湍动鼓泡塔充分发展段的流体力学与内构件技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼓泡塔反应器是一种工业中广泛应用的气-液两相和气-液-固三相接触与反应装置。目前鼓泡塔或浆态床反应器大型化已成为煤化工与石油天然气化工的发展趋势,相关的放大问题和过程强化问题取决于对塔内流体力学规律的了解与把握。现有文献中有关鼓泡塔的流体力学研究大多数集中在低气速(0.03-0.12m/s)、小塔径(<0.5m)、以及无内构件的情况,针对高气速、较大塔径、特别是含密集内构件条件下的湍动鼓泡流情况还研究得很不充分。有鉴于此,本论文针对湍动鼓泡塔充分发展段的流体力学及内构件技术展开研究,采用冷模实验测量与计算流体力学(CFD)模拟两种方法系统地考察空塔与含密集内构件的鼓泡塔流体力学规律,建立各种情况下的鼓泡塔流体力学模型,用于鼓泡反应器的模拟、放大与内构件技术开发。论文主要包括以下几个方面:
     1.湍动鼓泡塔流体力学参数的实验测量:使用自制电导探针、Pavlov管和径向测速管在三种不同直径(186、476、760mm)的鼓泡塔冷模实验装置内,实验测定了高空塔气速(0.12-0.62m/s)、高固含率(体积分率10-30%)条件下的平均气含率、鼓泡塔充分发展段的局部气含率、轴向液速、三维脉动均方根速度和湍流动能的径向分布,并考察了不同因素对上述分布的影响规律。
     2.湍动鼓泡塔充分发展段的一维流体力学模型:根据气液间的横向升力和湍流扩散力的径向平衡机制建立了描述鼓泡塔或浆态床气含率分布的本构关系,提出了针对无内构件的鼓泡塔充分发展段的一维拟均相k-ε模型。模型计算得到的在不同塔径、空塔气速和固含率条件下的气含率、轴向液速和湍流动能分布与实验测量结果符合良好。应用该模型对无内构件的空塔进行了流体力学放大预测。
     3.鼓泡塔纵向列管内构件流动规律的实验研究:在Φ476鼓泡塔内测定了不同列管密度和空塔气速下的气含率与液速径向分布、湍流脉动速度与动能分布。实验揭示列管束的加入显著提高了液相或浆料相的循环速度,速度梯度随着列管布置密度的增大而增加,气含率分布也呈现明显的陡峭化趋势,该现象称为“烟囱效应”。实验考察了气速和列管束密度对流动参数分布的的定量影响,从流动机理方面对“烟囱效应”进行了分析,澄清了文献中对这一问题的不同认识。
     4.含列管内构件的鼓泡塔流体力学模型:在实验研究基础上对带列管束的鼓泡塔进行了流体力学建模,将密集列管内构件的作用考虑为连续分布的动量源、动能源、耗散源,摒弃了现有的CFD模型将列管壁面考虑为复杂几何边界的做法,根据力学原理给出了列管束各体积源项的本构关系,添加到一维湍流k-ε方程之中。模型计算的气含率分布、液速分布、湍动动能分布在宽泛的条件下与实验测量值符合良好,能够定量描述“烟囱效应”以及内构件参数对流动的影响。采用该模型对浆态床费托合成反应器进行了流体力学放大预测。
     5.带阻尼内构件的鼓泡塔流体力学研究:实验考察了多层阻尼网格、网格+列管、针翅列管三种内构件对鼓泡塔气含率和轴向液速分布的影响。实验表明:阻尼内构件的加入可有效改善塔内液速分布,提高平均气含率,抑制列管束“烟囱效应”,减小塔内返混,其中针翅列管还可强化传热,是一种多功能内构件。根据阻尼内构件对流体作用力的分析,建立了描述该型内构件影响的鼓泡塔流体力学模型
     6.鼓泡塔传热规律研究:使用自制传热探头测定了Φ476鼓泡塔内,列管内构件与针翅内构件的传热系数径向分布。实验表明,列管传热系数随表观气速的增加而增大,且沿径向呈抛物型分布,竖直列管内构件的加入使得传热系数的径向分布更不均匀;针翅管可有效强化传热,与光滑列管相比,传热系数提高了20%以上。基于表面更新理论,提出了计算传热系数的关联式与模型。
Bubble column reactors are widely applied in chemical industry as effective multiphase contactors for gas-liquid or gas-liquid-so lid phase reactions. At present, more and more large scale reactors become the tendency in coal, natural gas and petrochemical industries. Hydrodynamics of bubble column is the key for scale-up and process intensification. However, most of the published literatures were limited to the experimental conditions of low superficial gas velocity range (0.03 to 0.12m/s). small columns (<0.5m), and without internals. Studies on churn turbulent bubbly flow at high superficial gas velocity, in large-scale column, and especially in column with intensive internals are still inadequate. In view of this, a systematic research on hydrodynamics of turbulent bubble column both with and without internals was carried out in this paper. Attention was focused on the well-developed flow region. Both cold-model experiments and CFD simulations were performed to unveil hydrodynamic characteristics of turbulent bubbly flow under various conditions. Novel hydrodynamic models were developed for the reactor simulation, scale-up and development of novel internal technologies. The content of this paper covers following aspects.
     1. Measurement of hydrodynamic parameters in column without internals.The average and local gas holdup, axial liquid/slurry velocity,3D root mean square (RMS) liquid fluctuation velocities in the well-developed flow region of different-size bubble columns (186mm,476mm and 760mm). were measured by use of in-house developed conductivity probe. Pavlov tube and radial Pitot tube. Radial profiles of the above hydrodynamic parameters were obtained under high superficial gas velocity (0.12 to 0.62m/s) and high solid holdup (volume fraction of 10 to 30%v/v) conditions. Effects of superficial gas velocities, solid holdup, and column size were investigated.
     2. Development of one-dimensional hydrodynamic model for the well-developed flow region. Equations for determination of gas holdup radial distribution were firstly proposed in line with the radial movement balance mechanism between the lateral lift force and turbulent dispersion force imposed on the bubble swarm. Based on it a ID k-εmodel for well-developed flow region of column without internals was presented. The computed profiles of gas holdup, axial liquid velocity and turbulent kinetic energy agree well with experimental data under all investigated conditions. Scale-up predictions in column hydrodynamics were made by use of the model.
