] Myers, R.H., Khuri, A.I., Vining, G.G., 1992,“Response Surface Alternatives to the Taguchi Robust Parameter Design,”The American Statistician, Vol. 46, pp. 131-139.
    [11] Vining, G.G., Myers, R.H., 1990,“Combining Taguchi and Response Surface Philosophies: A Dual Response Approach,”Journal of Quality Technology, Vol. 22, pp.38-45.
    [12] Shoemaker, A.C., Tsui, K.L., Wu, C.F.J., 1991,“Economical Experimentation Methods for Robust Design,”Technometrics, Vol. 33, pp.415-427.
    [13] Nair, V.N., 1992,“Taguchi’s Parameter Design: A Panel Discussion,”Technometrics, Vol. 34, pp. 128-161.
    [14] Myers, R.H., Montgomery, D.C., 1995, Response Surface Methodology: Process and Product in Optimization Using Designed Experiments, John Wiley, New York, NY.
    [15] Coleman, D.E., Montgomery, D.C., 1993,“A Systematic Approach to Planning for a Designed Industrial Experiment,”(with discussion), Technometrics, Vol. 35, pp. 1-27.
    [16] ABC, 1999,“Shut Height Adjustment for Forming Process Control Using DOE,”NZS-ATP Technical Report, No. NZS-404.
    [17] Ceglarek, D., Shi, J., 1995,“Dimensional Variation Reduction for Automotive Body Assembly Manufacturing,”Journal of Manufacturing Review, Vol. 8, pp. 139-154.
    [18] Ceglarek, D., Shi, J., 1996,“Fixture Failure Diagnosis for Auto Body Assembly Using Pattern Recognition,”ASME Transactions, Journal of Engineering for Industry, Vol. 118, pp. 55-65.
    [19] Jin, J., Shi, J., 1999,“Feature-Preserving Data Compression of Stamping Tonnage Information Using Wavelets,”Technometrics, Vol. 41, No. 4, pp. 327-339.
    [20] Jin, J., and Shi, J., 2000,“Automatic Feature Extraction for In-process Diagnostic Performance Improvement,”Journal of Intelligent Manufacturing, Vol. 12, pp. 267-268.
    [21] Jin, J., Shi, J., 2000,“Diagnostic Feature Extraction from Stamping Tonnage Signals Based on Design of Experiment,”ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 122, No. 2, pp. 360-369.
    [22] Koh, C.K.H., Shi, J., Williams, W., Ni, J., 1999,“Multiple Fault Detection and Isolation Using the Haar Transform– Part I: Theory,”ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 121, No. 2, pp. 290-294.
    [23] Joseph, V.R., Wu, C.F.J., 2002,“Robust Parameter Design of Multiple Target Systems,”Technometrics, Vol. 44, No. 4, pp. 338-346.
    [24] Welch, W.J., Yu, T.K., Kang, S.M., Sacks, J., 1990,“Computer Experiments for Quality Control by Parameter Design,”Journal of Quality Technology, Vol. 22, pp. 15-22.
    [25] Phadke, M.S., 1989, Quality Engineering Using Robust Design, Englewood Cliffs, Prentice Hall, NJ.
    [26] Lunani, M., Nair, V.N., Wasserman, G.S., 1997,“Graphical Methods for Robust Design with Dynamic Characteristics,”Journal of Quality Technology, Vol. 29, pp. 327-338.
    [27] Castillo, E.D., Montgomery, D.C., McCarville, D.R., 1996,“Modified Desirability Functions for Multiple Response Optimization,”Journal of Quality Technology, Vol. 28, pp. 337-345.
    [28] Logothetis, T., Haigh, A., 1988,“Characterization and Optimizing Multi-Response Processesby the Taguchi Method,”Quality and Reliability Engineering International, Vol. 4, pp. 159-169.
    [29] McCaskey, S.D., Tsui, K.L., 1997,“Analysis of Dynamic Robust Design Experiments,”International Journal of Production Research, Vol. 35, pp. 1561-1574.
    [30] Miller, A., Wu, C.F.J., 1996,“Parameter Design for Signal-Response System: A Different Look at Taguchi’s Dynamic Parameter Design,”Statistical Science, Vol. 11, pp. 122-136.
