1. [地质云]滑坡
毕赤酵母表面展示南极假丝酵母脂肪酶B的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毕赤酵母是近十年来发展起来的一种真核表达体系,具有表达量高、培养成本低、产物可以分泌到胞外、糖基化程度适中等优点。目前已有的毕赤酵母表面展示系统主要是利用来自酿酒酵母Flol蛋白的N端絮凝结构域和GPI系统的C端为锚定蛋白将外源蛋白展示于菌体表面,融合蛋白分别非共价和共价连接于毕赤酵母细胞壁上。
     为了优化毕赤酵母展示系统,本实验室成功采用三种锚定系统将CALB (Candida Antarctica lipase B)展示在毕赤酵母细胞(Pichia pastoris)表面,本论文在此基础上,进行了以下研究:
     1.不同毕赤酵母表面展示南极假丝酵母脂肪酶B的比较,western blot证明融合蛋白KFS-CALB/GS115可被热SDS从重组酵母细胞壁提取,并大量分泌至培养基,KNS-CALB/GS115和Sed1-CALB/GS115可用葡聚糖酶提取,分泌能力较弱。无论何种锚定系统,其目的蛋白的实际分子量均远远大于理论分子量,这可能与融合蛋白的糖基化有关。流式细胞仪检测发现,三种锚定蛋白的重组毕赤酵母菌株的荧光强度明显不同,KFS强度最大,Sed1最小,同水解活力分析相同。以上结果说明相同宿主,相同外源蛋白,不同锚定系统的锚定效率有明显差异。对发酵液的水解活力和蛋白含量分析发现,KFS的分泌能力最强,可能同其的非共价结合方式有关。另外,KFS发酵液中的小分子融合蛋白片段表明目的蛋白的分泌可能同发酵过程中的蛋白酶有关。
     2.絮凝素毕赤酵母展示系统展示机理的初探。通过单因子实验,确定了KFS-CALB/GS115展示系统最佳的与蛋白酶活性相关的营养和环境条件:诱导温度为28℃,蛋白胨的最佳添加量为2%。Gly、Ala和Pro三种氨基酸的添加会促进融合蛋白的表达。其最佳作用浓度为0.1%。但随着展示活力的提高,分泌水平也随之提高。对KFS-CALB/GS115毕赤酵母和GS115的发酵液蛋白进行双向电泳发现,在大分子区出现融合蛋白点,经MALTI-TOF-TOF-MS测定为重组的融合蛋白,其分子量为216kD,等电点为3.97。
     本研究对毕赤酵母展示系统的展示能力进行进一步分析,发现以N端絮凝素端结合的KFS重组酵母展示系统无论从其菌体表面还是发酵液均具有最大脂肪酶表达能力,具有较高可塑性。改变毕赤酵母的培养条件对融合蛋白的表达有极大影响。
The yeast pichia pastoris is a useful eucaryon expressing system which has developed in these yeasrs. This system has several good quality, for example, high amouts expression, clutivating low, product can secrete outside,proper glycosylation. At present, P.pastoris has been studied for protein-surface display based on the anchor system of the flocculation functional domain of Follp(FS) from S.cerevisiae and the C domain of GPI anchor system which were noncovalently and covalently linked to the cell wall respectively.
     On the basis of previously work, laboratory constructed the gene of CALB which was displayed on the pichia pastoris using three different anchor systems.On this basis,the article is divided into two parts.
     1.Comparing the display and secreion ability of foreign protein in different pichia pastoris display system.Western blot confirmed that the fusion proteins KFS-CALB/GS115 were released from cell walls after mild alkaline treatment,and can excrete into fermentation supernatant abundantly, conversely,the proteins KNS-CALB/GS115 and Sedl-CALB/GS115 can only extracted using glucanase with less secretory capacity. No matter which anchor system, the practical molecular weight of interest protein is more larger than its in theory which maybe is associated with glycosylation of fusion protein. The fluorescence intensity of the whole yeast was measured by flow cytometry, in which we found that three yeast strain with different anchor system had different fluorescence intensity that KFS had maximum and Sedl was smallest. The result indicate that the anchor efficiency was variance obviously with different anchor system even in the same host and the same foreign protein. To analyse the hydrolyse activity and protein concentration of fermentation supernatant we found that the high secretion capability of KFS was related to its noncovalent bonding possibility. Moreover, the micromolecule band in superanant of KFS showed that the excreted protein was associated with protease probablely.
