容性耦合硅烷放电中纳米尺度尘埃颗粒生长机制及输运过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尘埃等离子体是由电子、离子、中性粒子以及尘埃微粒组成的复杂等离子体,它广泛存在于空间等离子体中。最近的研究表明:在用于材料表面处理的等离子体工艺中,尘埃颗粒的产生对等离子体性质及材料表面性质有着重要的影响。特别是对于等离子体沉积多晶硅薄膜工艺,沉积到表面上的纳米颗粒可以增加薄膜中的太阳光光程,保证充分的光吸收,从而能够提高薄膜太阳能电池的光电转化效率。因此,非常有必要对气体放电过程中尘埃颗粒的产生和输运机理以及它对等离子体特性的影响进行深入细致的理论研究和计算机模拟。
     本文利用流体力学模型,对双频及甚高频容性耦合硅烷等离子体中尘埃颗粒形成机理进行分析,模拟了尘埃颗粒的充电和输运过程,并对薄膜沉积工艺中的硅烷放电过程展开研究。
     第一章简述了实验室尘埃等离子体中发生的重要物理现象以及尘埃颗粒的形成及生长在薄膜太阳能电池工艺中的应用,并着重介绍了目前对硅烷放电中纳米颗粒的形成及生长过程的理论和实验研究进展,指出了硅烷放电中尚未解决的问题,最后给出本文的内容安排。
     第二章介绍了尘埃等离子体的相关基本理论。主要包括如下三个方面:尘埃颗粒的形成和生长、尘埃颗粒的充电过程以及尘埃颗粒在等离子体中的受力情况。
     在第三章中,采用硅烷气体放电—维流体力学模型,详细地研究了双频容性耦合等离子体(Capacitively coupled plasma,即CCP)中尘埃颗粒形成的第一阶段,即通过负离子生长起来的成核阶段。文中主要讨论了双频电源参数对等离子体及尘埃颗粒的影响。结果表明:尘埃颗粒密度及电荷分布主要受高频电源参数的影响,增加高频电源的频率及电压可以有效地提高尘埃颗粒的密度及带电荷数,低频电源参数的影响较小。同时,本章还讨论了尘埃颗粒的形成对等离子体特性的影响。
     在第四章中,利用一维流体力学模型及气态动力学模型相结合的方法,进一步研究了纳米颗粒形成的第二阶段,即通过团簇凝结的快速生长阶段。给出了直径为1nm到50nm的尘埃颗粒密度及电荷分布情况,分析了尘埃粒子受力对其密度分布的影响,讨论了双频源电压对凝聚过程中尘埃颗粒密度及电荷分布的影响。结果表明:增加高频源电压可以有效地提高整个凝聚阶段尘埃粒子的密度,进而提高硅薄膜的沉积速率。
     在第五章中,利用二维流体力学模型研究了甚高频容性耦合硅烷放电特性,重点讨论了两个甚高频电源相位差对尘埃颗粒密度及沉积速率均匀性的影响。结果表明:通过调节相位差可以有效改善电子密度、电子温度及尘埃颗粒密度的空间均匀性,进而提高了薄膜沉积速率的均匀性。
     在第六章,针对等离子体沉积氮化硅薄膜工艺,首先采用一维流体力学模型研究了氮气(N2)、硅烷(SiH4)和氨气(NH3)混合气体低频脉冲放电的物理特性,着重讨论了占空比对等离子体密度及离子轰击能量的影响。研究发现在一定的脉冲放电占空比下,可以获得较高的等离子体密度,而此时离子的轰击极板能量大幅度降低。在此基础上,利用二维流体力学模型研究了SiH4/NH3/N2混合气体在双频CCP中特性。深入分析了高、低频电压以及混合气体组分比对等离子体密度空间分布、离子的轰击极板能量及离子通量径向分布的影响。
Dusty plasmas, defined as complex plasmas which contain electrons, ions, neutral particles and dust particles, are ubiquitous in space plasmas. In recent years, formation of dust particles has been found to be important to the plasma and material surface properties in material processing discharges. Especially, for the polysilicon thin film techniques, it seems that the creation of nanoparticles on the thin films can result in the increasing duration time of light in the film, improving the photoelectric conversion efficiencies. Therefore, meticulous investigation of the formation and transport of dust particles and their effects on the plasma properties is very necessary.
     In this work, the well-known fluid model is used to study the formation, charging and transport of nanoparticles in dual-frequency (DF) and very-high-frequency (VHF) capacitively coupled silane discharges, as well as the silane discharge processes in the thin film deposition techniques.
