一些碳—碳不饱和键的高选择性金属碳化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on the Highly Selective Carbometallation Reactions of Some Unsaturated Carbon-Carbon Bonds with Organometallic Reagents
  • 作者:陆展
  • 论文级别:博士
  • 学科专业名称:有机化学
  • 学位年度:2008
  • 导师:麻生明
  • 学科代码:070303
  • 学位授予单位:浙江大学
  • 论文提交日期:2008-03-01
摘要
金属碳化反应是碳-碳不饱和键对碳金属键的插入反应,由于在反应中生成了新的碳-碳键和新的碳-金属键,引起有机化学家尤其是金属有机化学家的广泛关注。反应的易操作性和多样性使其成为合成化学中的重要方法,而如何实现对碳-碳不饱和键的高选择性的加成反应一直以来都是化学家们关注的焦点。
     本论文的工作目标就是如何利用金属试剂与炔丙醇以及官能团化联烯的反应,来实现碳-碳不饱和键的高选择性金属碳化反应,从而发展一些形成碳-碳键和碳-金属键反应的新模式。
     论文主要包括以下四部分:
     第一部分:选择性可调控的金属碳化反应——铜催化或参与下格氏试剂对二级或三级末端炔丙醇的金属碳化反应。
     理论上,金属试剂与炔丙醇发生金属碳化反应,可以生成两种区域和立体选择性都不同的产物:支链产物和直链产物。Duboudin教授等报道了在碘化亚铜催化下一级炔丙醇与格氏试剂反应,能高选择性地制备2位取代的支链型一级烯丙醇。但是当以二级或三级炔丙醇为底物与金属试剂反应时,存在选择性不好的问题,得到一组反式支链产物和顺式直链产物的混合物。因此,我们希望解决这些问题。
     1)通过溶剂效应我们实现了一价铜催化下格氏试剂对二级末端炔丙醇的反式金属碳化反应。在该反应中我们发展了以0.1当量氯化亚铜或0.5当量碘化亚铜催化的两套反应条件,体系以甲苯为溶剂,选用以四氢呋喃为溶剂的格氏试剂与二级末端炔丙醇进行反应。其中,格氏试剂中的R基团区域选择性地加在炔丙醇中叁键的靠近羟基的碳上,而金属加在叁键的末端碳上,由于金属和羟基的螯合作用从而立体选择性地形成反式的环状金属中间体。当采用烷基格氏试剂时,得到的加成产物以反式为主,区域选择性为77/23~>99/1。芳基取代炔丙醇的反应的区域选择性一般要好于烷基取代的炔丙醇的区域选择性。
     2)我们发展了格氏试剂对二级或三级炔丙醇的高区域和立体选择性的顺式金属碳化反应。在成功实现了格氏试剂对二级末端炔丙醇的反式金属碳化反应后,我们设想能否从同一底物出发,通过改变优化反应条件,来合成以顺式加成为主的产物,从而实现对二级炔丙醇的可调控的高区域和立体选择性的反应。通过一系列的条件摸索,我们发现通过改变格氏试剂的溶剂为甲苯时(即先在乙醚中制备格氏试剂,然后向其中加入甲苯再在120度下蒸去乙醚,交换溶剂得到以甲苯为溶剂的格氏试剂),在碘化亚铜的存在下能很好地实现对二级或三级炔丙醇的顺式金属碳化反应。其中,格氏试剂烷基部分高区域选择性地加在炔丙醇中叁键的末端碳上,而金属加在叁键的另一个碳上,从而高立体选择性地形成顺式烯基金属中间体。该中间体用碘淬灭得到一系列有机合成中非常有用的α-碘代烯丙醇,产物具有很高的区域(93/7~>99/1)和立体选择性。
     3)上述反应中生成的金属中间体不仅可以用饱和氯化铵溶液或碘淬灭得到质解或碘解产物,也可用烯丙基溴淬灭或在四(三苯基磷)钯的存在下与碘苯偶联生成相应的偶联产物。用光学活性的炔丙醇进行金属碳化反应,可以得到手性保持的产物。外消旋烯丙醇类化合物可以通过酶拆分方便高效地制备相应的光学活性的烯丙醇类产物。炔丙醇的金属碳化反应用碘淬灭制备的碘解产物与末端炔丙醇发生Sonogashira偶联反应,生成烯炔偶联产物,而该产物在PdCl_2的催化下能与烯丙基溴发生偶联反应生成呋喃环结构的产物,为合成多取代的呋喃化合物提供了一条有用的方法学。
     第二部分:氯化亚铜参与下格氏试剂对2,3-联烯醇的高区域和立体选择性的金属碳化反应。
     通过对末端炔丙醇的金属碳化反应研究,我们已经可区域和立体选择性调控地合成二级或三级烯丙醇,但所得到的烯丙醇中双键上必有一个是氢。由于联烯独特的反应性能,我们把研究的目光转向了联烯醇的金属碳化反应,我们试想能否把炔醇换成联烯醇,那么就能得到一般方法很难合成的全取代的烯丙醇。幸运地是我们成功地实现了这一方法学。反应高区域选择性地发生在2,3-联烯醇远离羟基的双键上,格氏试剂的R基团加在联烯的末端碳上,金属加在联烯的中间碳上,由于羟基的存在,发生螯合作用,高立体选择性地生成环状金属中间体。该中间体用碘淬灭生成一般方法很难合成的多取代β-碘代烯丙醇类化合物,解决了炔丙醇金属碳化反应中难以实现的问题。其中,2,3-联烯醇可为一级、二级和三级醇,而格氏试剂以乙醚为溶剂,可为一级和二级的烷基或者芳基。我们用光学活性的联烯醇进行金属碳化反应,可以得到手性保持的产物。
     第三部分:铁催化下格氏试剂对2,3-联烯酸酯高区域和立体选择性的共轭加成反应
     在这一部分中,我们研究了铁催化下格氏试剂对2,3-联烯酸酯高区域和立体选择性的共轭加成反应,得到了一般方法难以合成的β,γ-不饱和酸酯。由于共轭效应,反应高区域选择性地发生在2,3-联烯酸酯中靠近羧基的双键上,而由于联烯酸酯γ-位基团的位阻效应,格氏试剂的R基团高区域和立体选择性地加在联烯的中间碳上,从而与γ-位的基团处于反式。在该反应中,我们以廉价的铁为催化剂,催化剂降至0.5%也能实现加成反应,克服了以往只能用特殊的底物或化学计量的过渡金属参与反应的不足。格氏试剂可以为一级或二级烷基,芳基,烯基格氏试剂。通过查阅文献,我们提出了可能的反应机理,认为该反应可能生成了相对稳定的1,3-共轭二烯镁氧盐。当我们用酰氯淬灭反应中间体1,3-共轭二烯镁氧盐时,生成了α-位乙酰化产物,有趣的是,当采用烯丙醇醋酸酯淬灭反应中间体时却得到β,γ-位双键构型翻转的酰化产物。而在四(三苯基磷)钯的催化下中间体与烯丙醇醋酸酯反应,我们并没有观察到酰化产物而分离得到了β,γ-位双键构型保持的α-烯丙基化的β,γ-不饱和酸酯。但当中间体在一价铜催化下与烯丙基溴反应时,却得到了β,γ-位双键构型翻转的烯丙基化产物。
     第四部分:试剂与2,3-联烯酸酯的高选择性的加成关环反应
     我们发展了试剂与2,3-联烯酸酯的加成关环反应,高区域和立体选择性地生成α,β-六元环酮产物。当我们用试剂代替格氏试剂与2,3-联烯酸酯反应时,只生成了少量的β,γ-不饱和酸酯,却得到一极性较大的固体产物。产物由X-单晶衍射确定为六元环结构,其中六元环的4位和6位的两个碳具有很高的非对映选择性,5位上的双键有很高的Z-构型的立体选择性。以具有轴手性的2,3-联烯酸酯为反应底物时,轴手性可以基本转移到产物的中心手性碳中。根据实验现象,我们提出了可能的反应机理。
Carbometallations are the insertion reactions of unsaturated carbon-carbon bonds into the carbon-metal bonds, which have been widely used in organic synthesis. Due to accessibility and high reactivity, many chemists focus their research interests on developing new methodologies base on organometallic reagents, especially highly selective carbometallation of unsaturated carbon-carbon bonds.
     In this dissertation, I have focused on the design and development of some new methodologies with a combination of organometallic reagents and propargylic alcohols or functionalized allenes to realize highly selective carbometallation of unsaturated carbon-carbon bonds.
     Part I: Selectivity-controllable Cu(I)-catalyzed or mediated carbometallation reactions of secondary or tertiary propargylic alcohols with Grignard reagents