     3. Experimental investigation on flow characteristics in column with vertical pipe bundles. The profiles of gas holdup, time-average and RMS fluctuate liquid velocities, turbulent kinetic energy were measured in 0476 bubble column with different number of pipes and superficial gas velocities. The results showed that the vertical pipes will remarkably enhance the circulation velocity of liquid or slurry phase. The radial gradients of liquid velocity and gas holdup increase with density of pipe bundles. These phenomena were called "funnel effect". Effects of superficial gas velocity and density of pipe bundles were investigated. Mechnism for the "funnel effect" was analysed, which clarified some disagreed results presented in literatures.
     4. CFD modeling for bubble column with pipe bundle internals. The hydrodynamic model for bubble column with pipe bundles was developed on basis of experimental results. The effect of pipe bundles was regarded as continuously distributed volumetric sources of momentum, kinetic energy and dissipation, instead of complex rigid wall boundaries adopted in present literatures. Constitutive relations for these volumetric source terms were deduced in line with mechanic principle, which were added as mass, momentum and turbulent sources in turbulent k-e equations. Radial profiles of gas holdup, liquid velocity and turbulent kinetic energy computed by the model showed good agreements with experimental data. The model provided a powerful tool for the simulation of the "funnel effect" caused by the pipe bundles in bubble column.The model was used to simulate the scale up hydrodynamic behaviors of FT synthesis slurry bubble column reactors.
     5. Experiments and modeling on hydrodynamics of resistance internals. Three kinds of resistance internals were considered:multi-layer screens, multi-layer screens plus pipe bundles, spin-fin pipe bundles. The experimental data showed that all these resistance internals can effectively improve liquid velocity distributions, dampen the funnel effect and reduce the back mixing. In addition, the spin-fin pipe can also intensify heat transfer, and is a multifunction internal. Hydrodynamic models for the resistance internals were developed.
     6. Heat transfer measurements in bubble columns. Radial distributions of heat transfer coefficients both for bare vertical pipes and spin-fin pipes in 0476 bubble column were measured by in-house developed heat transfer probes. The experiment results showed that the heat transfer coefficients distribution has a parabolic-like curve that similar to velocity and gas holdup profiles, and increase of pipe number leads to more steeper distributions, which is also in line with the pipe bundle "funneling effect". The heat transfer coefficient for the spin-fin pipe is above 20% larger than that of bare pipe, which confirms that the spin-fin pipe can remarkably intensify heat transfer. Correlations based on the surface renewal model for calculation of heat transfer coefficients under various conditions were presented.
引文
[1]Wang TF, Wang JF, Jin Y. Slurry reactors for gas-to-liquid processes:a review[J]. Ind. Eng. Chem. Res.,2007,46:5824-5847.
    [2]张玉卓.中国煤炭液化技术发展前景[J].煤炭科学技术,2006,34:19-22.
    [3]郭树才.煤化工工艺学[M].北京:化学工业出版社,2006.
    [4]Steynberg A, Dry M. Fischer-Tropsch Technology[M], Amsterdam:Elsevier Publisher,2004
    [5]Davis B A. Fischer-Tropsch synthesis:overview of reactors development and future potentialities[J]. Topics in Catalysis,2005,32(3-4):143-168.
    [6]Tijm P J A, Waller F J, Brown D M. Methanol technology development for the new millennium[J]. Appl. Catal. A:Gen.,2001,221(1-2):275-282.
    [7]Behkish A, Men Z, Inga J R, Morsi B I. Mass transfer characteristics in a large-scale slurry bubble column with organic liquid mixtures[J]. Chem. Eng. Sci.,2002.57(16):3307-3324.
    [8]Chen P. Gupta P, Dudukovic M P, Toseland B A. Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis:gas-liquid recirculation model and radioactive tracer studies[J]. Chem. Eng. Sci.,2006.61:6553-6570.
    [9]Brown D M, Bhatt B L, Hsiung T H, Lewnard J J. Waller F J. Novel technology for the synthesis of dimethyl ether from syngas. Catal. Today 1991,8(3):279-304.
    [10]Ogawa T. Inoue N, Shikada T, Ohno Y. Direct dimethyl ether synthesis[J]. J. Nat. Gas Chem.2003, 12:219-227.
    [11]Van Elk E P, Borman P C, Kuipers J A M, Versteeg G F. Modeling of gas-liquid reactors-stability and dynamic behavior of a hydroformylation reactor[J], Chem. Eng. Sci.,2001,56:1491-1500.
    [12]Strasser W. Wonders A. Hydrokinetic optimization of commercial scale slurry bubble column reactor. AIChEJ.,2011, in press.
    [13]Deckwer W D. Bubble column reactor[M]. Chichester:John Wiley & Sons Ltd,1992.
    [14]Jakobsen H A. Chemical reactor modeling-Multiphase reactive flows[M]. Berlin Heidelberg: Springer,2008,577-581.
    [15]Dudukovic M P, Larachi F, Mills P L. Multiphase reactors-revisited[J]. Chem. Eng. Sci.,1999,54: 1975-1995.
    [16]Sie S T, Krishna R. Fundamentals and selection of advanced Fischer-Tropsch reactors[J]. Appl. Catal. A:Gen.1999,186(1-2):55-70.
    [17]Dudukovic M P, Larachi F. Mills P L. Multiphase Catalytic Reactors:a Perspective on Current Knowledge and Future Trends. Catal. Rev.2002,44(1):123-246.
    [18]Maretto C. Krishna R. Modeling of a bubble column slurry reactor of Fischer-Tropsch synthesis[J]. Catalysis today,1999,52:279-289.
    [19]Joshi J B. Computational flow modeling and design of bubble column reactors[J]. Chem. Eng. Sci., 2001,56:5893-5933.
    [20]Gupta P, OngB, Al-Dahhan M H, Dudukovic M P. Toseland B A. Hydrodynamics of churn turbulent bubble columns:gas-liquid recirculation and mechanistic modeling[J]. Catalysis Today,2001,64: 253-269.
