脉冲消融毛细管放电等离子体的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲消融毛细管等离子体发生器产生的等离子体射流具有高密度和相对低
    温的特性,在电热发射和电热化学发射以及其他科学研究和工业应用领域都具
    有潜在的应用前景。本文提出一种新型的两间隙毛细管结构,解决了毛细管的
    重复放电问题。这种结构的毛细管本身具有电流开关的作用,因而不再需要大
    电流脉冲开关装置,简化了脉冲功率电源系统。
    文中通过两间隙毛细管在 1 千焦电能水平下的主间隙放电实验,仔细研究了
    消融控制电弧负载的稳定阻抗、峰值电流、电弧电压和放电功率等主要放电特
    征参量随毛细管几何尺寸、放电电容以及起始充电电压等放电参数的变化规律,
    考察了两间隙毛细管的使用寿命和在重复放电时的放电特性。利用主放电的数
    值模拟研究了各放电参数对两间隙毛细管的质量密度、压强、温度和速度等出
    口参数的影响,给出了生成的等离子体的各种基本性质。
    文中建立了一个两间隙毛细管的触发放电模型,模型考察了管壁消融对触发
    放电过程的影响,发现管壁消融能大幅度地减小触发时延。模型同时给出了计
    算触发时延的方法。
    文中提出了一种含耦合电感的双脉冲电源电路,并从理论和实验两方面验证
    了双脉冲电路应用于电热化学发射技术的可行性。
    总之,本文围绕两间隙毛细管的工作特性进行了系统的实验和理论研究,所
    得到的结果不但为消融毛细管等离子体的工程实践提供了丰富的信息,也为消
    融放电等离子体科学与技术领域进一步的研究工作提供了若干新的观点和方
    法。
Electrothermal plasmas are characterized by high number densities and
    relatively low plasma temperatures. Electrothermal plasma devices are of great
    importance in electrothermal or electrothermal chemical launchers and many other
    technological applications.
     In this thesis , a novel two-gap capillary plasma generator (TGCPG) is
    developed as a realistic alternative to the conventional capillary in electrothermal
    launchers and expected to be a versatile capillary plasma generator for other
    applications. It is designed to accomplish two goals: repetitive operation and a
    compact power supply system in which capillary itself serves as a closing switch. In
    addition, a simple power conditioning system with which a two-pulse discharge
    current curve can be generated for electrothermal launchers is also developed and its
    feasibility is theoretically and experimentally examined.
     In the experimental part of this thesis, the dependence of characteristics of the
    main discharge on the size of capillary, main capacitor and its initial charged voltage
    is obtained. The life expectation of TGCPG and the stability of the discharge
    characteristics under repetitive operation are examined. The dependence of the
    trigger delay time of TGCPG on the capillary size and trigger energy is also studied.
     Two one-dimensional time-dependent models of TGCPG are proposed to
    simulate the trigger process and the main discharge process respectively. The
    dependence of the exit parameters such as plasma density, pressure, temperature and
    velocity on the size of capillary, main capacitor and its initial charged voltage is
    studied, the trigger delay time is also calculated and its comparison with the
    experimental results gives a good agreement. It is found that capillary wall ablation
    can greatly change the behavior of trigger discharge arc and drastically diminishes
    the trigger delay time.
     In a word, this study focus on the characteristics of plasmas generated in
    TGCPG discharges by ablation-stabilized arcs, and some valuable conclusions are
    drawn.
引文
[1] G. L. Katulka, T. N. Khong, H. Burden et al. Measurement techniques for
     electrothermal-chemical gun diagnostics. AD-A273952, 1993
    [2] J. Powell, and A. E. Zielinski. Theory and experiment for an ablating-capillary
     discharge and applications to electrothermal-chemical guns. Tech.Report
     BRL-TR-3355, U.S. Army Ballistic Research Laboratory
    [3] O. E. Hankings, D. Mann. Analysis of molecular and neutral atomic emission
     spectra from electrothermal launcher plasma. IEEE Trans. Magn., Vol. 31,
     pp410, 1995
    [4] N. Spector, Z. Kaplan, A. Loeb et al. Confined high pressure discharge
     experiments. IEEE Trans. Magn., Vol. 25, pp538, 1993
    [5] V. B. Rozanov. Gas-dynamic model of a capillary discharge with evaporative
     walls. High Temp., Vol. 8, pp.895, 1970
    [6] N. N. Ogurtsova, I. V. Podmoshenskii and P. N. Rogovtsev. Calculation of the
     parameters of an optically dense plasma obtained by a discharge with an
     evaporating wall. High Temp., Vol. 9 , pp430,1971
    [7] L. Niemeyer. Evaporation dominated high current arcs in narrow channels.