     In Chapter 1, the corresponding physics theory of the laboratory dusty plasma and applications of nanoparticles in the thin film solar cell technology are briefly introduced. We mainly concern on the recent progresses in the theoretical and experimental studies of the formation and growth of dust particles in the silane discharges, and put forward some problems unsolved in this research area. Finally, the outline of this thesis is present.
     In Chapter 2, the basic principles of the dust plasma are presented. Major aspects including the formation, growth, and charging mechanisms, as well as the forces acting on the dust particles are discussed in detail.
     In Chapter 3, the first stage of particle formation, which is the gas phase nucleation by growth of negative ion or neutral clusters, is carefully studied by using a self-consistent one-dimensional (ID) fluid model in DF capacitively coupled silane discharges. The effects of dual-frequency sources on the behavior of dust particles are carefully discussed. It is found that the nanoparticle density and charge are mainly influenced by the voltage and frequency of the high-frequency source, while the voltage of the low-frequency source may exert a limited effect on the nanoparticle formation. Furthermore, the influence of the formation of dust particles on the plasma properties is also discussed.
     In Chapter 4, the second stage of particle formation, a more rapid growth process by coagulation of clusters, is systematically studied, by using the self-consistent ID fluid model coupled with an aerosol dynamics model. The density and charge distribution profiles are presented for particles ranging in size between 1 and 50 nm. The effect of forces on the location of nanoparticle growth is studied. Moreover, the effect of the high-and low-frequency electric sources on the particle density and charge distribution is also discussed. The results show that the high frequency voltage has evident effect on the nanoparticle density in the coagulation phase, which will greatly improved the deposition rate of silicon.
     In Chapter 5, a two-dimensional (2D) fluid model extended from the above 1D fluid model is used to study the VHF capacitively coupled silane discharges, with the special concern on the influence of controlled phase shift between two VHF (50 MHz) voltages applied to the powered electrodes on the uniformity of the silane discharge. The results show that, by controlling the phase-shift, not only the uniformity of the electron and dust particle densities, but also that of the deposition rate can be improved considerably.
     In Chapter 6, a 1D fluid model is developed to investigate the behavior of plasma in the low-frequency pulsed voltage modulated SiH4/NH3/N2 discharges. We mainly focus on the effect of the duty cycle on the plasma density and ion energy that bombardment to the substrate. It is found that, a rapic decrease of the ion energy and relatively slow decrease of ion density can be observed as the duty ratio decreases, implying that proper decrease of the duty ratio can be good to the film properties. Futhermore, the behavior of plasma in DF capacitively coupled SiH4/NH3/N2 discharges is investigated based on a self-consistent 2D fluid model. The effect of high- and low-frequency voltages, and mixed-gas component on the plasma density and ion energy on the substrate are carefully discussed.
引文
[1]Merlino R L, and Goree J A. Dusty Plasmas in the Labortory, Industry, and Space. Phys. Today 2004, 57(7):32-38.
    [2]侯路景.射频鞘层中尘埃粒子的运动过程及尘埃晶格形成机理的研究[D].大连:大连理工大学物理与光电工程学院,2005.
    [3]顾琅.等离子体加工过程中尘埃微粒行为的研究[D].北京:中国科学院力学研究所,1997.
    [4]Roth R M, Spears K G, and et al. Spatial dependence of particle light Scattering in an rf silane discharge. Appl Phys. Lett.,1985 46(2):253-255.
    [5]刘瑞闲.尘埃的充电和生长过程对等离子体参数的影响[D].大连:大连理工大学物理与光电工程学院,2009.
    [6]刘禹.尘埃粒子在双频CCP鞘层中的特性研究[D].大连:大连理工大学物理与光电工程学院,2009.
    [7]Langmuir I, Found C G, and Dittmer A F. A new type of electric discharge:the streamer discharge. Science,1924,60:392-394.
    [8]Spitzer L Jr. Physical Processes in the Interstellar Medium. Wiley, New York,1978,333.
    [9]Smith B A, et al. A new look at the Saturn system:the Voyager 2 images. Science,1982,215(4532): 504-537(1982).
    [10]Goertz C K. Dusty plasmas in the solar system. Rev. Geophys.,1989 27(2):271-292.
    [11]Hill C J, and Mendis A. Charged dust in the outer planetary magnetospheres,Ⅱ. Trajectories and spatial distribution. Moon and Planets.,1980,23(1):53-71.