    [21]Hills J H. Radial non-uniformity of velocity and voidage in a bubble column[J]. Trans. Inst. Chem. Eng.,1974,52(1):1-9.
    [22]Yao B P, Zheng C, Gasche H E, Hofmann H, Bubble behavior and flow structure of bubble columns[J]. Chem. Eng. Process.,1991.29(2):65-75.
    [23]Degaleesan S, Dudukovic M, Pan Y. Experimental study of gas-induced liquid-flow structures in bubble columns[J]. AIChE J.2001,47(9):1913-1931.
    [24]张成芳.气液反应和反应器[M].北京:化学工业出版社,1985.
    [25]Froment G F, Bischoff K B. Chemical reactor analysis and design[M]. New York:John Wiley & Sons Ltd,1979.
    [26]陈甘棠,王樟茂.多相流反应工程[M].杭州:浙江大学出版社,1996.
    [27]van Baten J M, Krishna R. Scale effects on the hydrodynamics of bubble columns operating in the heterogeneous[J]. Chemical Engineering Research and Design,2004.82:1043-1053.
    [28]Menzel T, in der Weide T, Staudacher O. Wein O. Onken U. Reynolds shear stress for modeling of bubble column reactors[J]. Ind. Eng. Chem. Res..1990.29:988-994.
    [29]Forret A, Schweitzer J M, Gauthier T, Krishna R, Schweich D. Liquid dispersion in large diameter bubble columns, with and without internals[J]. Can. J. Chem. Eng.,2003,81:360-366.
    [30]Koide K, Morooka S, Ueyama K, Matsuura A, Yamashita F, Iwamoto S, Kato Y, Inoue H, Shigeta M, Suzuki S, Akehata T. Behavior of bubbles in large scale bubble column[J]. J.Chem. Eng. Japan, 1979,12:98-104.
    [31]Kojima E, Unno H, Sato Y, Chida T, Imai H, Endo K, Inoue I, Kobayashi J, Kaji H, Nakanishi H, Yamamoto K. Liquid phase velocity in a 5.5m diameter bubble column[J]. J.Chem. Eng. Japan,1980, 13:16-21.
    [32]Gopal J S, Sharma M M. Mass transfer characteristics of low H/D Bubble Columns[J]. Can. J. Chem. Eng.,1983,61:517.
    [33]Forret A, Schweitzer J M, Gauthier R, Krishna D S. Influence of scale on the hydrodynamics of bubble column reactors:an experimental study in columns of 0.1,0.4 and lm diameters[J]. Chem. Eng. Sci.,2003,58:719-724.
    [34]Ueyama K, Miyauchi T. Properties of recirculating turbulent two phase flow in gas bubble columns[J]. AIChE J,1979,25(2),258-266.
    [35]Nottenkamper R. Zur hydrodynamik in blasensaeulenreaktoren[D]. Dortmund:Dortmund University, 1983.
    [36]van Baten J M, Ellenberger J, Krishna R, Scale up strategy for bubble column reactors using CFD simulations[J]. Catalysis Today,2003,79-80:259-265.
    [37]Zehner P. Momentum mass and heat transfer in bubble column. Part 1. Flow model of the bubble column and liquid velocities[J]. International Chemical Engineering,1986,26:22-35.
    [38]Riquarts H P. Stromungsprofile. impulsaustausch und durchmischung der flussigen phase in blasensaulen[J]. Chemie Ingenieur Technik,1981,53:60-61.
    [39]Nottenkamper R, Steiff A, Weinspach P M. Experimental investigation of hydrodynamics of bubble columns[J]. German Chemical Engineering,1983,6:147-155.
    [40]Chilekar V P, van der Schaaf J, Kuster B F M, Tinge J T, Schouten J C. Influence of elevated pressure and particle lyophobicity on hydrodynamics and gas-liquid mass transfer in slurry bubble columns[J]. AIChE J.2010,56(3):584-596.
    [41]Behkish A. Lemoine R, Sehabiague L, Oukaci R, Morsi B I. Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures[J]. Chem. Eng. J.,2007,128:69-84.
    [42]Inga J R, Morsi B I. Effect of operating variables on the gas holdup in a large-scale slurry bubble column reactor operating with an organic liquid mixture[J]. Ind Eng Chem Res.1999,38:928-937.
    [43]Luo X, Lee D J, Lau R. Yang G Q, Fan L S. Maximum stable bubble size and gas holdup in high-pressure slurry bubble column[J]. AIChE J.1999,45:665-680.
    [44]Bernemann K. Zur fluiddynamik und zum vermischungsverhalten der fluessigen phase in blasensaeulen mit laengsangestroemten rohrbuendeln[D]. Dortmund:University Dortmund,1989.
    [45]Larachi F, Desvigne D. Donnat L. Schweich D. Simulating the effects of liquid circulation in bubble columns with internals[J]. Chem. Eng. Sci.,2006,61:4195-4206.
    [46]Chen J, Li F, Degaleesan S, Gupta Pt, Al-Dahhan M H, Dudukovic M P, Toseland B A. Fluid dynamic parameters in bubble columns with internals[J]. Chem. Eng. Sci.,1999,54:2187-2197.
    [47]Saxena S C, Vadivel R. Heat transfer from a tube bundle in a bubble column[J]. International Communications in Heat and Mass Transfer.1988,15(5):657-667.
    [48]Thimmapuram P R, Rao N S, Saxena S C. Heat transfer from immersed tubes in a baffled slurry bubble column[J]. Chemical Engineering Communications,1993,120:27-43.
    [49]Youssef A A, Al-Dahhan M H. Impact of Internals on the gas holdup and bubble properties of a bubble Column[J]. Ind. Eng. Chem. Res.,2009,48(17):8007-8013.
    [50]Youssef A A, Al-Dahhan M H. Impact of Internals on the gas holdup and bubble properties of a bubble Column[J]. Ind. Eng. Chem. Res.,2009,48(17):8007-8013.
    [51]张煜,卢佳,王丽军,李希.湍动浆态床流体力学研究(Ⅲ):垂直列管内构件的影响[J].化工学报,2009,60(5):1135-1140.