    [31] Tsung, F., Shi, J., Wu, C.F.J., 1999,“Joint Monitoring of PID Controlled Processes,”Journal of Quality Technology, Vol. 31, No. 3, pp. 275-285.
    [32] Draper, N.R., Lin, D.K.J., 1990,“Small Response-Surface Designs,”Technometrics, Vol. 32, pp. 187-194.
    [33] Apley, D.W., Shi, J., 1999,“A GLRT for Statistical Process Control of Autocorrelated Processes,”IIE Transactions, Quality and Reliability Engineering, Vol. 31, pp. 1123-1134.
    [34] Montgomery, D.C., Mastrangelo, C.M., 1991,“Some Statistical Process Control Methods for Autocorrelated Data,”Journal of Quality Technology, Vol. 23, pp. 179-193.
    [35] Lowry, C.A., Montgomery, D.C., 1995,“A Review of Multivariate Control Charts,”IIE Transactions, Vol. 27, pp. 800-810.
    [36] Mason, R.L., Champ. C.W., Tracy, N.D., Wierda, S.J., Young, J.C., 1997,“Assessment of Multivariate Process Control Techniques,”Journal of Quality Technology, Vol. 29, pp. 140-143.
    [37] Box, G.E.P., Coleman, D.E., Baxley, R.V., 1997,“A Comparison of Statistical Process Control and Engineering Process Control,”Journal of Quality Technology, Vol. 29, pp. 128-130.
    [38] Montgomery, D.C., Keats, J.B., Runger, G.C., Messina, W.S., 1994,“Integrating Statistical Process Control and Engineering Process Control,”Journal of Quality Technology, Vol. 26, pp. 79-89.
    [39] Tsung, F., Shi, J., 1999,“Integration of Run-to-run PID Controller and SPC for Process Disturbance Rejection,”IIE Transactions, Vol. 31, pp. 517-527.
    [40] Castillo, E.D., 1999,“Long Run and Transient Analysis of a Double EWMA Feedback Controller,”IIE Transactions, Quality and Reliability Engineering, Vol. 31, pp. 1157-1169.
    [41] Jin, J., Shi, J., 1999,“Automatic Process Control Based on Design of Experiments,”Presented at INFORMS’99, Nov., Philadelphia.
    [42] Jin, J., Shi, J., 1999,“Shut Height Adjustment Based on the Feedforward Control of the Noise Factor Estimation Information in Sheet Metal Stamping,”IPQI Technical Report.
    [43] Patterson, O., Khargonekar, P., Grimard, D., Dong, X., Nair, V., 1997,“Empirical Modeling of Reactive Ion Etching for Reduction of Variance via Robust Design, Real-Time Feedback and Run-to-Run Control,”The proceedings of the Second International Symposium on Process Control, Diagnostics, and Modeling in Semiconductor Manufacturing, edited by Meyyappan, M., Economou, D.J., Butler, S.W., Vol. 97-9, The Electrochemical Society, Inc., pp. 45-54.
    [44] Soyucayli, S., Otto, K.N., 1998,“Simultaneous Engineering of Quality Through Integrated Modeling,”Transactions of ASME, Journal of Mechanical Design, Vol. 120, pp. 210-220.
    [45] Goodwin, G.C., Payne, R.L., 1977, Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, NY.
    [46] Box, G. E. P., Jenkins, G. M., Reinsel, G. C.,时间序列分析:预测与控制,第三版,北京:中国统计出版社,1997.
    [47] Macgregor, J. F., 1990, A different view of the funnel experiment, Journal of Quality Technology, Vol. 4, pp. 255-259.
    [48] Box, G. E. P., Kramer, T., 1992, Statistical process monitoring and feedback adjustment—A discussion, Technometrics, Vol. 3, pp. 251-267.
    [49] Box, G. E. P., Luceno, A., 1997, Discrete Proportional-Integral adjustment and statistical process control, Journal of Quality Technology, Vol. 3, pp. 248-260.
    [50] Grant, E. L., Leavenworth, R. S.,统计质量控制,第七版,北京:清华大学出版社,2002.
    [51] Zarrop, M.B., 1979, Lecture Notes in Control and Information Sciences, 21, Springer-Verlag, Berlin Heidelberg, New York, NY.