     In principle, the carbometallation reactions of the propargylic alcohols with oragnometallic reagents can afford branched and linear products. Duboudin et al. reported that the Cu(I)-catalyzed carbomagnesiation of primary propargylic alcohol with Grignard reagents in ether leads to the highly selective formation of 2-substituted prop-2-enols via the hydroxyl-group controlled anti-carbomagnesiation. However, it was also noted that the reaction of secondary or tertiary propargylic alcohols afforded a mixture of two regioisomeric products. Therefore, we tried to solve these problems.
     1) We solved the problem of anti-carbometallation reaction of secondary terminal propargylic alcohols with Grignard reagents by using THF as the solvent to afford the branched anti-carbometallation products. The five-membered metallacyclic intermediate formed due to chelation between the metal atom and the hydroxyl group can be trapped with different electricphiles, such as saturated NH_4Cl, iodine, or PhI (under the catalysis of Pd(PPh_3)_4). When the R group of Grignard reagents were alkyl groups, the reactions afforded branched products with moderate to high regioselectivity (77/23~>99/1). By using this method optically active allylic alcohols can be prepared from the optically active propargylic alcohols without obvious loss of the enantiopurity.
     2) We prepared the Grignard reagents in toluene and controllably realized the copper-mediated syn-carbometallation reaction of secondary or tertiary terminal propargylic alcohols with Grignard reagents in toluene to afford the linear syn-carbometallation products with high opposite regio- and stereoselectivity. Upon treatment with I_2 after the carbometallation, iodides may be obtained, which may undergo Sonogashira coupling reaction and highly stereoselective Novozym-435-catalyzed kinetic resolution to afford the optically active products. R~1 group from Grignard reagents is introduced into the terminal position of alcohols while the iodine is added to the other terminal of the triple bond in a syn-manner. The regioselectivity was 93/7~>99/1.
     3) We explored the synthetic applications of allylic alcohols prepared by above methods. The organic iodide can undergo Sonogashira coupling reaction to afford alk-3-en-5yn-2,7-diols, which may be transformed into polysubstituted furan derivative by the PdCl_2-catalyzed cyclization in the presence of allyl bromide.
     Part II: Highly regio- and stereoselective CuCl-mediated carbometallation of 2,3-allenols with Grignard reagents
     Although we have successfully achieved the goal of selectivity-controllable carbometallation reaction of secondary or tertiary terminal propargylic alcohols with Grignard reagents, the problem for non-terminal propargylic alcohols remains. Due to the higher reactivity of allenes, we were interested in developing the carbometallation reaction of 2,3-allenols, which may afford fully substituted allylic alcohols to solve this issue. Highly regio- and stereoselective CuCl-mediated carbometallation reaction of 2,3-allenols with Grignard reagents followed by iodination was developed to synthesize fully substituted Z-allylic alcohols, in which the R~4 group from Grignard reagents is introduced into the terminal position of 2,3-allenols and the iodine is connected to the middle carbon atom of the allene moiety in 2,3-allenols. In the reaction, the five-membered metallacyclic intermediate may again be formed due to chelation between the metal atom and the hydroxyl group. Optically active allylic alcohols may be prepared from the optically active 2,3-allenols without obvious loss of the enantiopurity.