     2.The analyse of CALB in pichia display system with KFS anchor system. By the experiment of mono-factor,the main results as follows:under 28℃the expression of the protein is the highest. and 2% peptone was added to culture medium is the best, at the same time, Additions of Gly, Ala, Pro into the medium,0.1% concentrationhas the optimization expression. Neverthelessly, the serection level was increasing along with the raising of display ability. The 2DGE of the supernatant of KFS pichia pastoris and GS115 showed that the protein were concentrated in the acidity terminal and we can see the fusion protein in the macromolecule place.
     The study analyze the display capability of pichia pastoris display system further, in which we found the KFS recombinant yeast that incorporated with flocculation anchor system had the biggest expression ability of the fusion lipase,either in the surface of cell or the fermentation supernate,and had the highest plasticity.lt had a big influence by the expression of fusion protein to change cultivation conditon.
引文
[1]A.Kondo, M.Udea. Yeast cell-surface display-applications ofinolecular display[J]. Appl Microbiol Biotechnol,2004,64:28-40
    [2]Arroyo M, Sanchez-Montero J M, Sinisterra J V. Thermal stabilization of immobilized lipase B from C.andidaantarctica on diferent supports:effect of water activity on enzymatic activity in organic media[J].EnzymeMicrob Technol.1999,24:3-12
    [3]Boder ET,Bill JR,Nields AW,el al. Yeast surface display of a noncovalent MHC class Ⅱ heterodimer complexed with antigenic peptide[J]. Biotechnol Bioeng,2005,92:485-491
    [4]Boder ET, Midelfort KS and Wittrup KD.Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity[J]. ProcNatlAcad Sci U SA,2000,97: 10701-10705
    [5]Boder ET, Wittrup KD.Yeast surface display for screening combinatorial polypeptide libraries[J]. Nat Biotechnol,1997,15:553-557
    [6]Bony M, Thines-Sempoux D, Barre P, et al.Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flolp[J]. Bacteriol,1997,179:4929-4936
    [7]Ceregh Ino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast pchia patoris[J]. FemsMicrobiology Rev,2000,24(1):45-66.
    [8]Chao G,Cochran JR and Wittrup KD.Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display[J].Mol Biol, 2004,342:539-550
    [9]Clare JJ, Rayment FB, Ballantyne SP, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations ofthe gene[J]. BioTechnology,1991,9:455-460
    [10]De Groot PW,Ram AF and Klis FM. Features and functions of covalently linked proteins in fungal cell walls[J].Fungal Genet Biol,2005,42:657-675
    [11]Emma D, Thorpe, Marc C, et al. Sorbitol as a non-repression carbon source for fed-batch fermentation ofrecombinantpichiapastoris[J]. Biotechnology Letters,1999,21:669-672
    [12]Fujita Y, Katahira S, Ueda, M, et al. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae [J].Mol Catal B,2002,17:189-195
    [13]Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes[J]. Appl Environ Microbiol,2002,68:5136-5141
    [14]Hansen IU, Switzer RL, Hinze H, et al. Effects of glucose and nitrogen source on the levels of proteinases, peptidases, and proteinase inhibitors in yeast[J]. Biochim Biophys Acta.1977,496:103-114
    [15]Hong F,Meinander NQ,Jonsson LJ.Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris[J]. Biotechnol Bioeng,2002,79(4):438-449
    [16]Jaeger K. E.,DikstraB. W.,ReetzM. T..Bacterial biocatalysts:molecular biology, three-dimemioml structures,and biotechnological applications of lipases[J].Annu Rev Microbiol,1999,53:315-351
    [17]Jaeger K.E.,Reetz M.T.. Microbial lipases form versatile tools for biotechnology[J]. Trends Biotechnol,1998,16:396-403
    [18]Jin M, Song G,Carman CV,et al.Directed evolution to probe protein allostery and integrin I domains of 200000-fold Higher affinity[J]. Proc Natl Acad Sci US A,2006,103: 5758-5763