    [52]Jordan U, Schumpe A. The gas density effect on mass transfer in bubble columns with organic liquids[J]. Chem. Eng. Sci.,2001,56:6267-6272.
    [53]Behkish A. Hydrodynamic and mass transfer parameters in large-scale slurry bubble column reactors[D]. Pittsburgh: University of Pittsburgh,2004.
    [54]Vandu C O, Krishna R. Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime[J]. Chem. Eng. Process.2004,43 (8):987-995.
    [55]谢刚.新型对二甲苯氧化反应器的开发与相关的化学工程研究[D].杭州:浙江大学,2004.
    [56]王丽军,王丽雅,张煜,周青钠,李希.带阻尼内构件鼓泡塔的研究(Ⅱ)—内构件对气液传质速率的影响[J].化学反应工程与工艺,2007,23(2):109-113.
    [57]陈斌.鼓泡塔氧化反应器内构件的研究[D].杭州:浙江大学,2006.
    [58]王丽雅.鼓泡塔中流动与传递参数的检测[D].杭州:浙江大学,2006.
    [59]Saxena S C, Chen Z D. Hydrodynamics and heat transfer of baffled and unbaffled slurry bubble columns[J]. Reviews in Chemical Engineering,1994,10:193-400.
    [60]Kim S D, Kang Y. Heat and mass transfer in three-phase fluidized bed reactors-an overview[J]. Chem. Eng. Sci.,1997,52(21-22):3639-3660.
    [61]Hulet C, Clement P, Tochon P, Schweich D, Dromard N, Anfray J. Literature review on heat transfer in two- and three-phase bubble columns[J]. International Journal of Chemical Reactor Engineering, 2009,7:1-94.
    [62]Lin T J, Fan L S. Heat transfer and bubble characteristics from a nozzle in high-pressure bubble columnsLJ]. Chem. Eng. Sci.,1999,54:4853-4859.
    [63]Wu C, Al-Dahhan M H, Prakash A. Heat transfer coefficients in a high-pressure bubble column[J]. Chem. Eng. Sci.,2007,62(1-2):140-147.
    [64]Schluter S, Steiff A, Weinspach P M. Heat transfer in two-and three-phase bubble column reactors with internals[J]. Chemical Engineering and Processing,1995,34:157-172.
    [65]Kolbel H, Siemes W, Maas R, Muller K. Heat transfer in bubble columns[J]. Chemie Ingenieur Technick,1958,20(6):400-404.
    [66]Prakash A, Margaritis A. Li H, Bergougnou M A. Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast[J]. Biochemical Engineering Journal, 2001,9:155-163.
    [67]Dhaouadi H, Poncin S, Hornut J M, Wild G. Solid effects on hydrodynamics and heat transfer in an external loop airlift reactor[J]. Chem. Eng. Sci.,2006.61:1300-1311.
    [68]Li H. Prakash A. Survey of heat transfer mechanisms in a slurry bubble column[J]. The Canadian Journal of Chemical Engineering,2001,79(5):717-725.
    [69]Boyer C, Duquenne A, Wild G. Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chem. Eng. Sci.,2002,57:3185-3215.
    [70]Joshi J B, Patil T A, Ranade V V, Shah Y T. Measurement of hydrodynamic parameters in multiphase sparged reactors[J]. Reviews in Chemical Engineering,1990,6(2-3):73-227.
    [71]Sriram K, Mann R. Dynamic gas disengagement:a new technique for assessing the behaviour of bubble columnsfJ]. Chem. Eng. Sci.,1977.32:571
    [72]Fournier T, Jeandey C. Optimization of an experimental setup for void fraction determination by the X-ray attenuation technique[A]. In J.M. Delhaye & G. Cognet (Eds.), Measuring techniques in gas-liquid two-phase flows[C]. Berlin. Heidelberg, New York, Tokyo:Springer,1993,199-228.
    [73]吕术森,陈雪莉,于广锁,于遵宏.应用电导探针测定鼓泡塔内气泡参数[J].化学反应工程与工艺.2003.19(4):344-351.
    [74]Hogsett S, Ishii M. Local two-phase flow measurements using sensor techniques[J]. Nuclear Engineering and Design,1997,175:15-24.
    [75]Le Corre J M, Hervieu E, Ishii M, Delhaye J M. Benchmarking and improvements of measurement techniques for local-time-averaged two-phase flow parameters[J]. Experiments in Fluids.2003,35: 448-458.
    [76]Wang TF, Wang JF, Yang WG, Jin Y. Experimental study on gas-holdup and gas-liquid interfacial area in TPCFBs[J]. Chemical Engineering Communications,2001,187(1):251-263.
    [77]Bennett M A, West R M, Luke S P, Jia X, Williams R A. Measurement and analysis of flows in a gas-liquid column reactor[J]. Chem. Eng. Sci.,1999,54:5003-5012.
    [78]黄子宾,程振民.鼓泡床中分布器对气泡行为影响的电容层析成像分析[J].华东理工大学学报,2009,35(1):1-4.
    [79]Jin HB. Yang SH, Wang M, Williams R A. Measurement of gas holdup profiles in a gas liquid concurrent bubble column using electrical resistance tomography [J]. Flow Meas. Instrum.,2007,18: 191-196.
    [80]Kumar S B, Moslemiant D, Dudukovic M P. A y-ray tomographic scanner for imaging voidage distribution in two-phase flow systems. Flow Meas. Instrum..1995,6(1):61-73.
    [81]Washington University in St. Louis. CREL report 2005:CREL experimental facilities[OL].2005: http://crelonweb.eec.wustl.edu/cre12005/crelreport2005.html.
    [82]蔡清白,沈雪松,沈春银,戴干策.ECT研究浅层鼓泡塔中的气含率行为[J].华东理工大学学报,2010,36(2):157-164.
    [83]王丽雅,庄华洁,宋景桢,陈斌,李希.高气速下鼓泡塔中气含率分布的测定.化学反应工程与工艺,2006,22(1):1-6.
    [84]王丽军,张煜,李希.湍动浆态床流体力学研究(Ⅰ)—气含率及其分布规律.化工学报,2008,59(12):2996-3002.