    [52]纪亨腾,范菊,黄祥鹿带控制变量的非线性自回归滑动平均模型在锚泊线动力分析中的应用上海交通大学学报2008,42(4):685-688.
    [53]吴霄叶水生黄珍基于自适应滤波器的系统识别研究与实现微计算机信息,2007,02S:275-277.
    [54] Fries, A., Hunter, W.G., 1980,“Minimum Aberration 2k-p Designs,”Technometrics, Vol. 22, pp. 601-608.
    [55] Wu, H., Wu, C.F.J., 2002,“Clear Two-factor Interactions and Minimum Aberration,”Annals of Statistics, Vol. 30, No. 5, pp. 1496-1511.
    [56] Astrom, K.J., Wittenmark, B., 1995, Adaptive Control, 2nd edition, Addison-Wesley, New York, NY.
    [57]李星毅,绪远,王轶非线性系统开闭环PID型迭代学习控制算法的鲁棒性计算机工程与设计2008,29(24):6253-6257.
    [58] Joseph, V.R., 2003,“Robust parameter design with feed-forward control,”Technometrics, Vol. 45, pp. 284-292.
    [59] Dasgupta, T., Wu, C.F.J., 2006,“Robust parameter design with feedback control,”Technometrics, Vol. 48, pp. 349-360.
    [60] Pledger, M., 1996,“Observable uncontrollable factor in parameter design,”Journal of Quality Technology, Vol. 28, pp. 153-162.
    [61] Jin, J., Ding, Y., 2004,“Online automatic process control using observable noise factors for discrete-part manufacturing,”IIE Transactions, Vol. 36, No. 9, pp. 899-911.
    [62] Stengel, R.F., 1986, Stochastic Optimal Control: Theory and Application, Wiley, New York, NY.
    [63] Shi, J., Apley, D.W., 1994,“An adaptive cautious predictive controller for real-time implementation,”Dynamic Systems and Control, Vol. 55, No. 1, pp.167-174.
    [64] Shi, J., Apley, D.W., 1998,“A suboptimal N-step-ahead cautious controller for adaptive control applications,”Journal of Dynamic System, Measurement and Control, Vol. 120, No. 3, pp.419-423.
    [65] Apley, D.W., Kim, J., 2004,“Cautious control of industrial process variability with uncertain input and disturbance model parameters,”Technometrics, Vol. 46, No. 2, pp. 188-199.
    [66] Zhou, K., Doyle, J.C., Glover, K., 1996, Robust and Optimal Control, Prentice Hall, Upper Saddle River, New Jersey.
    [67] Jacobs, O.L.R., Patchell, J.W., 1972,“Cautious and Probing in Stochastic Control,”International Journal of Control, Vol. 16, No. 1, pp. 189-199.
    [68] Bar-Shalom, Y., Tse, E., 1974,“Dual effect. certainty equivalence, and separation in stochastic control,”IEEE Transactions on Automatic Control, Vol. AC-19, No. 5, pp. 494-500.
    [69] Sternby, J., 1979,“Performance limits in adaptive control,”IEEE Transactions on Automatic Control, Vol. AC-24, No. 4, pp. 645-647.
    [70] Bar-Shalom, Y., 1981,“Stochastic dynamic programming: caution and probing,”IEEE Transactions on Automatic Control, Vol. AC-26, No. 5, pp. 1184-1195.
    [71] Tse, E., Bar-Shalom, Y., 1973,“An actively adaptive control for linear systems with randomparameters via the dual control approach,”IEEE Transactions on Automatic Control, Vol. AC-18, No. 2, pp. 109-117.
    [72] Ku, R., Athans, M., 1973,“On the adaptive control of linear systems using the open-loop-feedback-optimal approach,”IEEE Transactions on Automatic Control, Vol. AC-18, No. 5, pp. 489-493.
    [73] Hughes, D.J., Jacobs, O.L.R., 1973,“Performance of LQG control systems using optimal k-step-ahead control laws,”Proceedings of the Joint Automatic Control Conference, Columbus, OH., paper 22.4.
    [74] Wittenmark, B., 1975,“An active suboptimal dual controller for systems with stochastic parameters,”Automatic Control Theory and Applications, Vol. 3, No. 1, pp. 13-19.