    [19]Kaoru Kobayashi, Shinobu Kuwae, Tomoshi Ohya, et al. Addition of oleic acid increases expression of recombinant human$eruln albumin by the AOX2 promoter in Pichia pastoris[J]. Journal of Bioscience and Bioengineering,2000,89(5):479-484
    [20]Keike MC, Shusta EV, Boder ET, et al. () Selection of functional T cell receptor mutants from a yeast surface-display library[J]. Proc Natl Acad Sci USA,1999,96:5651-5656
    [21]Kemper MA, Urrutia MM, Beveridge TJ, et al. Proton motive force may regulate cell wall-associated enzymes of Bacillus subtills[J]Bacteriol,1993,175:5690-5696
    [22]Kim YS, Bhandari K, Cochran JR,et al. Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast[J]. Proteins,2006,62:1026-1035
    [23]Kondo A and Ueda M. Yeast cell-surface display-applications of molecular display[J]. Appl Microbiol Biotechnol,2004,64:28-40
    [24]Kotrba P, Doleckova L, De Lorenzo V,et al. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides[J]. Appl Environ Microbiol,1999,65:1092-1098
    [25]Kuroda K, Shibasaki S, Ueda M, et al. Cell surfaceengineered yeast displaying histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions[J]. Appl Microbiol Biotechnol,2001,57:697-701
    [26]Lipke PN, Kurjan J.Sexual agglutination in budding yeasts:structure, function, and regulation of adhesion glycoproteins[J]. Microbiol Rev.1992(56):180-194
    [27]Lipovsek D, Lippow SM, Hackel BJ, et al.Evolution of all interloop disulfide bond in high-affinity antibody mimics based on fibronectin type Ⅲ domain and selected by yeast surface display:molecular convergence with single-domain camelid and shark antibodies[J]. Mol Biol.2007(368):1024-1041
    [28]Macauley Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast.2005(22):249-270
    [29]Martinez. Ruiz A, Martinez del Pozo A, Lacadena J, et al.Secretion of recombinant proandmature fungal-sarcin ribotoxin by the methylotropic yeast Pichia pastoris:the Lys-Arg motifis required formaturation. Protein Expr Purif,1998, (12):315-322
    [30]Matsumoto T, FukudaH, Ueda M, et al. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flolp flocculation functional domain[J]. Appl Environ Microbiol,2002,68:4517-4522
    [31]Matsumoto T, Ito M, Fukuda H, Kondo A.Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst[J]. Appl Microbiol Biotechnol, 2004,64(4):481-485
    [32]Mei M, Whittaker, Jamesw, et al. Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expr,Purif,2000,20:105-111
    [33]Miki BL, Poon NH, James AP, et al. Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae[J].Bacteriol,1982,150:878-889
    [34]Montijn RC,Van Rinsum J, Van Schagen FA,et al. Glucomannoproteins in the cell wall of Saccharomyces cerevsiae contain a novel type of carbohydrate side chain[J].Biol Chem,1994,269:19338-19342
    [35]Murai T, Ueda M, Yamamura M, et al. Construction of a starch-utilizing yeast by cell surface engineering[J]. Appl Environ Microbiol,1997,63:1362-1366
    [36]Murai T, Ueda M, Kawaguchi T, et al. Assimilation of cellulosic materials by cell surface-engineered yeast displaying β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus[J]. Appl Environ Microbiol,1998,64:4857-4861
    [37]Nakamura Y, Shibasaki S, Ueda M, et al. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain[J]. Appl Microbiol Biotechnol,2001,57:500-505
    [38]Pencreac H G, Baratti J C. Hydrolysis of P-nitrophenyl palmitate in n-heptane by Pseudomonas cepacia Iipase:a simple test for the determination of lipase activity in organic media[J].Enzyme Microb Technol.1996.18:417-22.
    [39]彭立凤.微生物脂肪酶的研究进展[J].生物技术通报.1999,17-22
    [40]Pieter P.Jacolbs,Stefan Ryckaert,et al. Pichia surface display:display of proteins on thesurface of glycoengineered Pichia pastoris strains[J].Biotechnol Lett.2008 (30):2173-2181.