     Part III: Iron-catalyzed highly regio- and stereoselective conjugate addition of 2,3-allenoates with Grignard reagents
     After being successful in the carbometallation reaction of 2,3-allenols, we showed a growing interest in carbometallation reaction of functionalized allene with an electron-withdrawing group. Thus, an efficient highly regio- and stereoselecitive iron-catalyzed conjugate addition of 2,3-allenoates with 1°- and 2°-alkyl, phenyl or vinyl Grignard reagents has been developed. R~4 group from the Grignard reagents is introduced to theβ-position of the ester group trans to the R~1 group at the 4-position in the remainingβ,γ-carbon-carbon double bond (Scheme 5). A plausible mechanism has been proposed. The in-situ formed magnesium 1,3-dienolate can be treated with acyl chloride to afford theα-acylβ,γ-unsaturated Z-alkenoate. It is worth to know that theα-acylβ,γ-unsaturated E-alkenoate may be prepared by the reaction with allylic acetate. Further more, the magnesium dienolate reacted with allylic acetate under the catalysis of Pd(PPh_3)_4 to provide theα-allylicβ,γ-unsaturated Z-alkenoate. However,α-allylicβ,γ-unsaturated E-alkenoates was produced by the reaction of the intermediate with allylic bromide catalyzed by Cu(I).
     Part IV: The addition-cyclization reaction of 2,3-allenoates with organic zinc reagents
     When different organometallic reagents were tried to react with 2,3-allenoates, we observed a highly regio- and stereoselective addition-cyclization of two molecules of 2,3-allenoates with organic zinc reagents. Theα,β-unsaturated cyclohex-2-enones were produced with high diastereoselectivity referring to the chiral centers at 4- and 6-positions and Z-configuration of the remaining carbon-carbon double bond at 5-position on the ring. When optically active 2,3-allenoates were applied, optically activeα,β-unsaturated cyclohexenones can be prepared without obvious racemization. A plausible mechanism has been discussed.
引文
1.麻生明.金属参与的现代有机合成反应.广州:广东科技出版社,2001,第二版.
    2.(a)Yamamoto,H.;Oshima,K.Eds.Main group metals in organic synthesis Weinheim,Germany:Wiley-VCH,2004.
    (b)Fallis,A.G.;Forgione,P.Tetrahedron 2001,57,5899.
    3.Wei,X.D.;Taylor,R.J.K.J.Chem.Soc.Chem.Commun.1996,187.
    4.Norsikian,S.;Marek,I.;Poisson,J.F.J.Org.Chem.1997,62,4898.
    5.McKinley,N.F.;O'Shea,D.F.J.Org.Chem.2006,71,9552.
    6.Wilke,G.;Muller,H.Justus Liebigs Ann.Chem.1960,629,222.
    7.(a)Van Horn,D.E.;Negishi,E.J.Am.Chem.Soc.1978,100,2252.
    (b)Negishi,E.;Baba,S.J Chem Soc.Chem.Commun.1976,596.
    (c)Wipf,P.;Lim,S.Angew.Chem.,Int.Ed.1993,32,1068.
    (d)Wild,W.P.;Zsolnai,L.;Huttner,G.;Brintzinger,H.H.J.Organomet.Chem.1982,232,233.
    (e)Wild,F.W.R.P.;Wasiucionek,M.;Huttner,G.;Brintzinger,H.H.J.Organomet.Chem.1982,288,63.
    (f)Lipshutz,B.H.;Butler,T.;Lower,A.;Servesko,J.Org.Lett.2007,9,3737.
    8.Ma,S.;Nigishi,E.J.Org.Chem.1997,62,784.
    9.Kondakov,D.Y.;Nigishi,E.J.Am.Chem.Soc.1996,148,1577.
    10.Marfat,A.;Mc Guirk,P.R.;Helquist,P.Tetrahedron Lett.1978,19,1363.
    11.Zhang,D.;Ready,J.M.Org.Lett.2005,7,5681.
    12.Alexakis,A.;Normant,J.F.;Villieras,J.J.Mol.Catal.1975/76,1,43.
    13.Chechik-Lankin,H.;Marek,I.Org.Lett.2003,5,5087.
    14.Sklute,G.;Marek,I.J.Am.Chem.Soc.2006,128,4642.
    15.Konno,T.;Daitoh,T.;Noiri,A.;Chae,J.;Ishihara,T.;Yamanaka,H.Org.Lett.2004,6,933.
    16.Hoveyda,A.H.;Xu,Z.;Morken,J.P.J.Am.Chem.Soc.1991,113,8950.
    17.Liu,X.;Fox,J.M.J.Am.Chem.Soc.2006,128,5600.
    18.(a)Nelson,D.J.;Miller,W.J.J.Chem.Soc.Chem.Commun.1996,187.
    (b)Morean,J.L.;Gaudemar,M.J.Organomet.Chem.1976,108,159.(c)Marek,I.; Mangeney, P.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1996, 27, 5499. (d) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. 1990, 112, 8042.
    