    [12]Goertz C K, and Morfill G. A model for the formation of spokes in Saturn's ring. Icarus,1983,53(2): 219-229.
    [13]Selwyn G S, Singh J, and Bennett R S. In situ laser diagnostic studies of Plasma-generated Particulate contamination. J. Vac. Sci. Technol.,1989 7(A):2758-2765.
    [14]Bouchoule A, Plain A, Boufendi L, Blondeau J P, and Laure C. Particle generation and behavior in a silane-argon low-pressure discharge under continuous or pulsed radio-frequency excitation. J. Appl. Phys.1991,70:1991-2000.
    [15]Stoffels E, Stoffels W W, Vender D, Kroesen G M W, and de Hoog F J. Laser-particulate interactions in a dusty RF plasma. IEEE Trans. Plasma Sci.1994,22:116-121.
    [16]Annaratone B M. J. Phys. IV France.1997,7:C4-155.
    [17]Rocai Cabarrocas P, Fontcuberta A, and Poissant Y. Growth and optoelectronic properties of polymorphous silicon thin films. Thin Solid Films.2002,39:403-404.
    [18]Mangolini L, Thimsen E, and Kortshagen. High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Letters.2005,5:655.
    [19]杨德仁.太阳电池材料.化学[M].北京:化学工业出版社,2006.
    [20]Chittick R C, Alexander J H, Sterling H F. The preparation and properties of amorphous silicon. J Electrochem Soc.1969,116:77.
    [21]Koshiishi A, Araki Y, Himori S and Iijima T. Investigation of Etch Rate Uniformity of 60MHz Plasma Etching Equipment. Jpn. J. Appl. Phys.2001,40:6613-6618.
    [22]Koshiishi A, Himori S and Iijima T. Improvement in Etch Rate Uniformity Using Resistive Electrodes with Multistep Cavity. Jpn. J. Appl. Phys.2007,46:4289-4295.
    [23]Schmidt H, Sansonnens L, Howling A A, and Hollenstein Ch. Improving plasma uniformity using lens-shaped electrodes in a large area very high frequency reactor. J. Appl. Phys.2004,95: 4559-4564.
    [24]Sung D, Woo J, Lim K, Kim K, Volynets V, and Kim G. Plasma uniformity and phase-controlled etching in a very high frequency capacitive discharge. J. Appl. Phys.2009,106:033301 (1-7).
    [25]Birdsall C K, and Langdon A B, Plasma Physics via Computer Simulation (Hilger, New York,1991).
    [26]Gogolides E, Sawin H H. Continuum modeling of radio-frequency glow discharges. I. Theory and results for electropositive and electronegative gases, J. Appl. Phys.1992,72:3971-3987.
    [27]Passchier J D P and Goedheer W J. A two-dimensional fluid model for an argon rf discharge. J. Appl. Phys.1993,74:3744-3751.
    [28]吴静射频SiH4/C2H4/Ar放咆产生尘埃等离子体次共诊断研究[D].大连:大连理工大学物理与光电工程学院,2009.
    [29]Chen F F. Plasma Diagnostie Teehniques. New York:Aeademic Press,1965:113-115.
    [30]Cherrington B M, The use of electrostatic probes for plasma diagnostics are view. Plasma Chemistry and Plasma Processing.1982,2(2):113-116.
    [31]Smith H M M and Langmuir I. The theory of collectors in gasrous discharges. Physical Preview. 1926,28(4):727-763.
    [32]Johnson E 0, and Malter L.A floating double probe method for measurements in Gas Discharge. Phys.Rev.Lett.1950,80(1):58-68.
    [33]Langmuir I. The interaetion of eleetron and positive ion space charges in cathode Sheaths. Physical Review.1929,33(6):954-989.
    [34]辛仁轩.等离子体发射光谱分析.北京:化学工业出版社2005:325-327.
    [35]Hwang H H, and Kushner M J. Regimes of particle trapping in inductively coupled plasma processing reactors. Appl. Phys. Letters.1996,68:3716-3718.
    [36]Nienhuis G J, and Goedheer W J, Hamers E A G, van Sark W G J H M and Bezemer J., A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments. J. Appl. Phys.1997,82:2060-2071.
    [37]Gallagher A, Model of particle growth in silane discharges. Phys. Rev. E.2000,62:2690-2706.
