1. [地质云]滑坡
克拉玛依超稠油供氢剂减黏-焦化组合工艺反应规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原油的不断变重变劣,延迟焦化在重油加工的地位愈发重要,但其在液体收率及产物分布等方面仍有不足之处,为了提高加工过程中的馏分油收率,改善产物分布,降低生焦量,延长焦化装置的开工周期,本论文以克拉玛依超稠油(CCY)为原料,进行了减黏-焦化组合工艺研究,提出了焦化馏分油为供氢剂的减黏-焦化组合工艺。
     首先对CCY直接焦化的反应规律进行了考察,得到了适宜的焦化反应时间为2.0 h,反应温度为490℃,并在此基础上将焦化液体产物进行实沸点蒸馏切割,将切割的焦化柴油(180℃~350℃)、焦化轻蜡油(350℃~420℃)、焦化重蜡油(>420℃)三段窄馏分分别看作HDA、HDB、HDC进行氢转移能力的考察,结果表明氢转移能力大小为HDB>HDA>HDC,选择氢转移能力最强的HDB进行了在适宜焦化条件下供氢剂的掺炼比考察,结果表明当掺炼比为20%时,液收最高,掺炼比过高或过低都会影响液体收率的提高。将HDA、HDB、HDC在掺炼比20%进行CCY的焦化反应对比考察,研究表明,三种供氢剂中HDB的效果最佳,与直接焦化相比,可降低焦收0.87%,提高液收0.44%,其中轻质油(汽油+柴油)收率可提高1.79%。
     其次对CCY减黏-焦化组合工艺和CCY掺炼HDA、HDB、HDC组合工艺分别进行了研究,并将结果进行对比。相同的是,在一定的条件下,减黏温度越高,生焦诱导期越短,裂解产物(气体和汽油)收率和缩合产物(焦)收率越高,减黏油的安定性越差;不同的是,掺炼供氢剂减黏会影响反应体系的安定性,延长生焦诱导期,在三种供氢剂中,以HDB效果为佳,掺炼后减黏与未掺炼相比可使生焦诱导期延迟,相同条件下反应体系的安定性得到加强,有利于裂解反应,提高裂解产物收率。组合工艺研究结果表明,减黏程度过深,减黏油的生焦量会增加,反应体系的安定性变差,不利于焦化工艺的加工,这样会使总液收降低,焦收增加。减黏程度过浅,黏度变化不大,轻质油收率不高,起不到减黏的效果。因此减黏-焦化工艺存在最佳的匹配条件,在三种供氢剂进行的组合工艺的考察中,以HDB的效果最佳,适宜的减黏温度为420℃、反应时间30min、压力为0.4MPa、HDB的掺炼比为10%。与直接焦化相比,焦炭收率可降低1.77%,液体收率提高1.86%,轻质油收率提高5.71%,其中柴油可提高3.57%。
     最后将得到的产物的性质进行研究,结果表明CCY减黏-焦化组合工艺与直接焦化工艺相比,对液体产物S、N含量影响不大,焦炭S含量增加,N含量降低。掺炼HDB组合工艺与直接焦化相比,S、N分布变化不大。组合工艺能显著改变成焦形态,可使焦的取向性较好,在三种供氢剂的组合工艺中,掺炼HDB的组合工艺成焦取向性最好。
Delayed coking process plays a more and more important role in upgrading of heavy oil, as the crude oil exploited in the world becomes worse. However, the process still has some practical problems, such as relatively low yield of liquid and the unsatisfied distribution of products. In order to promote the yield of distillates, improve the distribution of products reduce the yield of coke and extend the working period of units, the visbreaking-coking combined process was studied, using Karamay extra-heavy oil(CCY)as the feedstock.