    [85]Franz K, Borner T, Kantorek H J, Buchholz R. Flow structures in bubble columns[J]. Ger. Chem. Eng.,1984,7:365-374.
    [86]Kulkarni A A, Joshi J B, Kumar V R, Kulkarni B D. Application of multiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA[J]. Chem. Eng. Sci.,56:5037-5048.
    [87]Wang TF, Wang JF, Ren F, Jin Y. Application of doppler ultrasound velocimetry in multiphase flow[J]. Chem. Eng. J.,2003,92:111-122.
    [88]Devanathan N, Moslemian D. Dudukovic M P. Flow mapping in bubble columns using CARPT[J], Chem. Eng. Sci.,1990,45(8):2285-2291.
    [89]Yang G Q, Du B, Fan L S. Bubble formation and dynamics in gas-liquid-solid fluidization—A review.Chem. Eng. Sci.,2007,62(1-2).2-27.
    [90]Fan L-S, Tsuchiya K. Bubble wake dynamics in liquids and liquid-solid suspensions[M]. Boston, Mass:Butterworth-Heinemann,1990.
    [91]Wu Q, Ishii M. Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow[J]. Int. J. Multiphase Flow,1999,25:155-173.
    [92]Kim S. Fu X Y, Wang X, Ishii M. Development of the miniaturized four-sensor conductivity probe and the signal processing scheme[J]. Int. J. Heat Mass Transfer,2000,43:4101-4118.
    [93]Le Corre J-M, Ishii M. Numerical evaluation and correction method for multi-sensor probe measurement techniques in two-phase bubbly flow[J]. Nuclear Engineering and Design,2002,216: 221-238.
    [94]Lee D J, Luo X, Fan L-S. Gas disengagement technique in a slurry bubble column operated in the coalesced bubble regime[J]. Chem. Eng. Sci.,1999,54:2227-2236.
    [95]Jakobsen H A. Phase distribution phenomena in two-phase bubble column reactors[J]. Chem. Eng. Sci.,2001,56:1049-1056.
    [96]Jakobsen H A, Lindborg H, Dorao C A. Modeling of bubble column reactors:progress and limitations[J]. Ind. Eng. Chem. Res.2005,44:5107-5151.
    [97]Lehr F, Millies M. Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE J.,2002,48(11):2426-2443.
    [98]Kulkarni A A, Ekambara K, Joshi J B. On the Development of flow pattern in a bubble column reactor:experiments and CFD[J]. Chem. Eng. Sci.,2007,62:1049-1072.
    [99]毛在砂.颗粒群研究:多相流多尺度数值模拟的基础[J].过程工程学报,2008,8(4):645-659.
    [100]Sokolichin A, Eigenberger G. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange[J]. Chem. Eng. Sci.,1997,52(4):611-626.
    [101]Delnoij E, Lammers F A. Kuipers J A M, van Swaaij W P M. Dynamic simulation of dispersed gas liquid two-phase flow using a discrete bubble model[J]. Chem. Eng. Sci.,1997,52:1429-1458.
    [102]Bhole M R, Joshi J B, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling[J]. Chem. Eng. Sci.,2008,63:2267-2282.
    [103]Sokolichin A. Eigenberger G, Lapin A. Simulation of buoyancy driven bubbly flow, established simplifications and open questions[J]. AIChE J.,2004,50(1):24-45.
    [104]Vitanker V S, Joshi J B. A comprehensive one-dimensional model for prediction of flow pattern in bubble columns[J]. Chemical Engineering Research and Design,2002,80:499-511.
    [105]Kumar S B, Devanathan N, Moslemian D, Dudukovic M P. Effect of scale on liquid recirculation in bubble columns[J]. Chem. Eng. Sci.,1994,49(24):5637-5652.
    [106]Clift R, Grace J R, Weber M E. Bubble, drops and particIes[M]. New York:Academic Press.1978.
    [107]Haas U, Schmidt-Traub H, Brauer H. Umstroemung Kugelfoerminger Blasen mit innere Zirkulation[J]. Chem. Ing. Tech.,1972,44(18):1060-1068.
    [108]Peebles F N, Garber H J. Studies on the methods of gas bubbles in Iiquids[J]. Chem. Eng. Progr., 1953,49(2):88-97.
    [109]Kolev N I. Multiphase flow dynamics:vol.2 thermal and mechanical interactions[M]. Berlin Springer,3rd Ed,2007,33-35.
    [110]Tomiyama A. Struggle with computational bubble dynamics[A]. Third International Conference on Multiphase Flow[C], Lyon, France,1998.
    [111]Thake S S, Joshi J B. CFD simulation of bubble column reactors:importance of drag force formulation[J]. Chem. Eng. Sci.,1999,54:5055-5060.
    [112]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟[D].北京:清华大学,2004.30.
    [113]Kendoush A A, Mohammed T J, Abid B A, Hameed M S. Experimental investigation of the hydrodynamic interaction in bubbly two-phase flow[J]. Chemical Engineering & Processing,2004, 43:23-33.
    [114]毛在砂.用单元胞模型数值模拟气泡群中的气泡运动[J].2007,化工学报,58(5):1155-1162.
    [115]Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulative flows[J]. AIChEJ.,1978,25(5):843-854.
    [116]Ishii M, Mishima K. Two-Fluid model and hydrodynamic constitutive equations[J]. Nuclear Engineering and Design.1984,82:107-126.
    [117]Hills J H, Darton R C. The rising velocity of a large bubble in a bubble swarm[J]. Trans. Inst. Chem. Eng.,1976.54(4):258-264.
    [118]Harper J F. On bubbles rising in line at large Reynolds numbers[J]. J. Fluid Mech.,1970,41(4): 751-758.
    [119]Auton T R. The lift force on a spherical body in a rotational flow[J]. J. Fluid Mech.,1987, 183:199-218.
    [120]Thomas N H, Auton T R, Sene K, Hunt J C R. Entrapment and transport of bubbles by transient large eddies in multiphase turbulent shear flows[A]. In: Stephens HS, Stapleton CA (eds) International Conference on Physical Modelling of Multi-Phase Flows[C]. BHRA Fluid Engineering.1983, 169-184. Cranfield.