    19. (a) Shirakawa, E.; Yamagami, T.; Kimura, T.; Yamaguchi, S.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 17164. (b) Yamagami, T.; Shintani, R.; Shirakawa, E.; Hayashi, T. Org. Lett. 2007, 9, 1045.
    
    20. Murakami, K.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1569.
    
    21. (a) Schulte, K. E.; Rucker, G.; Feldkamp, J. Chem. Ber. 1972, 705, 24. (b) Marek, I.; Lefrancois, J.; Normant, J. F. Bull. Soc. Chim. Fr. 1994, 131, 910. (c) Creton, I.; Marek, I.; Normant, J. F. Synthesis 1996, 1499.
    
    22. Xie, M.; Wang, J.; Gu, X.; Sun, Y.; Wang, S. Org, Lett. 2006, 8, 431.
    
    23. (a) Yoshikawa, E.; Gevorgyan, V.; Asao, N.; Yamamoto, Y. J. Org. Chem. 1996, 61, 4874. (b) Asao, N.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 77P, 6781.
    
    24. Shirakawa, E.; Yamagami, T.; Yoshida, H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 10221.
    
    25. Okada, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1996,118, 6076.
    
    26. Fujiwara, N.; Yamamoto, E. J. Org. Chem. 1997, 62, 2318.
    
    27. Yamaguchi, M.; Sotokawa, T.; Hirama, M. J. Chem. Soc. Chem. Commun. 1997, 743.
    
    28. Singleton, D. A.; Waller, S. C.; Zhang, Z.; Frantz, D. E.; Leung, S.-W. J. Am. Chem. Soc. 1996,118, 9986.
    
    29. (a) Luche, J. L.; Barreiro, E.; Dollat, J. M.; Crabbe, P. Tetrahedron Lett. 1975, 16, 4615. (b) Pirkle, W. H.; Boeder, C. W. J. Org. Chem. 1978, 43, 1950. (c) Nicolaou, K. C.; Webber, S. E. J. Am. Chem. Soc. 1984, 106, 5734. (d) Chemin, D.; Linstrumelle, G. Tetrahedron 1992, 48, 1943. (e) Corey, E. J.; Niimura, K.; Konishi, Y.; Hashimoto, S.; Hamada, Y. Tetrahedron Lett. 1986, 27, 2199. (f) Roush, W. R.; Sciotti, R. J. J. Am. Chem. Soc. 1994, 116, 6457. (g) Vourloumis, D.; Kim, K. D.; Petersen, J. L.; Magriotis, P. A. J. Org. Chem. 1996, 61, 4848. (h) Henderson, M. A.; Heathcock, C. H. J. Org. Chem. 1988, 53, 4736. (i) Mashall, J. A.; Robinson, E. D.; Zapata, A. J. Org. Chem. 1989, 54, 5854. (j) Kundu, N. G.; Pal, M.; Mahanty, J. S.; Dasgupta, S. K. Chem. Commun. 1992, 41.
    
    30. (a) Landor, S. R. Eds. The Chemistry of the Allenes, Vol 1, Academic Press, London, 1982. (b) Krause, N.; Hashmi, A. S. K., Eds. Modern Allene Chemistry, Vols 1-2, Wiley-VCH, Weinheim, 2004. (c) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis John Wiley & Sons: New York, 1984. (d) Patai, S. Eds. The Chemistry of Ketenes, Allenes, and Related Compounds John Wiley & Sons: New York, 1980, Part 1. (e) Elsevier, C. J. in Methods of Organic Chemistry (Houben-Weyl), Vol. E21a (Eds.: Helmchen, G.; Hoffmann, R.W.; Mulzer, J.; Schaumann, E.), Thieme, Stuttgart, 1995, pp537-566.
    
    31. (a) Zimmer, R. C.; Dinesh, U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (b) Hoffmann-Roder, A.; Krause, N. Angew. Chem. Int. Ed. 2004, 43, 1196. (c) Reissig, H.-U.; Schade, W.; Amombo, M. O.; Pulz, R.; Hausherr, A. Pure & Appl. Chem. 2002, 74, 175. (d) Ma, S. Chem. Rev. 2005, 105, 2829. (e) Ma, S. Aldrichimica Acta 2007, 40,91.
    