     First of all, the coking reaction of CCY was researched under several reaction temperatures and in different time. It was indicated that the suitable reaction temperature was 490℃and the reaction time was 2.0h. After that, the liquid, which was obtained under the suitable condition, was distillated into several parts through true boiling point distillation. The coking diesel(180℃~350℃), LCGO(350℃~420℃) and HCGO(>420℃) were chosen as the HDA, HDB,HDC, respectively. The hydrogen transfer capabilities of the three distillates were studied subsequently. The result showed that the capability of HDB was greater than that of HDA which was greater than HDC. Then, HDB was blended into CCY with different proportion and the mixtures were used as the feedstock for coking reaction under the chosen condition. The result demonstrated that the feed with 20% HDB provided the highest yield of liquid. Under the same blending proportion, HDA, HDC were also blended into CCY and the reactions were carried out. The research indicated that HDB affected the distribution of product most, comparing with the result of reaction using pure CCY as feed. The amount of coke was reduced by 0.87% and the liquid yield was increased by 0.44%, especially the light distillates (gasoline plus diesel) were promoted by 1.79%.
     Secondly, the visbeaking-coking combined process with and without hydrogen donor (HDA, HDB, HDC) were studied and the results from the two kinds of combined reactions were compared. The result in common was that the pyrolysis products (gas and gasoline) and condensation products (coke) increased with the increasing of reaction temperature. Meantime, the stability of visbroken residuum fell. Besides, the difference between the two kinds of combined process was that the blending of hydrogen donor would affected the coke-induction period of coking feed and HDB was the most effective donor. That could be beneficial for the crack and the yield of pyrolysis products. In the combined process, the result indicated that the stability of visbroken residuum became worse and the yield of coke increased too when the visbreaking degree exceeded a certain limit. That would increase the total amount of coke in the combined process. However, if the feed had a relatively low level of visbreaking, the viscosity would not change too much and the yield of light distillates was low. So there was a best match between the visbreaking reaction condition and delayed coking reaction condition. In the combined process, HDB affected the result mostly. The proper visbreaking temperature was 420oC. Reaction time was 30min. The pressure was 0.4MPa and the blending proportion (HDB) was 10%. Comparing with the result of reaction using CCY as feed, the coke yield dropped by 1.77%. Liquid, light distillates and diesel increased by 1.86%, 5.71% and 3.57%, respectively.
     The properties of products were analyzed at last. Compared with direct coking process, it demonstrated that, the combined process did not affect the amount of S and N in liquid product too much. But the amount of S increased in coke and N did on the opposite way. The combined process with HDB did not affect the distribution of S and N in products very much. Furthermore, the combined process significantly changed the morphology of coke and improved the tropism of coke. The combined process with HDB had a better result comparing the aforementioned combined process.
引文