    [75] Sternby, J., 1976,“A simple dual control problem with an analytical solution,”IEEE Transactions on Automatic Control, Vol. AC-21, No. 6, pp. 840-844.
    [76] Milito, R., Padilla, C.S., Padilla, R.A., Cadorin, D., 1980,“Dual control through innovations,”IEEE Conference on Decision and Control, Vol. 1, pp. 341-345.
    [77] Mookerjee, P., Bar-Shalom, Y., 1989,“An adaptive dual controller for a MIMO-ARMA system,”IEEE Transactions on Automatic Control, Vol. 34, No. 7, pp. 795-800.
    [78] Page, E.S., 1954,“Control charts for the mean of a normal population,”Journal of the Royal Statistical Society, Vol. 16, pp. 131-135.
    [79] Keats, J.B., Miskulin, J.D., Runger, G.C., 1995,“Statistical process control scheme design,”Journal of Quality Technology, Vol. 27, pp. 214-225.
    [80] Prabhu, S.S., Runger, G.C., Montgomery, D.C., 1997,“Selection of the subgroup size and sampling interval for a CUSUM control chart,”IIE Transactions, Vol. 29, pp. 451-457.
    [81] Wu, Z., Xie, M., Tian, Y., 2002,“Optimization design of the X&S charts for monitoring process capability,”Journal of Manufacturing Systems, Vol. 21, pp. 83-92.
    [82]瞿锋SPC控制图对均值偏移监测能力的分析科技资讯2008,12:39-40.
    [83]李鸣华一种SPC控制图的优化算法研究浙江师范大学学报:自然科学版2005, 28(4):398-401.
    [84] Duncan, A.J., 1956,“The economic design of X charts used to maintain current control of a process,”Journal of American Statistical Association, Vol. 51, pp. 228-242.
    [85] Montgomery, D.C., 1986,“Economic design of an X control chart,”Journal of QualityTechnology, Vol.14, pp.40-43.
    [86] Castillo, E.D., Montgomery, D.C., 1996,“A general model for the optimal design of X charts used to control short or long run processes,”IIE Transactions, Vol. 28, pp. 193-201.
    [87] Al-Oraini, H.A., Rahim, M.A., 2002,“Economic statistical design of X control charts for systems with gamma in-control times,”Computers and Industrial Engineering, Vol. 43, pp.645-654. ? ? ,2?
    [88] Woodall, W.H., 1986,“Weaknesses of economical design of control charts,”Technometrics, Vol. 28, pp. 408-409.
    [89] Montgomery, D.C., 2001, Introduction to Statistical Quality Control, Wiley, New York, NY.
    [90] Reynolds, M.R., Jr., Amin, R.W., Arnold, J.C., Nachlas, J.A., 1988,“X charts with variable sampling intervals,”Technometrics, Vol. 30, pp. 181-192.
    [91] Runger, G.C., Pignatiello, J.J., Jr., 1991,“Adaptive sampling for process control,”Journal of Quality Technology, Vol. 23, pp.135-155.
    [92] Amin, R.W., Miller, R.W., 1993,“A robustness study of X charts with variable sampling intervals,”Journal of Quality Technology, Vol. 25, pp. 36-44.
    [93] Runger, G.C., Montgomery, D.C., 1993,“Adaptive sampling enhancements for Shewhart control charts,”IIE Transactions, Vol. 25, pp. 41-51.
    [94] Reyolds, M.R., Jr., Arnold, J.C., Baik, J.W., 1996,“Variable sampling interval X charts in the presence of correlation,”Journal of Quality Technology, Vol. 28, pp. 1-28.
    [95] Reyolds, M.R., Jr., 1996,“Shewhart and EWMA variable sampling interval control charts with sampling at fixed times,”Journal of Quality Technology, Vol. 28, pp. 199-212.
    [96]潘明勇,杨承玉可变抽样区间的HL控制图南开大学学报:自然科学版2009,42(1):44-50.
    [97]吉明明,赵选民,唐伟广可变抽样区间的非正态EWMA均值控制图系统工程2006,24(11):114-119.
    [98] Reyolds, M.R., Jr., Amin, R.W., Arnold, J.C., 1990,“Cusum charts with variable sampling intervals,”Technometrics, Vol. 32, pp.371-384.