    32. Van't Hoff, J. H. La Chimie dans L'Espace, Bazendijk, Rotterdam, 1875.
    
    33. Burton, B. S.; Pechmann, H. V. Ber. Dtsch. Chem. Ges. 1887, 20, 145.
    
    34. Jones, E. R. H.; Mansfield, G. H.; Whiting, M. L. H. J. Chem. Soc. 1954, 3208.
    
    35. (a) Corey, E. J.; Katzeneffenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 4245. (b) Corey, E. J.; Kirst, H. A.; Katzeneffenbogen, J. A. J. Am. Chem. Soc. 1970,92,6314.
    
    36. Ma, S.; Liu, F.; Nigishi, E. Tetrahedron Lett. 1997, 38, 3829.
    
    37. Meta, C. T.; Koide, K. Org. Lett. 2004, 6, 1785.
    
    38. Langille, N. F.; Jamison, T. F. Org. Lett. 2006, 8, 3761.
    
    39. Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2007,129, 12088.
    
    40. (a) Duboudin, J. G.; Jousseaume, B. J. Organomet. Chem. 1979, 168, 1. (b) Duboudin, J. G.; Jousseaume, B.; Alexakis, A.; Cahiez, G.; Villieras, J.; Normant, J. F. C. R. Acad. Sc. Paris 1977, 285, C29.
    
    41. Jousseaume, B.; Duboudin, J. G. Synth. Commun. 1979, 9, 53.
    
    42. Normant, J. F.; Alexakis, A.; Villieras, J. J. Organomet. Chem. 1973, 57, C99.
    43. Tessier, P. E.; Penwell, A. J.; Souza, F. E. S.; Fallis, A. G.Org. Lett. 2003, 5, 2989.
    
    44. Fleming, F. F.; Gudipati, V.; Steward, O. W. Org. Lett. 2002, 4, 659.
    
    45. Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2006,128, 15050.
    
    46. Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12853.
    
    47. (a) Shirakawa, E.; Nakao, Y.; Hiyama, T. Chem. Commun. 2001, 263. (b) Shirakawa, E.; Nakao, Y.; Tsutimoto, T.; Hiyama, T. Chem. Commun. 2002, 1962.
    
    48. Nishikawa, T.; Shinokubo, H.; Oshima, K. Org. Lett. 2003, 5, 4623.
    
    49. Richey, H. G.Jr.; Szucs, S. S. Tetrahedron Lett. 1971,12, 3785.
    
    50. (a) Duboudin, J. G.; Jousseaume, B.; Bonakdar, A. C. R. Acad. Sc. Paris. Serie C 1977, 284, 351. (b) Duboudin, J. G.; Jousseaume, B.; Bonakdar, A. J. Organomet. Chem. 1979,168, 227. (c) Duboudin, J. G.; Jousseaume, B. J. Organomet. Chem. 1979, 168, 233. (d) Gelin, R.; Albrand, M. C. R. Acad. Sc. Paris. Serie C 1976, 283, 755.
    
    51. Araki, S.; Usui, H.; Kato, M.; Butsugan, Y. J. Am. Chem. Soc. 1996,118, 4699.
    
    52. (a) Alexakis, A.; Normant, J. F. Israel J. Chem. 1984, 24, 113. (b) Normant, J. F.; Quirion, J. C.; Masuda, Y.; Alexakis, A. Tetrahedron Lett. 1990, 31, 2879.
    
    53. Berlan, J.; Koosha, K.; Battioni, J.-P. Bull. Soc. Chim. Fr. 1978,11-12,II-575.
    
    54. (a) Wotiz, J. H.; Matthews, J. S. J. Am. Chem. Soc. 1952, 74, 2560. (b) Wotiz, J. H.; Merrill, H. E. J. Am. Chem. Soc. 1958, 80, 866.
    
    55. Knight, J. G.; Ainge, S. W.; Bawter, C. A.; Eastman, T. P.; Harwood, S. J. J. Chem. Soc. Perkin Trans. 1 2000, 3188.
    
    56. Bryson, T. A.; Smith, D. C.; Krueger, S. A. Tetrahedron Lett. 1977,18, 525.
    
    57. Waizumi, N.; Itoh, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 6015.
    
    58. (a) Dieter, R. K.; Lu, K. Tetrahedron Lett. 1999, 40, 4001. (b) Dieter, R. K.; Lu, K.; Velu, S. F. J. Org. Chem. 2000, 65, 8715.
    