     IEEE Trans. Power App. Syst., Vol.9, pp 950, 1978
    [8] E. Z. Ibrahim. The ablation dominated polymethylmethacrylate arc. J. Phys. D:
     Appl. Phys. Vol.13, pp 2045, 1980
    [9] P. Kovitya and J. J. Lowke. Theoretical prediction of ablation stabilized arcs
     confined in cylindrical tubes . J. Phys. D: Appl. Phys., Vol.17, pp1197, 1984
     92
    
    
    [10] A. Loeb, Z. Kaplan. A theoretical model for the physical processes in the
     confined high pressure discharge of electrothermal launchers. IEEE
     Transactions on Magnetics, Vol.25, No.1, pp.342, 1989
    [11] J. G. Gilligan and R. B. Mohanti. Time-dependent numerical simulation of
     ablation-controlled arcs. IEEE Trans. Plasma Sci., Vol.18, pp190, 1990
    [12] D. Zoler, S. A. Cuperman. Time-dependent model for high-pressure discharges
     in narrow ablative capillaries. J. Plasma Physics, vol.50, pp51, 1993
    [13] J. D. Hurley, M. A. Bourham and J. G. Gilligan. Numerical simulation and
     experiment of plasma flow in the electrothermal launcher SIRENS. IEEE Trans.
     Magn. Vol.31, pp 616, 1995
    [14] E. Jacob, S. Bouquet and B. Tortel. A global theoretical approach for the
     electrothermal gun: Scaling laws and a 0-D time-dependent model. IEEE Trans.
     Magn., Vol. 31, pp419, 1995
    [15] M. R. Zaghloul, M. A. Bourham and J. M. Doster. Semi-analytical modeling and
     simulation of the evolution and flow of ohmically-heated non-ideal plasmas in
     electrothermal guns. J. Phys. D: Appl. Phys. Vol.34, pp 772, 2001
    [16] 成剑,栗保明。消融控制电弧等离子体发生器中毛细管消融模型研究。自然
     科学进展,Vol. 12,pp 816,2002
    [17] L. Spitzer and R. Harm. Transport phenomena in a completely ionized gases.
     Phys. Rev. Vol. 89, pp 977, 1953
    [18] W. Ebeling, V. E. Fortov, Y. L. Klimontovich et al. Transport properties of dense
     plasmas. Akademie-Verlag, Berlin, 1983
    [19] K. Gunther and R. Radtke. Electric properties of weakly nonideal plasma.
     Birkhauser Verlag, Boston, 1982
    [20] W. Ebeling, A. Forster, V. E. Fortov et al. Thermophysical properties of hot
     dense plasmas. Stuttgart; Leipzig, 1991
     93
    
    
    [21] I. T. Iakubov and M. M. Popovich. Transport and optical properties of nonideal
     plasma. Plenuum Press, New York, 1995
    [22] R. J. Zollweg and R. W. Liebermann. Electrical conductivity of nonideal plasmas.