    [41]Premkumar DR, Fukuoka Y, Sevlever D,et al. Properties of exogenously added GPI-anchored proteins following their incorporation into cells. J Cell Biochem.2001, 82(2):234-245
    [42]Qingjie Wang, Lei L, Min Chen et al.Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris[J].Biotechnol let.2007 (29):1561-1566
    [43]Rao BM, Driver I, Lauffenburger DA, et al.High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth[J]. Biochemistry,2005,44:10696-10701
    [44]Roy A, Lu CF,Marykwas DL, et al. The AGAl product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin[J]. Mol Cell Biol,1991,11:4196-4206
    [45]Samuelson P, Wernerus H, Svedberg M, et al. Staphylococcal surface display of metal-binding polyhistidyl peptides[J].Appl Environ Microbiol,2000,66:1243-1248
    [46]Sato N, Matsumoto T, Ueda M, et al. Long anchor using Flol protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates[J].Appl Microbiol Biotechnol,2002,60:469-474
    [47]Schreuder MP,Mooren A.T, Toschka HY et al.Immobilizing proteins on the surface of yeast cells[J].Trends Biotechno,1996,114:115-120
    [48]Shibasaki S, Ueda M, Iizuka T, et al. Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by the fluorometric and confocal laser scanning microscopic analyses[J]. Appl Microbiol Biotechnol,2001,55:471-475
    [49]Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of asingle-chain antibody(scFv)gene in P.pastoris. Protein Expr Purif,2003,28(2):321-330
    [50]舒正玉,杨江科,黄瑛等.生物柴油生产用脂肪酶资源及研发现状[J].湖北农业科学,2007,46(6):1027-1030
    [51]Simon Curvers,Peter Brixius, Thomas Klauser et al. Human Chymotrypsinogen B Production with Pichia pastoris by Integrated Development of Fermentation and Downstream Processing. Part 1. Fermentation[J]. Biotechnol. Prog.2001(17):495-502.
    [52]SnellmanE.A.,ColwdlR. R..Acinetobacter lipases:molecular biology, biochemical propexties and biotechnological potential [J]. Ind Microbiol Biotechnol,2004,31:391-400
    [53]Sousa C, Cebola A, de Lorenzo V. Enhanced metallosorption of bacterial cells displaying poly-His peptides[J]. Nat Biotechnol,1996,14:1017-1020
    [54]Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis of heterologous proteins in the methylotrophic yeast Pichiapastoris[J]. Gene,1997,190:55-62
    [55]SumitaT,Yoko-o T,ShimmaY,et al.Comparison of cell wall localization among Pir family proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pirlp[J]. Eukaryot Cell,2005,4:1872-1881
    [56]Tanino T, Fukuda H, Kondo A. Construction of a Pichia pastoris cell surface display system using Flolp anchor system.Biotechnol Prog,2006,22(4):989-993
    [57]Terrance K, Heller P, Wu Y-S, et al. Identification of glycoprotein components of a-agglutinin, a cell adhesion protein from Saccharomyces cerevisiae[J]. Bacteriol,1987,169:475-482
    [58]Teunissen AW, Holub E, van der Hucht J, et al. Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae[J]. Yeast,1993,9:423-427
    [59]Van Den Hazel HB, Kiellanbrandt MC, Winther JR. Biosynthesis and function of yeast vacuolar proteases:review[J]. Yeast,1996,12:1-16
    [60]van der Vaart, J.M.et al. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins[J]. Appl Environ Microbiol, 1997,63:615-620
    [61]Vaysse L, Dubreucq E, Pirat J L.et al, Fatty hydroxamic acid biosynthesis in aqueous medium in the presenceof the lipase-acyl transferase from Candida parasilosis[J]. Biotechnol.1997,53:41-6.
    [62]Washida M, Takahashi S, Ueda M, Tanaka A.Spacermediated display of active lipase on the yeast cell surface[J]. Appl Microbiol Biotechnol,2001,(56):681-686
    [63]Watari J, Takata Y, Ogawa M, et al. Molecular cloning and analysis of the yeast flocculation gene FLO1[J]. Yeast,1994,10:211-225
    [64]Watzele M, Klis FM, Tanner W. Purification and characterization of the inducible a-agglutinin of Saccharomyces cerevisiae[J]. EMBO,1988,7:1483-1488
    [65]Wenhui W, Mark AB, Bradly AP, et al. Meling pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the Heavy-chain fragment C of Botulinum neurotoxin Serotype A[J]. Bioengineering,2000,20(1):1-8
    [66]熊茂林.GPI锚的结构、功能及GPI锚定B7分子在肿瘤免疫治疗中的应用.国外医学免疫学分册,2003,26(5):230-233
    [67]邹敏,方曙光,黄立,等.重组毕赤酵母表达瑞替普酶(Reteplase)过程中的降解控制[J].工业微生物,2006,36(2):7-11