    59. Yoneda, R.; Inagaki, N.; Harusawa, S.; Kurihara, T. Chem, Pharm. Bull. 1992, 40,21.
    
    60. Parker, K. A.; Petraitis, J. J.; Kosley, R. W. Jr.; Buchwald, S. L. J. Org. Chem. 1982,47,389.
    61.Koosha,K.;Berlan,J.;Capmau,M.-L.;Chodkiewicz,W.Bull.Soc.Chim.Fr.1975,5-6,1291.
    62.Van der Linden,J.B.;Van Asten,P.F.T.M.;Braverman,S.;Zwanenburg,B.Recl.Trav.Chim.Pays-Bas 1995,114,51.
    63.Berlan,J.;Battioni,J.-P.;Koosha,K.Tetrahedron Lett.1976,17,3351.
    64.Froestl,W.;Mickel,S.J.;Hall,R.G.;Von Sprecher,G.;Strub,D.;Baumann,P.A.;Brugger,F.;Gentsch,C.;Jaekel,J.;Olpe,H.-R.;Rihs,G.;Vassout,A.;Waldmeier,P.C.;Bittiger,H.J.Med.Chem.1995,38,3297.
    65.OHagan,D.;Zaidi,N.A.J Chem.Soc.Perkin Trans.1 1992,947.
    66.(a)Newman,W.S.;Wotiz,J.H.J.Am.Chem.Soc.1949,71,1292.
    (b)Colonge,D.Bull.Soc.Chim.Fr.1959,817.
    (c)Jones,V.K.;Deutschman,A.J.J.Org.Chem.1965,30,3978.
    67.Douglass,F.T.;Kamfia,Y.J.Org.Chem.1995,60,139.
    68.Xu,D.;Li,Z.;Ma,S.Tetrahedron Lett.2003,44,6343.
    69.Alexakis,A.;Marek,I.;Mangeney,P.;Normant,J.F.J.Am.Chem.Soc.1990,112,8042.
    70.Mukaiyama,T.;Harada,T.Chem.Lett.1981,10,621.
    71.Searles,S.;Li,Y.;Nassim,B.;Lopes,M.R.;Tran,P.T.;Crabbe,P.J.Chem.Soc.,Perkin Trans.I 1984,747.
    72.Xu,D.;Li,Z.;Ma,S.Chem.Eur.J.2002,8,5012.
    73.(a)Britto,N.;Gore,V.G.;Mall,R.S.;Ranade,A.C.Synth.Commun.1989,19,1899.
    (b)Mall,R.S.;Tilve,S.G.;Yeola,S.;Mancar,A.R.Heterocycles 1987,26,126.
    74.(a)Buono,G.Synthesis 1981,872.
    (b)Buono,G.Tetrahedron Lett.1972,13,3257;
    (c)Ma,S.;Li,L.;Wei,Q.;Xie,H.;Wang,G.;Shi,Z.;Zhang,J.Pure Appl.Chem.2000,72,1739.
    75.俞詹前博士论文,中国科学院上海有机化学研究所,2003.
    76.施章杰博士论文,中国科学院上海有机化学研究所,2002.
    77.Marshall,J.A.;Wolf,M.A.;Wallace,E.M.J.Org.Chem.1997,62,367.
    78. (a) Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26. (b) Evans, P. A. Leahy, D. K. J. Am. Chem. Soc. 2002, 124, 7882. (c) Cho, G.Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6, 3293.
    
    79. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,16, 4467. (b) Kollhofer, A.; Pullmann, T.; Plenio, H. Angew. Chem. Int. Ed. 2003, 42, 1056. (c) Tykwinski, R. Angew. Chem. Int. Ed. 2003, 42, 1566. (d) Gelman, D.; Buchwald, S. Angew. Chem. Int. Ed. 2003, 42, 5993. (e) Sakai, N.; Annaka, K.; Konakahara, T. Org. Lett. 2004, 6, 1527. (f) Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc. 2003, 125, 4817.
    
    80. (a) Marshall, J. A.; DuBay, W. J. J. Org. Chem. 1994, 59, 1703. (b) Marshall, J. A.; Bennett, C. E. J. Org. Chem. 1994, 59, 6110. (c) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N.C. Tetrahedron 1998, 54, 1955. (d) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (e) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004,104, 2127.
    
    81. (a) Gabriele, B.; Salerno, G. Chem. Commun. 1997, 1083. (b) Gabriele, B.; Salerno, G.; Lauria, E. J. Org. Chem. 1999, 64, 7687. (c) Liu, Y.; Song, F.; Cong, L. J. Org. Chem. 2005, 70, 6999. (d) Qing, F.-L.; Gao, W.-Z. Tetrahedron Lett. 2000, 41, 7727.
    
    82. (a) Ma, S.; Gao, W. J. Org. Chem. 2002, 67, 6104. (b) Ma, S.; Li, L. Org. Lett. 2000,2,941.
    
    83. Martin, L. D.; Stille, J. K. J. Org. Chem. 1982, 47, 3630.
    
    84. For a general overview on iron catalysis in organic chemistry, see: (a) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217. (b) Furstner, A.; Martin, R. Chem. Lett. 2005, 34, 624.
    