[1]侯杰.如何应对低碳经济带来的挑战[J].中国石油和化工.2010,(1):14-17
    [2]孙华东,邢定峰,张福琴.重油脱碳工艺技术研究进展[J].石油科技论坛.2008,(6):36-41
    [3]张立新.中国延迟焦化装置的技术进展[J].炼油技术与工程.2005,35(6):1-7
    [4]宋春财等.延迟焦化工艺及其发展趋势[J].抚顺石油学院学报.2000,20(3):1-5
    [5]Swaty T E.Global Refining Industry Trends: The Present and Future[J].Hydrocarbon Process.2005,84 (9),35
    [6]梁文杰,阙国和,刘晨光,杨秋水.石油化学[M].东营:中国石油大学出版社.2009,304-310
    [7]侯芙生.发挥延迟焦化在深度加工中的重要作用[J].当代石油石化.2006,14(2):3-12
    [9]马俊睿.2007年我国原油及成品油贸易回顾油及成品油及展望[J].当代石油石化.2008,16(4):32-36
    [10]姚国欣.努力提高轻有收率用好每一桶原油[J].当代石油石化.2007,15(8):1-7
    [11]瞿国华.延迟焦化工艺与工程[M].北京:中国石化出版社.2008:264-296
    [12]Jyeshtharaj B.Aniruddha B.Petroleum Residue Upgradation via Visbreaking: A Review[J].Ind. Eng. Chem. Res.2008,(47):8960–8988
    [13]肖雁,冯茂生.减黏-焦化联合工艺的工业应用[J].炼油设计.2000,30(12):12-15
    [14]Nellensteyn F.J,The Constitution of Asphalt[J].Inst.Petro.Technologists,1924,10(43):311-325
    [15]John P D,Yen T F.Macrostructures of the Asphaltic Fractions by Various Instrumental Methods[J].Anal.Chem.,1967,39(14):1847-1852
    [16]Park S J,Escobedo J,Mansoori G A.Asphaltene and other Heavy Organic Deposition.In Asphaltenes and Asphalts I,Edited by T F Yen and G V Chilingarian.Elsevier Science.Amsterdam.1994
    [17]李生华,刘晨光,阙国和.减压渣油的胶体结构及其形成[J].石油大学学报(自然科学版).1997,21(6):71-76
    [18]Pfeiffer J P . The Rheological Properties of Asphaltic B itumens [J] . InstPetroTechnologists,1936,22(152):414-440
    [19]王玉章,申海平,李锐.延迟焦化装置多产轻质油品[J].炼油技术与工程.2003,33(1):7-10
    [20]张龙力,杨国华,阙国和等.常压渣油热反应过程中胶体的稳定性[J].石油学报(石油加工).2003,19(2):82-89
    [21]李春年.渣油加工工艺[M].北京:中国石化出版社.2002:90-93
    [22]Henderson R,Rodwell M,Harji A.Consider Modifying your Refinery to Handle Heavy Opportunity Crude Oils[J].Hydrocarbon Process.2005,84 (9):54-58
    [23]Feintuch H M,et al.F W Delayed-coking Process.In Handbook of Petroleum Refining Processes.2nd ed.New York:McGraw-Hill,1997(12):25-82
    [24]Richare R H,Brian J D,Michelle I W. Coke is Good,but Lessis Better.NPRA Annual Meeting,2003,AM-03-90
    [25]甘丽琳,徐江华,李和杰.可调循环比的延迟焦化工艺[J].炼油技术与工程.2003,33(10):8-10
    [26]裴建军,卢清新.减黏防焦剂的研究[J].石油炼制与化工.1999,30(6):33-35
    [27]王治卿等.丁烷脱油沥青掺兑催化裂化油浆的减黏裂化研究[J].炼油技术与工程.2007,37(1):6-9
    [28]孙淑玲,崔晓杰等.华北中南部油田减压渣油减黏裂化工艺研究[J].胜炼科技.2003,25(4):21-26
    [29]文萍,沐宝泉.减压渣油热转化前后的氮分布[J].石油大学学报(自然科学版).2002,26(1):85-87
    [30]张连红,赵德曹.辽河超稠油减黏裂化工艺研究[J].抚顺石油学院学报.2000,20(3):30-33
    [31]梁文杰,阙国和,刘晨光,杨秋水.石油化学[M].东营:中国石油大学出版社.2009:304-307
    [32]宋育红,阎金城,王智勇等.辽河减压渣油催化减黏裂化的研究[J].炼油设计.1995,25(3):18-24
    [33]王宗贤,郭爱军,阙国合.辽河渣油热转化和加氢裂化过程中生焦行为的研究[J].燃料化学学报.1998,26(4):326~333
    [34]亓玉台,谢传欣等.减黏裂化工艺技术及其进展.炼油设计[J].2000,30(10):1-6
    [35]Edward H,Gregory T.The Aquaconversion TM process-A new Approach to Residue Processing [A].1998,NPRA,AM-98-09
    [36]Bakshi A S, lutz I H. Adding Hydrogen Donor Vibreaking Improves Distillate Yield[J].Oil&Gas.1987,(7):8487-8493.
    [37]尹依娜等.减压渣油供氢剂减黏裂化反应的选择性研究[J].油气田地面工程.2002,21(5):138-139
    [38]张会成,邓文安,阙国和.胜利渣油在供氢剂和溶剂下的热裂化特性研究[J].石油学报(石油加工),1997,13(2):17-22
    [39]Shi B,Li P P,Que G H.New Developments in Deep Hydroconversion of Heavy oil Residues with Dispersed Catalysis:The Efficiency of Hydrogen Donors Addition in Hydrocracking of Liaohe Vacuum Residue with Dispersed Catalysis.PREPRINTS,ACS,Div.Fuel Chem.1998,143:558-562
    [40]Devanneaux J等著,单章清译.在供氢剂存在条件下重油和渣油的热裂化过程[J].石油炼制译丛,1985,10:12-16
    [41]芦清新,孙振光,裴建军等.减黏裂化防焦剂的工业试验及应用[J].石油炼制与化工,2001,32(2):30-32
    [42]刘东,邓文安,周家顺等.辽河减渣供氢减黏裂化反应考察[J].石油大学学报(自然科学版),2002,(2):16-19
    [43]王治卿,王宗贤.减压渣油供氢剂减黏裂化研究[J].燃料化学学报.2006,34(6):745-748.