    [121]Drew D A, Lahey R T Jr. The virtual mass and lift force on a sphere in rotating and straining inviscid flow[J]. Int. J. Multiphase Flow,1987,13 (1):113-121.
    [122]Tomiyama A, Sou A, Zun I, Kanami N, Sakaguchi T. Effects of Eotvo number and dimensionless liquid volumetric flux on lateral motion of a bubble in a laminar duct flow[A]. Serizawa A, Fukano T, Bataille J. Proceedings of the 2nd International Conference in Multiphase Flow[C], Kyoto: Elsevier.1995,3-15.
    [123]Tomiyama A, Tamai H. Zun I. Hosokawa S. Transverse migration of single bubbles in simple shear flows[J]. Chem. Eng. Sci.,2002,57:1849-1858.
    [124]Beyerlein S W, Cossmann R K, Richter H J. Prediction of bubble concentration profiles in vertical turbulent two-phase flow[J]. Int. J. Multiphase Flow,1995,11(5):629-641.
    [125]Behzadi A, Issa R I, Rusche H. Modelling of dispersed bubble and droplet flow at high fractions [J]. Chem. Eng. Sci.,2004,59(4):759-770.
    [126]Kulkarni A A. Lift force on bubbles in a bubble column reactor: experimental analysis[J]. Chem. Eng. Sci..2008,63:1710-1723.
    [127]Lopez de Bertodano M. Turbulent bubbly two-phase flow in a triangular duct[D]. New York: Rensselaer Rolytechnic Institute,1992.
    [128]Lahey Jr R T, Drew D A. An analysis of two-phase flow and heat transfer using a multidimensional, multi-field, two-fluid computational fluid dynamics (CFD) model[A]. Japan/US Seminar on Two-Phase Flow Dynamics[C]. Santa Barbara, CA.2000.
    [129]Sokolichin A, Eigenberger G, Gas-liquid flow in bubble columns and loop reactors. Part-I. Detailed modelling and numerical simulation[J]. Chem. Eng. Sci.,1994,49:5735-5746.
    [130]Ekambara K, Dhotre M T. CFD simulation of bubble column[J]. Nuclear Engineering and Design, 2010,240:963-969.
    [131]Tabib MV, Roy SA, Joshi J B. CFD simulation of bubble column-An analysis of interphase forces and turbulence model[J]. Chemical Engineering Journal,2008,139:589-614.
    [132]Milne-Thomson LM. Theoretical hydrodynamics[M].5th ed. New York:Macmillan press,1968.
    [133]Cook T L, Harlow F H. Vortices in bubbly two-phase flow[J]. International Journal of Multiphase Flow,1986,12(1):35-61.
    [134]Homsy G M. El-Kaissy M M. Didwania A K. Instability waves and the origin of bubbles in fluidized beds-Ⅱ Comparison of theory with experiment[J]. International Journal of Multiphase Flow,1980, 6(4):305-318.
    [135]Khopkar A R, Rammohan A R, Ranade V V, Dudukovic M P. Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations[J]. Chem. Eng. Sci.,2005,60:2215-2229.
    [136]Joshi J B, Ranade V V, Gharat S D, Lele S S. Sparged loop reactors[J]. Canadian Journal of Chemical Engineering,1990,68:705-741.
    [137]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [138]Ekambara K, Dhotre M T, Joshi J B. CFD simulations of bubble column reactors:1D,2D and 3D approach[J]. Chem. Eng. Sci.,2005,60:6733-6746.
    [139]Sokolichin A, Eigenberger G. Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns. Part Ⅰ. Detailed numerical simulations[J]. Chem. Eng. Sci.,1999,54: 2273-2284.
    [140]van Baten J M, Krishna R. Eulerian simulations for determination of the axial dispersion of liquid and gas phases in bubble columns operating in the churn-turbulent regime[J]. Chem. Eng. Sci.,2001, 56:503-512.
    [141]Vitankar V S, Dhotre M T, Joshi J B. A low Reynolds number k-ε model for the prediction of flow pattern and pressure drop in bubble column reactors[J]. Chem. Eng. Sci.,2002.57:3235-3250.
    [142]Laborde-Boutet C, Larachi F, Dromard N, Delsart O. CFD simulations of hydrodynamics/thermal coupling phenomena in a bubble column with internals[J]. AlChE J.,2010.56:2397-2411.
    [143]Glover Cartland G M, Generalis S C. The modeling of buoyancy driven flow in bubble columns[J]. Chem. Eng. Process.,2004,43:101-115.
    [144]Bove S, Solberg T, Hjertager B H. Numerical aspects of bubble column simulations[J]. Int. J. Chem. Reactor Eng.,2004,2 A1:1-22.
    [145]Zhang D, Deen N G, Kuipers J A M. Numerical simulation of dynamic flow behavior in a bubble column:a study of closures for turbulence and interface forces[J]. Chem. Eng. Sci.,2006,61: 7593-7608.
    [146]Dhotre M T, Niceno B, Smith B L. Large eddy simulation of a bubble column using dynamic sub-grid scale model [J], Chem. Eng. J.,2008,136:337-348.
    [147]Yakhot V, Orzag S A. Renormalization group analysis of turbulence:basic theory[J].1986, J Scient Comput,1:3-11.
    [148]Laborde-Boutet C, Larachi F, Dromard N, Delsart O, Schweich D. CFD simulation of bubble column flows:Investigations on turbulence models in RANS approach[J]. Chem. Eng. Sci.,2009,64: 4399-4413.
    [149]Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubbly flow[J]. International Journal of Multiphase Flow,1975,2:79-95.
    [150]Pfleger D, Becker S. Modeling and simulation of the dynamic flow behavior in a bubble column[J]. Chem. Eng. Sci.,2001,56(4):1737-1747.
    [151]Troshko A A, Hassan Y A. A two-equation turbulence model of turbulent bubbly flows[J]. International Journal of Multiphase Flow,2001,27:1965-2000.
    [152]Zhang D, Deen N G, Kuipers J A M. Numerical simulation of the dynamic flow behavior in a bubble column:A study of closures for turbulence and interface forces[J]. Chem. Eng. Sci.,2006,61: 7593-7608.