    
    85. For some typical examples of iron-catalyzd addition reactions, see: (a) Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2006, 725, 15050. (b) Shirakawa, E.; Yamagami, T.; Kimura, T.; Yamaguchi, S.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 17164. (c) Yamagami, T.; Shintani, R.; Shirakawa, E.; Hayashi, T. Org. Lett. 2007, 9, 1045. (d) Li, R.; Wang, S. R.; Lu, W. Org. Lett. 2007, 9, 2219. (e) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000, 722, 978. (f) Nakamura, M.; 255 Matsuo,K.;Inoue,T.;Nakamura,E.Org.Lett.2003,5,1373.
    (g)Fukuhara,K.;Urabe,H.Tetrahedron Lett.2005,46,603.For an iron-catalyzed hydrosilylation reaction,see:
    (h)Nishiyama,H.;Furuta,A.Chem.Commun.2007,760.For some typical examples of iron-catalyzd oxidation reactions,see:
    (i)Mancheno,O.G.;Bolm,C.Org.Lett.2006,8,2349.
    (j)Nakanishi,M.;Bolm,C.Adv.Synth.Catal.2007,349,861.For some typical examples of iron-catalyzd coupling reactions,see:
    (k)Ottesen,L.K.;Ek,F.;Olsson,R.Org.Lett.2006,8,1771.
    (1)Scheiper,B.;Bonnekessel,M.;Krause,H.;Furstner,A.J.Org.Chem.2004,69,3943.
    (m)Nakamura,M.;Matsuo,K.;Ito,S.;Nakamura,E.J.Am.Chem.Soc.2004,126,3686.
    (n)Furstner,A.;Leitner A.;Mendez,M.;Krause,H.J.Am.Chem.Soc.2002,124,13856.
    (o)Duplais,C.;Bures,F.;Sapountzis,I.;Korn,T.J.;Cahiez,G.;Knochel,P.Angew.Chem.Int.Ed.2004,43,2968.
    (p)Cahiez,G.;Habiak,V.;Duplais,C.;Moyeux,A.Angew.Chem.Int.Ed.2007,46,4364.
    (q)Bedford,R.B.;Betham,M.;Bruce,D.W.;Danopoulos,A.A.;Frost,R.M.;Hird,M.J.Org.Chem.2006,71,1104.
    (r)Nagano,T.;Hayashi,T.Org.Lett.2004,6,1297.
    (s)Tamura,M.;Kochi,J.K.J.Am.Chem.Soc.1971,93,1487.For some typical examples of iron-catalyzd cyclization reactions,see:
    (t)Bouwkamp,M.W.;Bowman,A.C.;Lobkovsky,E.;Chirik,P.J.J.Am.Chem.Soc.2006,128,13340.
    (u)Furstner,A.;Martin,R.;Majima,K.J.Am.Chem.Soc.2005,127,12236.
    (v)Komeyama,K.;Morimoto,T.;Takaki,K.Angew.Chem.Int.Ed.2006,45,2938.
    (w)Corey,E.J.;Imai,N.;Zhang,H.-Y.J Am.Chem.Soc.1991,113,729.For some typical examples of iron-catalyzd allylic alkylation reactions,see:
    (x)Plietker,B.Angew.Chem.Int.Ed.2006,45,1469.
    (y)Plietker,B.Angew.Chem.lnt.Ed.2006,45,6053.For some typical examples of iron-catalyzd asymmetric reactions,see:
    (z)Li,C.-Y.;Wang,X.-B.;Sun,X.-L.;Tang,Y.;Zheng,J.-C.;Xu,Z.-H.;Zhou,Y.-G.;Dai,L.-X.J.Am.Chem.Soc.2007,129,1494.
    86.(a)Trost,B.M.Acc.Chem.Res.1980,13,385.
    (b)Trost,B.M.;Van Vranken,D.L.Chem.Rev.1996,96,395.
    (c)Trost,B.M.;Crawley,M.L.Chem.Rev.2003,103,2921.
    (d)Trost,B.M.J.Org.Chem.2004,69,5813.
    (e)Lu,Z.;Ma, S. Angew. Chem. Int. Ed. 2008, 47, 258.
    
    87. Crystal data for compound Z-7h: C_(23)H_(26)O_2, Mw 334.46, triclinic, P -1, Mo Ka, final R indices [I > 2σ(I)], R1 = 0.0812, wR2 = 0.2081, a = 8.2770 (6) A, b = 8.6143 (7) A, c = 14.1523 (13) A, α = 103.444 (2)°, β = 91.662 (2)°, γ = 95.1097 (19)°, V = 976.23 (14), Z = 2, number of reflections measured/unique 4336 / 1886 (R_(int) = 0.028) number of observations 4336 [I > 2σ(I)], parameter 227, CCDC 676332.
    
    88. Flynn, A. B.; Ogilvie, W. W. Chem. Rev. 2007,107, 4698.
    
    89. Crystal data for compound 59a: C_(26)H_(28)O_3, Mw 388.51, Monoclinic, P 1 21/ c 1, Mo Ka, final R indices [I > 2σ(I)], R1 = 0.0491, wR2 = 0.1028, a = 10.4687 (8) A, b = 14.8999 (10) A, c = 14.6133 (10) A,α = 90°, β = 103.0580 (19)°,γ = 90°, V = 2220.5 (3), Z = 4, number of reflections measured/unique 5052 / 1585 (R_(int) = 0.061) number of observations 5051 [I> 2σ(I)}, parameter 291, CCDC 672093.
    
    90. Crystal data for compound (4S, 6R)-(-)-59c: C_(26)H_(26)Br_2O_3, Mw 546.30, Monoclinic, P 1 21 1, Mo Ka, final R indices [I > 2σ(I)], R1 = 0.0635, wR2 = 0.1966, a = 7.3758 (4) A, b = 24.7978 (13) A, c = 14.0258 (7) A, α = 90°, β = 90.2228 (14) °, γ = 90°, V = 2565.4 (2), Z = 4, number of reflections measured/unique 5956 / 3461 (R_(int)= 0.073) number of observations 5956 [I > 2σ(I)I parameter 561, CCDC 672094.
    