    [44]邓文安,刘东,周家顺,阙国和.加供氢剂的减压渣油减黏裂化工艺的开发[J].炼油技术与工程.2006,36(2):7-10.
    [45]刘志强.国外延迟焦化工业现状及技术发展方向[J].炼油技术.1997,(2):63-69
    [46]Chen N Y, Titisville.Conversion of Residua to Premium Via Thermal Treatment and Coking.USP 4 443 325,US,1984
    [47]龚维缇.延迟减黏-延迟焦化联合提高焦化装置效益[J].石油炼制.1988,(12):19-24
    [48]郑娟等.经热处理和焦化将渣油将渣油转化为优质产品(上)[J].石化译文.2000,(2):13-16
    [49]郑娟等.经热处理和焦化将渣油将渣油转化为优质产品(下)[J].石化译文.2000,(2):17-19
    [50] Walker L A.Advances in Petroleum Recovery and Upgrading Technology.Calgary.1984
    [51] Maa P.S , Trachte K.L , Williams R.D . Chemistry of Coal Conversion R H. Schlosberg(ed).Plenum Press (Pub.).1985 (7):113-119
    [52]宋育红,阎金城,虞琦等.辽河渣油供氢减黏裂化研究[J].石油炼制与化工.1994, 25(12):15-19
    [53]尹依娜,谢传欣,纪晔等.辽河欢喜岭减压渣油供氢剂减黏裂化反应的研究[J].石油天然气化工.2003,32(1):31-33
    [54]Kubo J H,Higashi Y.O.Heavy oil Hydroprocessing with the Addition of Hydrogenating Hydrocarbons Derived from Petroleum, Energy and Fuels.1996,(10):474-481
    [55]李生华,刘晨光,阙国和等.渣油热反应体系中第二液相形成与热处理温度的关系[J].石油学报(石油加工).1998,14(1):11-16
    [56]Singh J,Kumar M M,Saxena A K.Reaction Pathways and Product Yield in Mild Thermal Cracking of Vacuum Residues:A multi-lump kinetic model.Energy and Fuels.1996,(10):474-481
    [57]Singh J,Kumar M M,Saxena A K,Studies on Thermal Cracking Behavior of Residual Feedstocks in a Batch Reactor[J].Chem Eng Sci.2004,59(21):4505-4515.
    [58]Schmid B K.Upgrading of Residues by Combinations of Residue Desulfurization and Visbreaking[J].Ind Eng Chem Process Des Dev,1967,6(2):207-212.
    [59]刘东,邓文安,周家顺,梁士昌,王宗贤,阙国和.辽河减压渣油供氢减黏裂化反应性能研究[J].石油大学学报.2002,26(2):86-89.
    [60]Blanco A D,Panariti N,Beltrame P L.Thermal Cracking of Petroleum Resides:2 Hydrogen-donor Solvent Addition[J].Fuel.1993,72(1):81-85
    [61]张会成,邓文安,阙国和.胜利渣油在供氢剂和溶剂下的热裂化特性研究[J].石油学报(石油加工).1997,13(2):17-22.
    [62]Kubo J . Radical Scavenging Abilities of Hydrogen-donating Hydrocarbons Petroleum[J].Ind Eng Chem Res.1998,37(11):4492-4500
    [63]郭爱军,王宗贤,张会军,王治卿.减压渣油掺炼工业供氢剂缓和热转化的基础研究[J].燃料化学学报.2007,35(6):667-672
    [64]丁宗禹,李超恩.渣油减黏裂化及反应规律及操作条件的选择[J].炼油设计.1992,22(118):18-24