    [38]Bhandarkar U V, Swihart M T, Girshick S L, and Kortshagen U R. Modelling of silicon hydride clustering in a low-pressure silane plasma, J. Phys. D.2000,33:2731-2746.
    [39]De Bleecker K, Bogaerts A, Gijbels R, and Goedheer W. Numerical investigation of particle formation mechanisms in silane discharges. Phys. Rev. E.,2004,69,056409 (1-16).
    [40]Kim K-S and Ikewaga M. Particle growth and transport in silane plasma chemical vapour deposition. Plasma Sources Sci. Technol.1996,5:311-322.
    [41]Lee K and Matsoukas T. Can charge fluctuations explain particle growth in low-pressure plasmas?. J. Appl. Phys.1999,85:2085 (1-8).
    [42]De Bleecker K, Bogaerts A, Gijbels R, and Goedheer W. Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges. J. New. Phys.2006,8,178 (1-22).
    [43]Watanabe Y. Formation and behaviour of nano/micro-particles in low pressure plasmas. J. Phys. D: Appl. Phys.2006,39:R329-R361.
    [44]Stoffels E, and Stoffels W W. Physics and application of dusty low pressure plasmas. Trends Vac. Sci. Technol.2001,4,1-35.
    [45]Hollenstein Ch, Dorier J-L, Dutta J, Sansonnens L, and Howling A A. Diagnostics of particle genesis and growth in RF silane plasmas by ion mass spectrometry and light scattering. Plasma Sources Sci. Technol.1994,3:278.
    [46]Boufendi L, Gaudin J, Huet S, Viera G and Dudemaine M. Detection of particles of less than 5 nm in diameter formed in an argon-silane capacitively coupled radio-frequency discharge. Appl. Phys. Lett. 2001,79:4301-4303.
    [47]Lieberman M A, and Lichtenberg A J. Principles of Plasma Discharges and Materials Processing, Processing,2nd ed. (Wiley-Interscience, New York,2005).
    [48]Watanabe Y., Dust phenomena in processing plasmas. Plasma Phys. Control. Fusion.,1997,39, A59-A72.
    [49]Boufendi L, and Bouchoule A. Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci. Technol.,1994,3,262-267.
    [50]Perrin J, and Hollenstein Ch, "Sources and Growth of Particles", in Dusty Plasmas:Physics, Chemistry and Technological Impact in Plasma Processing, edited by A. Bouchoule (Wiley, Chichester, UK,1999).
    [51]Rocai P, Cabarrocas N, Chaabane A, Kharchenko V, and Tchakarov S. Polymorphous silicon thin films produced in dusty plasmas:application to solar cells. Plasma Phys. Control. Fusion.,2004,46, B235-B243.
    [52]Courteille C, Dorier J-L, Hollenstein Ch, Sansonnens L, and Howling A A. Partial-depth modulation study of anions and neutrals in low-pressure silane plasmas. Plasma Sources Sci. Technol.,1996,5, 210-215.
    [53]Hollenstein Ch, Schwarzenbach W, Howling A A, Courteille C, Dorier J.-L, and Sansonnens L. Anionic clusters in dusty hydrocarbon and silane plasmas. J. Vac. Sci. Technol. A.,1996,14,535-539.
    [54]Choi S J, and Kushner M J. The role of negative ions in the formation of particles in low pressure plasmas. J. Appl. Phys.,1993,74,853-861.
    [55]Fridman A A, Boufendi L, Hbid T, Potapkin B V, and Bouchoule A. Dusty plasma formation: Physics and critical phenomena. Theoretical approach. J. Appl. Phys.1996,79,1303-1314.
    [56]Allen J E. Probe theory - the orbital motion approach. Phys. Scripta.,1992,45,497-503.
    [57]Havnes O, Morfill G E, and Goertz C K. Plasma Potential and Grain Charges in a Dust Cloud Embedded in a Plasma. J. Geophys. Res.,1984,89,10999 (1-11).
    [58]Shukla P K, and Mamum A A, Introduction to Dusty Plasma Physics, IOP Series of Plasma Physics (2002).
    [59]Whipple E C, Northrop T G, and Mendis D A. The Electrostatics of a Dusty Plasma. J. Geophys. Rev.,1985,90,7405-7413.
    [60]Nairn C M C, Annaratore B M, and Allen J E. On the theory of spherical probes and dust grains. Plasma Sources Sci. Technol.,1998,7,478-490.
    [61]Perrin J, Molinas-Mata P, and Belenguer Ph. Ion drag and plasma-induced thermophoresis on particles in radiofrequency glow discharges. J. Phys. D:Appl. Phys.1994,27,2499-2507.