    [99] Saccuci, M.S., Amin, R.W., Lucas, J.M., 1992,“Exponentially weighted moving average control schemes with variable sampling intervals,”Communication in Statistics– Simulation andComputation, Vol. 21, pp. 627-657.
    [100] Prabhu, S.S., Runger, G.C., Keats, J.B., 1993,“An adaptive sample size X chart,”International Journal of Production Research, Vol. 31, pp. 2895-2909.
    [101] Costa, A.F.B., 1994,“X charts with variable sample size,”Journal of Quality Technology, Vol. 26, pp. 155-163.
    [102] Prabhu, S.S., Montgomery, D.C., and Runger, G.C., 1994,“A combined adaptive sample size and sampling interval X control scheme,”Journal of Quality Technology, Vol. 26, pp. 164-176.
    [103] Costa, A.F.B., 1997,“X charts with variable sample size and sampling intervals,”Journal of Quality Technology, Vol. 29, pp. 197-204.
    [104] Costa, A.F.B., 1999a,“Joint X and R charts with variable sample sizes and sampling intervals,”Journal of Quality Technology, Vol. 31, pp. 387-397.
    [105] Rendtel, U., 1990,“Cusum-schemes with variable sampling intervals and sample sizes,”Statistical Papers, Vol. 31, pp. 103-118.
    [106] Costa, A.F.B., 1998,“Joint X and R charts with variable parameters,”IIE Transactions, Vol. 30, pp. 505-514.
    [107] Costa, A.F.B., 1999b,“X charts with variable parameters,”Journal of Quality Technology, Vol. 31, pp. 408-416.
    [108] Costa, A.F.B., 2000,“X charts with supplementary samples to control the mean and variance,”International Journal of Production Research, Vol. 38, pp. 3801-3809.
    [109] Flaig, J.J., 1991,“Adaptive control charts,”In Keats, J.B. and Montgomery, D.C. (eds), Statistical Process Control in Manufacturing, Marcel Dekker, New York, pp. 111-122.
    [110] Park, C., Reynolds, M.R., Jr., 1994,“Economic design of a variable sample size X chart,”Communications in Statistics– Simulation and Computation, Vol. 23, pp. 467-483.
    [111] Das, T.K., Jain, V., Gosavi, A., 1997,“Economic design of dual-sampling-interval policies for X charts with and without run rules,”IIE Transactions, Vol. 29, pp. 497-506.
    [112] Das, T.K., Jain, V., 1997,“An economic design model for X charts with random sampling policies,”IIE Transactions, Vol. 29, pp. 507-518.
    [113] Prabhu, S.S., Montgomery, D.C., Runger, G.C., 1997,“Economic-statistical design of an adaptive X chart,”International Journal of Production Economics, Vol. 49, pp. 1-15.
    [114] Park, C., Reynolds, M.R., Jr., 1999,“Economic design of a variable sampling rate X chart,”Journal of Quality Technology, Vol. 31, pp. 427-443.
    [115] Tagaras, G., 1998,“A survey of recent developments in the design of adaptive control charts,”Journal of Quality Technology, Vol. 30, pp. 212-231.
    [116] Crowder, S.V., 1992,“An SPC model for short production runs: minimizing expected cost,”Technometrics, Vol. 34, pp. 64-73.
    [117] Box, G.E.P., Luceno, A., 1997, Statistical Control by Monitoring and Feedback Adjustment, Wiley, New York, NY.
    [118] Castillo, D.E., 2002, Statistical Process Adjustment for Quality Control, Wiley, New York, NY.
    [119] Box, G.E.P., Jenkins, G.M., 1963, Further contributions to adaptive quality control simultaneous estimation of dynamics: Non-Zero Cost, Bulletin of International Statistical Institute, 34, pp. 943-974.
    [120] Kitagawa, H., Fujii, A., Miyake, S., and Kurita, K., 1981,“An Automatic Surface Defect Detection System for Hot Ingot Casting Slabs using an Infrared Scanning Camera and Image Processors,”Trans. Iron Steel Inst. Japan, 21, pp.201-210.
    [121]杜锋用红外线摄像机检测出钢钢流上海金属2004,26(6):58-58.