     J. Appl. Phys., Vol. 62, pp 3621, 1987
    [23] Yu. K. Kurilenkov and A.A. Valuev. Plasma oscillations and their influence on
     certain properties of nonideal plasma. Beitr. Plasmaphys, Vol. 24, No. 5, pp 529,
     1984
    [24] R.B. Mohanti and J. G. Gilligan. Electrical conductivity and thermodynamic
     functions of weakly nonideal plasmas. J. Appl. Phys. Vol. 68, pp 5044, 1990
    [25] R. B. Mohanti. Time dependent numerical simulation of nonideal plasmas in
     ablation controlled arcs.PH. D. thesis, NCSU, 1990
    [26] S. Wald et al. Hazardous waste treatment and recovery of valuable products
     with a thermal pulsed-plasma technology. IEEE Trans. plasma science, Vol. 28,
     2000
    [27] S. Wald et al. Hard coatings of metals and ceramics with a new
     electrothermal-chemical gun technology. International Journal of Refractory
     Metals &Hard Materials, pp171-177, 1999
    [28] E. Y. Shcolnikov et al. Flow dynamics and microparticles acceleration in the
     Electrothermal Launcher. IEEE Trans. Magn., Vol.35, pp240, 1999
    [29] M. Rott, E. Igenbergs. New monopulse plasma generation and acceleration
     facility for surface treatment. IEEE Trans.Magn., Vol.37, pp232, 2001
    [30] D. R. Peterson. Design and operation of the electrogun, an electrothermal gun
     for producing metal and carbon plasma jets. IEEE Trans. Magn., Vol.33, pp373,
     1997
     94
    
    
    [31] 刘克富,夏胜国,秦实宏,潘垣。“一种新型等离子体发生器开关”,中国
     专利,01133589.0,2001
    [32] T. Karasinski, C.D. Zwingel. Switchless Electrothermal Launcher. 8th IEEE
     International Pulsed Power Conference, 1991, San Diego, California
    [33] M. Rott. Design optimizations of a small caliber electrothermal accelerator.
     IEEE Trans. Magn., Vol. 31, pp 441, 1995
    [34] D. Zoler, D. Saphier and R. Alimi. A numerical study of the evolution of plasma
     parameters in an ablative capillary discharge for a two-pulse form of the input
     energy. J. Phys. D: Appl. Phys., Vol. 27, pp 1423, 1994
    [35] D. Giorgi, H. Helava, K. Lindner, J. Long, O. Zucker. The ringer: an efficient,
     high repetition rate circuit for electromagnetic launchers. IEEE Trans. Magn.,
     Vol.25, pp203, 1989
    [36] D. A. Benson and S. N. Kempka. Studies of confined high-pressure discharges
     in an electrothermal capillary. IEEE Trans. Magn. Vol. 29, pp544, 1993
    [37] K. Daree, D. Hensel, K. Zimmermann. Plasma-fluid interaction and arc
     resistance in electrothermal launchers. IEEE Trans. Magn. Vol. 33, pp289,
     1997
    [38] O. E. Hankins, M. A. Bourham, J. Eafrnhart et al. Visible light emission
     measurements from a dense electrothermal launcher plasma. IEEE Trans. Magn.
     Vol. 29, pp 1158, 1993
    [39] T. Sueda, S. Katsuki, H. Akiyama. Early phenomena of capillary discharges in
     different ambient pressures. IEEE Trans. Magn. Vol. 33, pp334, 1997
    [40] J. Ashkenazy, R. Kipper, M. Caner. Spectroscopic measurements of electron
     density of capillary plasma based on Stark broadening of hydrogen lines.
     Physical Review A, Vol. 43, pp5568, 1991
     95
    
    
    [41] S. V. Kukhlevsky, J. Kaiser, L. Palladino, et al. Physical processes in
     high-density ablation-controlled capillary plasmas. Physics letters A, Vol. 258,
     pp335, 1999
    [42] M. J. Taylor. Measurement of the properties of plasma from ETC capillary
     plasma generators. IEEE Trans. Magn. Vol. 37, pp194, 2001
    [43] Seong-Ho Kim, Kyung-Seung Yang, Seong-Woo Lee, et al. Capillary discharge
     in the open air. IEEE Trans. Magn. Vol. 39, pp244, 2003
    [44] K. S. Holian. T-4 Handbook of material properties data bases. Los Alamos:
     LA-10160-MS, 1984
    [45] 陈林,周之奎,孙承纬。等离子体发生器高压放电特性研究。强激光与粒子
     束,Vol. 9,No.3,1997
    [46] 陈林,周之奎,孙承纬。电热化学发射中等离子体发生器放电特性的实验研
     究。爆炸与冲击,Vol.17, No.4,1997
    [47] 刘东尧,周彦煌,余永刚。毛细管等离子体阻抗特性实验研究。弹道学报,
     Vol. 11,No. 2,pp 74,1999
    [48] 戴荣,栗保明,宁广炯。电热消融毛细管几何参数放电实验研究。弹道学报,
     Vol.12,No.2,2000
    [49] J. Caillard, C. de Izarra and L. Brunet. Experimental assessment of a 1kJ
     electro-pyrotechnic device ignited in the 300-1000V range for ETC studies.