    [62]Barnes M S, Keller J H, Forster J C, O'Neill J A, and Coultas D K. Transport of Dust Particles in Glow-Discharge Plasma. Phys. Rev. Lett.1992,68,313-316.
    [63]Graves D B, Daugherty J E, Kilgore M D, and Porteous R K. Charging, transport and heating of particles in radiofrequency and electron cyclotron resonance plasmas Plasma Sources Sci. Technol., 1994,3,433-441.
    [64]Talbot L, Cheng R K, Schefer R W, and Willis D R. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech.,1980,101,737-758.
    [65]Hwang H H, and Kushner M J. Regimes of particle trapping in inductively coupled plasma processing reactors. Appl. Phys. Letters.1996,68:3716-3718.
    [66]De Bleecker K, Bogaerts A, Gijbels R, and Goedheer W. Modeling of the formation and transport of nanoparticles in silane plasmas. Phys. Rev. E.2004,70:056407 (1-16).
    [67]Lee J K, Babaeva N Y, Kim H C, Manuilenko O V, and Shon J W. Simulation of Capacitively Coupled Single-and Dual-Frequency RF Discharges. IEEE Trans. Plasma Sci.2004,32:47-53.
    [68]Kim D H, and et al. Effect of high-frequency variation on the etch characteristics of ArF photoresist and silicon nitride layers in dual frequency superimposed capacitively coupled plasma. J. Vac. Sci. Technol. B.2005,23:2203-2211.
    [69]Cianci E, Schina A, Minotti A, Quaresima S, and Foglietti V. Dual frequency PECVD silicon nitride for fabrication of CMUTs'membranes. Sens. Actuators, A.2006,127:80-87.
    [70]Weise M T, Selbrede S C, Arias L J, and Carl D. Characterization of fluorinated tetra ethyl ortho silicate oxide films deposited in a low pressure plasma enhanced chemical vapor deposition reactor. J. Vac. Sci. Technol. A 1997,15:1399-1402.
    [71]Boeuf J P, Pitchford L C. Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor. Phys. Rev. E, 1995,51:1376-1390.
    [72]Gorbachev Yu E, Zatevakhin M A, and Kaganovich I D. Simulation of the growth of hydrogenated amorphous silicon films from an rf discharge plasma. Zh. Tekh. Fiz.1996,66:89-110.
    [73]Perrin J, Leroy O, and Bordage M C. Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry. Contrib. Plasma Phys.1996,36:3-49.
    [74]McDaniel E W, and Mason E A., The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973).
    [75]Boris J P, Book D L, Flux-corrected transport. Ⅰ. SHASTA, a fluid transport algorithm that works, J. Comput. Phys.,1973,11(1):38-69.
    [76]Book D L, Boris J P, Hain K, Flux-corrected transport. Ⅱ:Generalizations of the method. J. Comput. Phys.,1975,18(3):248-283.
    [77]Howling A A, Sansonnens L, Dorrier J.-L, and Hollenstein Ch, Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments. J. Phys. D.2006,26: 1003-1006.
    [78]Bouchoule A, and Boufendi L, Plasma Sources Sci. Technol.2,204 (1993).
    [79]Perrin J, Bohm C, Etemadi R, and Lloret A. Possible routes for cluster growth and particle formation in RF silane discharges., Plasma SourcesSci. Technol.1994,3,253-261.
    [80]Courteille C, Hollenstein C, Dorier J.-L, Gay P, Schwarzenbach W, Howling A A, Bertran E, Viera G, Martins R, and Mararico A. Particle agglomeration study in rf silane plasmas:In situ study by polarization-sensitive laser light scattering. J. Appl. Phys,1996,80,2069-2078.
    [81]Goree J. Charging of particles in a plasma. Plasma Sources Sci. Technol.1994,3,400-406.
    [82]Matsoukas T, Russel M, and Smith M. Stochastic charge fluctuations in dusty plasmas. J. Vac. Sci. Technol.A.,1996,14,624-630.
    [83]Schweigert V A, and Schweigert I V. Coagulation in a low-temperature plasma. J. Phys. D,1996,29, 655.
    [84]Kortshagen U, and Bhandarkar U. Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E,1999,60,887-898.
    [85]Krzhizhanovskaya V V. A Virtual Reactor for Simulation of Plasma Enhanced Chemical Vapor Deposition [D]. Rusland. geboren te St. Petersburg,2008.