    [122] Li, X., Guan, X., and Huang, Q., 2006,“Improving Automatic Detection of Defects in Castings by Applying Wavelet Technique,”IEEE Trans. Ind. Elec., 53(6), pp.1927-1934.
    [123]喻春雨,常本康,魏殿修新型X光成像系统及其性能分析仪器仪表学报2007,28(1):150-153.
    [124] Huang, H., Lin, T., Jia, H.B., Chang, T.S., and Lupini, R.M., 2008,“Image-based In-line Surface Inspection for Continuously Cast Billets,”The Iron & Steel Technology Conference, May 5-8, Pittsburgh, PA.
    [125] Li, J., Shi, J.J., and Chang, T.Z., 2007,“On-line Seam Detection in Rolling Processes using Snake Projection and Discrete Wavelet Transform,”ASME Trans. J. Manuf. Sci. Eng., 129, pp. 926-933.
    [126] Ziou, D. and Tabbone, S., 1998,“Edge Detection Techniques– An overview,”Int. J. Pattern Recognit. Imag. Anal., 8(4), pp.537-559.
    [127]熊秋菊,杨慕升数字图像处理中边缘检测算法的对比研究机械工程与自动化2009,2:43-44,47.
    [128]官鑫,王黎,高晓蓉,王泽勇图像边缘检测Sobel算法的FPGA仿真与实现现代电子技术2009,32(8):109-111.
    [129] Canny, J., 1986, A Computational Approach to Edge Detection,”IEEE Trans. Pattern Ana. Machine Intell., 8(6), pp.679-698.
    [130] Yow, K. and Cipolla, R., 1997,“Feature-based Human Face Detection,”Image Vision Computing, 15(9), pp.713-735.
    [131] Strecker, H., 1983,“A Local Feature Method for the Detection of Flaws in Automated X-ray Inspection of Castings,”Signal Process, 5(5), pp.423-431.
    [132]徐东,杨健,徐亚范基于机器学习的SAR图像目标识别方法研究微电子学与计算机2004,21(7):110-111,146.
    [133] Pignatiello, J.J., Jr. and Ramberg, J.S. 1985, Discussion of“off-line quality control, parameter design, and the Taguchi method”by Kackar, R.N., Journal of Quality of Technology, 17, pp.198-206.
    [134] Li, J., Shi, J. and Chang, T.Z., 2006, On-line seam detection in rolling processes using snake projection and discrete wavelet transform, ASME Manufacturing Conference, Oct. 8-11, Ypsilanti, MI, USA.
    [135] Jin R., Li, J. and Shi, J., 2007 Quality prediction and control in rolling processes using logistic regression, Transaction of NAMRI/SME, 35, pp. 113-120.
    [136] Kumar, S., Samarasekera, I.V., and Brimacombe, J.K., 1997,“Mold Thermal Response and Formation of Defects in the Continuous Casting of Steel Billets– Laps and Bleeds,”ISS Trans., ISS, June, pp.53-69.
    [137] Elfsberg, J., 2003,“Oscillation Mark Formation in Continuous Casting Processes, Casting of Metals,”Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden.
    [138] Thomas, B.G., 2003,“On-line Detection of Quality Problems in Continuous Casting of Steel,”In Modeling, Control and Optimization in Ferrous and Nonferrous Industry, 2003 Materials Science & Technology Symposium, TMS, Warrendale, PA, pp.29-45.
    [139] Nakato, H., Ozawa, M., Kinoshita, K., Habu, Y., and Emi, T., 1984,“Factors Affecting the Formation of Shell and Longitudinal Cracks in Mold during High Speed Continuous Casting of Slabs,”Trans. ISIJ, 24, pp.957-965.
    [140] Lilley, F.E.M., 1976,“Diagrams for Magnetotelluric Data,”Geophysics, 41, pp.766-770.
    [141] Papanastasiou, T.C., Georgiou, G.C., and Alexandrou, A.N., 2000, Viscous Fluid Flow, CRC Press, Taylor & Francis Group, FL.
    [142] Ryan, T.A. and Joiner, B.L., 1976,“Normal Probability Plots and Tests for Normality,”Technical report, Statistics Department, The Pennsylvania State University.