     IEEE Trans. Magn., Vol. 37, pp 152, 2001
    [50] H. R. Griem. High-density corrections in plasma spectroscopy. Phys. Rev.
     Vol.128, pp 997, 1962
    [51] M. Mitchener and C. H. Jr. Kruger. Partially Ionized Gases. New York: Wiley,
     1973
    [52] A. Marotta and L. I. Sharakhovsky. A theoretical and experimental investigation
     96
    
    
    of copper electrode erosion in electric arc heaters: I. The thermophysical model.
     J. Phys. D: Appl. Phys., Vol. 29, pp 2395, 1996
    [53] M. Keidar, I. D. Boyd and I. I. Beilis. Electrical discharge in the Teflon cavity
     of a coaxial pulsed plasma thruster. IEEE Trans. Plasma Sci., Vol. 28, No. 2,
     pp 376, 2000
    [54] 陈嘉桢。高压聚乙烯。北京:化学工业出版社,1960
    [55] 泽尔道维奇,张树才译。激波和高温流体动力学现象物理学。北京:科学出
     版社,1980
    [56] 水鸿寿。一维流体力学差分方法。北京:国防出版社,1998
    [57] 刘儒勋, 舒其望。计算流体力学的若干新方法。北京:科学出版社,2003
    [58] 汪志诚。热力学统计物理。北京:高等教育出版社,1980
    [59] D. Zoler and S. Cuperman. Quasi-one-dimensional model equations for plasma
     flows in high-pressure discharges in ablative capillaries. J. Plasma Phys. Vol.48,
     pp215, 1992
    [60] R. J. Kennaugh and L. C. Woods. Optimization of an electrothermal capillary.
     IEEE Trans. Magn. Vol. 31, pp431, 1995
    [61] E. Y. Shcolnicov, A. V. Chebotarev, Y. A. Melnik, et al. High efficiency
     electrothermal accelerator. IEEE Trans. Magn. Vol.31, pp447, 1995
    [62] D. Hewkin, E. Figura. Fundamental research and numerical modeling of the
     internal ballistics of electrothermal chemical guns. IEEE Trans. Magn. Vol.29,
     pp561, 1993
    [63] L. L. Raja, P. L. Varghese and D. E. Wilson. Modeling of the electrothermal
     ignitor metal vapor plasma for electrothermal-chemical guns. IEEE Trans. Magn.
     Vol. 33, pp316, 1997
    [64] N. Silvestre, D. Hensel and K. Daree. Numerical investigation of electric arcs in
     cylindrical tubes. Proceeding of the 3rd European Symposium on Electromagnetic
     97
    
    
    Launch Technology, London, England, 1991
    [65] S. Cuperman, D. Zoler, J. Ashkenazy, et al. Consistent treatment of critical
     plasma flows in high pressure discharge ablative capillaries’, IEEE Trans. Magn.
     Vol.21, pp282, 1993
    [66] D. Zoler, S. Cuperman, J. Ashkenazy, et al. Effect of a non-ideal state equation
     on the steady state critical flow characteristics on ablative capillaries. J. Phys. D:
     Appl. Phys. Vol. 26, pp657, 1993
    [67] S. Cuperman, D. Zoler, J. Ashkenazy. Analysis of plasma critical flow in a
     combined discharge capillary-ablative pipe system. Plasma Sources Sci. Technol.
     Vol. 3, pp593, 1994
    [68] J. Ashkenazy, D. Zoler. Analysis of plasma critical flow in ablative discharge
     capillaries with a non-constant cross-section. J. Plasma Phys. Vol.53, pp267,
     1995
    [69] J. Ashkenazy. Supersonic flow in ablative discharge capillaries. Phys. Letters A,
     Vol. 228, pp369, 1997
    [70] R. Alimi, C. Goldenberg, L. Perelmutter, et al. The effect of external pressure on
     the plasma parameters in ablative capillary discharges. IEEE Trans. Magn. Vol.
     35, pp175, 1999
    [71] 查普曼,考林著,刘大有,王伯懿译。非均匀气体的数学理论。 北京:科
     学出版社,1985
    [72] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird. Molecular theory of gases and
     liquids. John Wiley & Sons, New York, 1954