    91. The reports on the uncatalyzed carbozincation of alkens and alkynes are quite limited. For a monograph of carbozincation, see: (a) The Chemistry of Organozinc Compounds (Ed.: Z. Rappoport, I. Marek), Wiley, 2006, p863-977. For the uncatalyzed anti-carbozincation of conjugated alkynes with (t-Bu)_2Zn, see: (b) J. A. G. Courtois, L. Miginiac, J. Organomet. Chem. 1977,133, 285. (c) J. A. G.Courtois, L. Miginiac, J. Organomet. Chem. 1980,194, 13. (d) L. Miginiac, J. Organomet. Chem. 1982, 238, 235. In the reported crystal structure of the Reformatsky reagent (BrZnCH_2COO-Bu-t(THF))_2, the C-Zn bond was clearly seen: (e) J. Dekker, P. H. M. Budzellaar, J. Boersma, G. J. M. van der Kerk, A. L, Spek, Organometallics 1984, 3, 1403. see also: (f) J. Dekker, A. Schouten, P. H. M. Budzellaar, J. Boersma, G. J. M. van der Kerk, A. L. Spek, A. J. M. Duisenberg,J.Organomet.Chem.1987,320,1.
    92.Gey,C.;Kyrylenko,S.;Hennig,L.;Nguyen,L.-N.;Butter,A.;Pham,H.D.;Giannis,A.Angew.Chem.Int.Ed.2007,46,5219.
    93.Jacobs,T.L.;Petty,W.L.;Teach,E.G.J.Am.Chem.Soc.1960,82,4094.
    94.(a)Midland,M.M.J.Org.Chem.1975,40,1975.(b)Aldrich Catalogue 2005-2006,p 1779.
    95.Graham,S.M.;Prestwich,G.D.J.Org.Chem.1994,59,2956.
    96.Schneekloth,J.S.,Jr.;Pucheault,M.;Crews,C.M.Eur.J.Org.Chem.2007,40.
    97.Kuwatani,Y.;Yamamoto,G.;Oda,M.;Iyoda,M.Bull.Chem.Soc.Japan 2005,78,2188.
    98.徐代旺博士论文,中国科学院上海有机化学研究所,2003.
    99.Lian,J.-J.;Chen,P.-C.;Lin,Y.-P.;Ting,H.-C.;Liu,R.-S.J.Am.Chem.Soc.2006,128,11372.
    100.lander,G.A.;Cormier,E.P.J.Org.Chem.2005,70,2622.
    101.De S.,Anthony,N.;Francis,C.L.;Ward,A.D.Australian J.Chem.1993,46,1657.
    102.Mukaiyama,T.;Harada,T,Chem.Lett.1981,621.
    103.Nanayakkara,P.;Alper,H.J.Org.Chem.2004,69,4686.
    104.Franklin,C.L.;Li,H.;Martin,S.F.J.Org.Chem.2003,68,7298.
    105.Nanayakkara,P.;Alper,H.J.Org.Chem.2004,69,4686.
    106.Petasis,N.A.;Teets,K.A.J.Am.Chem.Soc.1992,114,10328.
    107.傅春玲博士论文,浙江大学,2005.
    108.Trost,B.M.;Pinkerton,A.B.;Seidel,M.J.Am.Chem.Soc.2001,123,12466.
    109.Xu,Q.;Huang,X.;Yuan,J.J.Org.Chem.2005,70,6948.
    110.Vykhrestyuk,N.I.;Bagatchenko,G.S.;Gordash,T.;Yu,T.;Tikhonov,V.P.;Tkachenko,D.A.;Chernyshev,I.A.Zhurnal Prikladnoi Spektroskopii 1977,26,526.
    111.Fuller,J.C.;Stangeland,E.L.;Goralski,C.T.;Singaram,B.Tetrahedron Lett.1993,34,257.
    112.Marshal,J.A.;Litsas,S.B.J.Org.Chem.1972,37,1840.
    113. Tomioka, H.; Suzuki, T.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 3387.
    
    114. Morgan, B.; Oehlschlager, A. C.; Stokes, T. M. J. Org. Chem. 1992, 57, 3231.
    
    115. Doolittle, R. E.; Heath, R. R. J. Org. Chem. 1984, 49, 5041.
    
    116. Normant, J.F.; Alexakis, A.; Villieras, J. J. Organomet. Chem. 1973, 57(2), c99.
    
    117. Zweifel, G.; Steele, R. B. J. Am. Chem. Soc. 1967, 89, 2754.
    
    118. Melpolder, J. B.; Heck, R. F. J. Org. Chem. 1976, 41, 265.
    
    119. Onaran, M. B.; Seto, C. T. J. Org. Chem. 2003, 68, 8136.
    
    120. Newman, H. Tetrahedron Lett. 1971,12, 4571.
    
    121. Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75, 170.
    
    122. Yamamoto, K.; Kimura, T.; Tomo, V. Tetrahedron Lett. 1984, 25, 2155.
    
    123. Smith, A. B., III; Duffey, M. O. Synlett 2004, 1363.
    
    124. Marvel, C. S.; Williams, Jack L. R. J. Am. Chem. Soc. 1948, 70, 3842.
    
    125. Rottlaender, M.; Boymond, L.; Cahiez, G.; Knochel, P. J. Org. Chem. 1999, 64, 1080.