    [153]Chen R C, Reese J, Fan L S. Flow structure in a three-dimensional bubble column and three-phase fluidizedbed[J]. AlChE J.,1994,40:1093-1104.
    [154]Olmos E, Gentric C, Vial C, Wild G, Midoux N. Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and breakup[J]. Chem. Eng. Sci.,2001,56(21-22): 6359-6365.
    [155]Olmos E, Gentric C, Midoux N. Numerical description of flow regime transitions in bubble column reactors by multiple gas phase model [J]. Chem. Eng. Sci..2003,58(10):2113-2121.
    [156]Krishna R, Urseanu M I, van Baten J M, Ellenberger J. Liquid phase dispersion in bubble columns operating in the churn-turbulent flow regime[J]. Chemical Engineering Journal,2000.78:43-51.
    [157]Lo S. Application of MUSIG model to bubbly flows. AEAT-1096, AEA Technology,1996.
    [158]Prince M J, Blanch H W. Bubble coalescence and break-up in air sparged bubble columns[J]. AlChE J.,1990,36:1485-1499.
    [159]Luo H, Svendsen H. Theoretical model for drop and bubble break-up in turbulent dispersions[J]. AlChE J.,1996,42:1225-1233.
    [160]Frank T, Zwart P J, Shi J, Krepper E, Lucas D, Rohde U. Inhomogeneous MUSIG model—a population balance approach for polydispersed bubbly flow[A]. In: Proceedings of International Conference on Nuclear Energy for New Europe[C], Bled, Slovenia,2005.
    [161]Wang TF, Wang JF, Jin Y. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE J.,2005, 52(1):125-140.
    [162]陈斌,王丽雅,李希.带阻尼内构件鼓泡塔的研究(Ⅰ)—内构件对流速分布的影响[J].化学反应工程与工艺,2006,22(4):317-323.
    [163]Youssef A A. Fluid dynamics and scale-up of bubble columns with internals[D]. St. Louis: Washington University,2010.
    [164]Hawthorne W H, Ibsen M D, Pedersen P S, Bohn M S. Fischer-tropsch slurry reactor cooling tube arrangement[P]. US7108835,2005.
    [165]Fox J M, Degen B D, Cady G, Deslate F D, Summers R L, Akgerman A, Smith J M. Slurry reactor design Studies. Slurry vs. fixed bed reactors for Fischer-Tropsch and methanol:Final Report, DE91005752,1990.
    [166]Jiang Y, Zhang JP, Espinoza R L, Wright H A. Gas agitated multiphase catalytic reactor with reduced backmixingfP]. US7022741,2006.
    [167]Soraker P, Lian P. Vankan S. Slurry bubble column reactor, heat exchange system[P]. GB2409825, 2005.
    [168]O'Dowd W, Smith D N. Ruether J A, Saxena S C. Gas and solids behavior in a baffled and unbaffled slurry bubble column[J]. AIChE J.,1987.33(12),1959-1970.
    [169]Yamashita F. Effects of vertical pipe and rod internals on gas holdup in bubble columns[J]. Journal of Chemical Engineering of Japan,1987,20(2),204-206.
    [170]Chang M, Bauman R F. Increased heat exchange in two or three phase slurry[P]. US7096931,2006.
    [171]Steynberg A P. Production of liquid and, optionally, gaseous products from gaseous reactants[P]. US6864293,2003.
    [172]Fair J R, Lambright A J, and Anderson J W. Heat transfer and gas holdup in a sparged contactor[J]. I & EC Process Design and Development,1962,1:33-36.
    [173]Sekizawa T, Kubota H. Liquid mixing in multistage bubble columns[J]. Journal of Chemical Engineering of Japan,1974,7(6):441-446.
    [174]Pandit, A. B. and Doshi, Y. K.,2005. Mixing time studies in bubble column reactor with and without internals[J]. International Journal of Chemical Reactor Engineering,3:A22.
    [175]Doshi Y K, Pandit A B. Effect of internals and sparger design on mixing behavior in sectionalized bubble column[J]. Chemical Engineering Journal,2005,112(1-3):117-129.
    [176]Alvare J, Al-Dahhan M H. Gas holdup in trayed bubble column reactors[J]. Industrial & Engineering Chemistry Research,2006.45(9):3320-3326.
    [177]Alvare J, Al-Dahhan M H. Liquid phase mixing in trayed bubble column reactors[J]. Chemical Engineering Science,2006,61 (6):1819-1835.
    [178]Maretto C, Krishna R. Design and optimization of a multi-stage bubble column slurry reactor for Fischer-Tropsch synthesisfJ], Catalysis Today,2001,66:241-248.
    [179]Lorentzen G B, Wesrvik A, Myrstad T. Solid/liquid slurry treatment apparatus and catalytic multi-phase reactor[P]. US5520890,1996.
    [180]Maheshwari A, Thomas S. Backside encapsulation of tape automated bonding device[P]. US5834336,1998.
    [181]Kolbel H, Ralek M. The Fischer-Tropsch synthesis in the liquid phase[J]. Catalysis reviews, science and engineering,1980,21(2),225-274.
    [182]KQlbel H, Ackermann P. Apparatus for carrying out gaseous catalytic reactions in liquid medium[P]. US2853369,1958.
    [183]Steynberg A P, Breman B B, Brilman F W D. Method of operating a three-phase slurry reactor[P]. UK:GB2458584A,2009.
    [184]McEwan M W, Teekens M B. Gas liquid separator[P]. US4139352,1979.
    [185]Leviness S C, Mart C J. Slurry hydrocarbon synthesis with downcomer fed product filtration[P]. US5811469.1998.
    [186]Espinoza R L, Zhang JP, Mohedas S R, Ortega J D. Conjoined reactor system[P]. US7135152,2006.
    [187]Khoze A N, Burdukov A P. Nakoryakov V E, Pokusaev B G, Kuzmin V A. Convective heat transfer in a dynamic two-phase bedf[J]. Journal of Engineering Physics,1971.20(6):759-776.
    [188]Chen B H, Yang N S. Characteristics of a cocurrent multistage bubble column[J]. Industrial & Engineering Chemistry Research,1989,28(9):1405-1410.