    [86]Lieberman M A, and Lichtenberg A J. Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, New York,2005), p.411.
    [87]Rauf S, and Kushner M J. Nonlinear Dynamics of Radio Frequency Plasma Processing Reactors Powered by Multifrequency Sources. IEEE Trans. Plasma Sci.,1999,27,1329-1338.
    [88]Sung D, Jeong S, Park Y, Volynets V N, and Ushakov A G. Effect on plasma and etch-rate uniformity of controlled phase shift between rf voltages applied to powered electrodes in a triode capacitively coupled plasma reactor. J. Vac. Sci. Technol. A.,2009,27,13-19.
    [89]Bera K, Rauf S, Ramaswamy K, and Collins K. Plasma uniformity and phase-controlled etching in a very high frequency capacitive discharge. J. Appl. Phys.2009,106,033301 (1-5).
    [90]杨景超,PECVD氮化硅薄膜内应力试验研究[M].合肥:中国科学技术大学出版社,2007.
    [91]Anderson H M., Jairath R, and Mock J L, Particulate generation in silane/ammonia rf discharge. J. Appl. Phys.1990,67(9):3999-4011.
    [92]Barbour J C, Stein H J, and Popov O A et al., Silocon nitride formation from a silane-nitrogen electron cyclotron resonance plasma. J. Vac. Sci. Technol. A,1991,9(3):480-484.
    [93]Thompson D A, Simmons J G, and Stevanovic D V etal., Growth and characterization of silicon nitride films produced by remote microwave plasma chemical vapor deposition. J. Vac. Sci. Technol. A,1991,9(5):480-484.
    [94]Sanchez P, Fernandez B, Menendez A, Pereiro R and Sanz-Medel A. Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells. J. Anal. At. Spectrom 2010,25:370-377.
    [95]Howling A A, Dorier J.-L, and Hollenstein C. Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments.Appl. Phys. Lett.1993,62:1341-1343.
    [96]Boswell R W, and Vender D. An experimental study of breakdown in a pulsed Helicon plasma. Plasma Sources Sci. Technol.1995,4:534-540.
    [97]Conti S, Porshnev P I, Fridman A, Kennedy L A, Grace J M, Sieber K D, Freeman D R, Robinson K S. Experimental and numerical investigation of a capacitively coupled low-radio frequency nitrogen plasma. Exp Thermal and Fluid Science.2001,24:79-91
    [98]Jafari R, Tatoulian M, Morscheidt W, Arefi-Khonsari F. Stable plasma polymerized acrylic acid coating deposited on polyethylene (PE) films in a low frequency discharge (70 kHz). Reactive & Functional Polymers.2006,66:1757-1765.
    [99]Budaguan B G, Sherchenkov A A, Gorbulina G L, Chernomordic V D. The development of a high-rate technology for wide-bandgap photosensitive a-SiC:H alloys. Journal of Alloys and Compounds.2001,327:146-150.
    [100]Budaguan B G, Sherchenkov A A, Gorbulina G L, Chernomordic V D. Characterization of high rate a-SiGe:H thin films fabricated by 55 kHz PECVD. Physica B.2003,325:394-400.
    [101]Timothy J. Sommerer and Mark J. Kushner. Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2,O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model. J. Appl. Phys.1992,71(4):1654-1673.
    [102]Hayashi M, Suarm Studies and Inelastic Electron-Molecule Collisions [M].New York:Springer, 1987.
    [103]Dollet A, Couderc J P and Despax B. Analysis and numerical modeling of silicon nitride deposition in a plasma-enhanced chemical vapor deposition reactor:I. Bidimensional modeling. Plasma Sources Sci. Technol.1995,4:94-106.
    [104]Fisher E R, Ho P, Breiland W G and Buss R J. Laser studies of the reactivity of imidogen NH[X(3) ∑-] with the surface of silicon nitride J. Phys. Chem.1992,96:9855-61
    [105]王帅.双频容性耦合等离子体物理特性的混合模拟[D].大连:大连理工大学物理与光电工程学院,2009.
    [106]Goto H H, Lowe H D, and Ohmi T. Dual excitation reactive ion etcher for low energy plasma processing. J. Vac. Sci. Technol. A.1992,10:3084-3054.
    [107]Kitajima T, Takeo Y, and Makable T. Two-dimensional CT images of two-frequency capacitively coupled plasma. J. Vac. Sci. Technol. A.1999,17:2510-2516.