    [189]Reimann J, Kusterer H, Jhon H. Two-phase mass flow rate measurements with Pitot tube and density measurements[A]. Symp. Measuring Techniques in Gas-Liquid Two-Phase Flows[C], Nancy, France. 1983.
    [190]Lee T H, Park G C, Lee D J. Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus[J]. International Journal of Multiphase Flow,2002,28:1351-1368.
    [191]Reimann J, Kusterer H, Jhon H. Two-phase mass flow rate measurements with Pitot tube and density measurements [A]. Symp. Measuring Techniques in Gas-Liquid Two-Phase Flows[C], Nancy, France, 1983.
    [192]Forret A, Schweitzer J M, Gauthier T, Krishna R, Schweich D. Scale up of slurry bubble reactors. Oil & Gas Science and Technology,2006,61:443-458.
    [193]王丽军.PX氧化模型优化控制研究.杭州:浙江大学,2005.
    [194]Bharat L. Liquid phase Fischer-Tropsch(IV) synthesis in Laborte AFDU, RUN NO:AF-R16.1~ AF-R16.5. [1998-07-04] http:www.fischer-tropsch.org.
    [195]Hikita H, Asai S, Tanigawa K, Segawa K, Kitao M. Gas holdup in bubble columns. Chem Eng J., 1978,7:270-275.
    [196]Behkish A, Lemoine R, Oukaci R, Morsi B I. Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chem Eng J.,2006, 115:157-171.
    [197]Hibiki T, Ishii M. Lift force in bubbly flow system[J]. Chem. Eng. Sci.,2007,62:6457-6474.
    [198]Tomiyama A, Tamai H, Zun I, Hosokawa S. Transverse migration of single bubble in simple shear flows[J]. Chem. Eng. Sci.,2002,57:1849-1858.
    [199]张煜,王丽军,李希.湍动浆态床流体力学研究(Ⅱ)—轴向浆料速度的径向分布.化工学报,2008,59(12):3003-3009.
    [200]Chen P, Sanyal J, Dudukovic M P. Numerical simulation of bubble columns flows:effect of different breakup and coalescence closures[J]. Chem. Eng. Sci.,2005,60:1085-1101.
    [201]Wang Tiefeng, Wang Jinfu. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model [J]. Chem. Eng. Sci.,2007,62:7107-7118.
    [202]Amano R S. Development of a turbulence near-wall model and its application to separated and reattached flows[J]. Numer Heat Transfer,1984,7:59-75.
    [203]国内首台套国产化百万吨级PTA氧化反应器顺利出厂[0L].南京宝色股份有限公司,2009.2:http://www.baose.com/show_news.aspx?NewsId=70.
    [204]Reichardt H. Vollstandige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Rohren, Z Angew Math Mech,1951,31:208.
    [205]Burns B F, Rice R G. Circulation in bubble columns, AlChE J..1997,43:1390-1402.
    [206]Bhatt B L. Liquid phase Fischer-Tropsch (Ⅱ) demonstration in the LaPorte alternative fuels development unit. DE-AC22-91PC90018.1995.
    [207]Pedro Carajilescov. Experimental and analytical study of axial turbulent flows in an interior subchannel of bare rod bundle [D]. Massachusetts Institute of Technology,1975.
    [208]Robert H. Perry, Don W. Green. Perry's Chemical Engineer's Handbook[M]. Seventh Edition, Beijing:Science Press,2001.
    [209]Maretto C, Krishna R. Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis[J]. Catalysis Today,1999,52:279-289.
    [210]Miguel A F, van de Braak N J, Bot G P A. Analysis of the airflow characteristics of greenhouse screening materials[J], Journal of Agricultural Engineering Research,1997.67:105-112.
    [211]Brundrett E. Prediction of pressure drop for incompressible flow through screens[J]. Journal of Fluids Engineering,1993,115:239-242.
    [212]Teitel M. The effect of screened openings on greenhouse microclimate[J]. Agricultural and Forest Meteorology,2007,143:159-175.
    [213]Romero-Gomez P, Lopez-Cruz 1 L, Choi C Y. Analysis of greenhouse natural ventilation under the environmental conditions of central Mexico[A]. Transactions of the ASABE[C],2008,51(5): 1753-1761.
    [214]Bailey B J, Montero J I, Perez Parra J, Robertson A P, Baeza E, Kamaruddin R. Airflow resistance of greenhouse ventilators with and without insect screens[J]. Biosystems Engineering,2003,86(2): 217-229.
    [215]钱颂文,岑汉钊,江楠,马小明,方江敏.换热器管束流体力学与传热[M].北京:中国石化出版社,2002.
    [216]王丽军,张煜,李希.一种带针型翅片列管束的浆态鼓泡塔反应器[P].CN200910095288.4,2011.
    [217]Verma A K. Heat transfer mechanism in bubble columns. The Chemical Engineering Journal,1989, 42:205-208.
    [218]Saxena S C, Patel B B. Heat transfer and hydrodynamic investigations in a baffled bubble column: air-water-glass bead system. Chemical Engineering Communications,1990,98:65-88.
    [219]Deckwer W D. On the mechanism of heat transfer in bubble column reactors. Chem. Eng. Sci.,1980, 35:1341-1346.
    [220]Zehner P. Momentum, mass and heat transfer in bubble columns. Part 2. Axial blending and heat transfer. International Chemical Engineering,1986,26:29-35.
    [221]Hikita H, Asai S, Kikukawa H, Zaike T, and Ohue M. Heat transfer coefficient in bubble columns. Industrial & Engineering Chemistry Process Design and Development.1981,20:540-545.
    [222]Baker C G J, Armstrong E R, Bergougnou M A. Heat transfer in three phase fluidized beds. Powder Technology.1978,21:195-204.
    [223]Kurpiers P, Steiff A, Weinspach P M. Heat transfer in stirred multiphase reactors. German Chemical Engineering.1985,8(1):48-57.
    [224]Tarat E Y. Khoze A, Sharov Y I. Heat transfer from single surfaces in a foam layer. International Chemical Engineering.1970,10(2):237-240.