均匀大气压介质阻挡放电特性及模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均匀大气压介质阻挡放电由于其显著的优点和巨大的工业应用前景,自1988年第一次被报道以来就一直倍受人们的关注。近年来对均匀大气压介质阻挡放电的实验和模拟研究已被广泛进行,人们对这种放电的性质也有了一定的了解和认识。但是在这样一个具有强烈非线性的空间扩展耗散型放电系统中,放电行为是非常复杂的,有许多方面仍然处于研究讨论之中。在本论文中,我们采用一维流体力学模型,分别对纯氦气、氦一氮混合气体及纯氮气中均匀大气压介质阻挡放电特性及放电模式进行了数值模拟研究,具体包括以下几个方面:(a)对纯氦气中均匀大气压放电的行为和性质进行了研究,其中包括氦气放电的基本特性、氦亚稳态在放电中的行为和作用、多脉冲放电的形成原因、条件和性质及均匀大气压介质阻挡放电的工作模式;(b)针对不同的放电模式,研究了微量杂质对氦气放电的电学性质及放电空间结构的影响;(c)研究了氮气均匀介质阻挡大气压放电的特点、主要机制及多脉冲放电行为等;(d)研究了氦气均匀介质阻挡大气压放电中的复杂非线性动力学行为:倍周期分岔和混沌。
     模拟结果显示,对于纯氦气中的均匀大气压介质阻挡放电,在通常的条件下,表现为狭窄的单脉冲放电,放电的空间结构具有低气压辉光放电特点,即存在明显的阴极位降区、负辉区、法拉第暗区和等离子体正柱区。放电脉冲的幅度直接受外部参数的影响。氦亚稳态原子在放电中起重要作用。它们主要产生于放电阶段,且最大产生率出现在高场强的阴极区,并在整个放电空间内都保持相对高的密度。亚稳态之间的碰撞电离不仅为放电提供种子电子,而且也产生了高浓度的氦的分子离子He_2~+。亚稳态的时空行为随着放电条件而改变。放电空间亚稳态密度的下降,将导致带电粒子密度的减小,从而可以引起放电模式的改变。在放电间隙较小的情况下,在外加的电压的每半个周期内可以出现多个电流脉冲。多脉冲放电形成的主要原因是由于介质表面积累电荷增加而导致的空间电荷场的增强。多脉冲放电的发生通常需要较小的放电间隙,较低的驱动频率,或较高的电压幅度。其中小的放电间隙是形成多脉冲放电的必要条件。半个周期内放电脉冲的数目和幅度取决于驱动电压的幅度和频率。我们发现,在一定的条件下,对于氦气中的均匀大气压介质阻挡放电,无论是单脉冲放电还是多脉冲放电,都可以存在两种放电模式,即汤森和辉光模式,甚至在多脉冲放电的同一击穿序列中两种放电模式也可以并存。两种放电模式具有完全不同的电学性质和放电结构,在合适的参数下两种模式可以相互转换。
     对氦—氮混合气体放电的研究发现,由于氮分子与氦亚稳态原子之间有效的潘宁电离过程,即使微量的氮杂质也可以对均匀大气压放电产生很大的影响。而且,在不同的
Uniform atmospheric-pressure discharge (APD) controlled by dielectric barriers has attracted considerable attention since its inception because of its advantageous properties for industrial applications. In recently years, experimental and modeling studies on uniform APD have been carried out and some preliminary insights into uniform APD have been obtained. But, in such a spatially extended dissipative system with strong nonlinearity, the discharge behaviors are more complicated than that has been reported. . Many aspects still remain the subject of debate. An in-depth investigation on homogenous APD, especially its complex nonlinear dynamic behaviors, is indispensable to its farther development. In this paper, one-dimensional fluid models for the homogenous barrier discharges at atmospheric pressure have been developed, respectively in helium, helium mixed small impurities and nitrigon. Based on these models, we finish the studies of (a) the behaviors and mechanisms of uniform APD in pure helium including the elementary characteristics of the discharge, the role of helium metastable atoms in the discharge, the forming reasons and properties of multiple-pulse discharge, as well as the operation modes of uniform APD; (b) the influence of small nitrogen impurities on the electrical characteristics and space structures of uniform APD in helium under different discharge modes; (c) the period doubling events and chaotic behavior of homogeneous dielectric-barrier discharge at atmospheric pressure in helium; (d) the plasma dynamics characteristics , dominant mechanisms and structures of uniform APD in nitrogen.
    The simulaton results show that the homogeneous dielectric-barrier discharge at atmospheric pressure in helium is usually characterized by one current peak per half cycle of the applied voltage. The space structure of this discharge is similar to that of low pressure glow discharge, i.e. there exist four specific regions: the cathode fall; the negative glow; the Faraday dark space; and the positive column. The properties of discharge current are determined by the external conditions. The metastable helium atoms play an important role in the discharge. They mainly produced in the active phase of the discharge and keep its relatively high concentration throughout the discharge. Not only can metastable atom collisions provide seed electrons for discharges, but also produce much more He_2~+ ions. The behaviors of metastable atoms change with the discharge parameters. A reduction of matestable atom density results in the drop of charged particle densities and causes a qualitative change of discharge patterns. In the case of smaller gap width, multiple current pulses can be formed in each half-cycle of the applied voltage duo to the increases of surface density of the accumulation charges leading to the enhancement of the induced electric field. The development of multiple current peaks usually requires smaller gap width, lower
引文
[1] Kanazawa S, Kogoma M, Moriwaki T, Okazaki S. Stable glow at atmospheric pressure. J. Phys. D: Appl. Phys., 1988, 21: 838-840.
    [2] Massines F., Rabehi A., Decomps P., et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controled by a dielectric barrier. J. Appl. Phys., 1998, 83(6): 2950-2957.
    [3] Kogelschatz U. Filamentary, Patterned, and diffuse barrier discharges. IEEE Trans. Plasma Sci., 2002, 30(4): 1400-1408.
    [4] 徐学基,诸定昌. 气体放电物理. 上海:复旦大学出版社,1996.
    [5] Eliasson B, Hirth M and Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D: Appl. Phys., 1987, 20(11): 1421-37.
    
    [6] Eliasson B and Kogelschatz U. Modelling and application of silent discharge plasmas. IEEE Trans. Plasma Sci., 1991, 19(2): 309-322.
    
    [7] Braun D, Kuchler U and Pietsch G J. Microdischarges in air-fed ozonizers. J. Phys. D: Appl. Phys., 1991, 24 (4) : 564-72.
    
    [8] Kogelschatz U, Eliasson B, and Egli W. From ozone generators to flat screens: history and future potential of dielectric-barrier discharges. Pure Appl. Chem., 1999, 71(10): 1819-1828.
    
    [9] Braun D, Gibalov V I and Pietsch G J. Two-dimensional modelling of the dielectric barrier discharge in air. Plasma Sources Sci. Technol., 1992, 1(3): 166-174.
    
    [10] Meunier J, Belenguer Ph, Boeuf J P. Numerical model of an ac plasma display panel cell in neon-xenon mixture. J. Appl. Phys., 1995, 78(2): 731-745.
    
    [11] Boeuf J P and Pitchford L C. Calculated characteristics of an ac plasma display panel cell. IEEE Trans, on Plasma Sci. 1996, 24(1): 95-96.
    
    [12] Xu X P and Kushner M J. Multiple Ion composition of expanding microdischarges in dielectric barrier discharges. J. Appl. Phys., 1998, 83(12): 7522-7532.
    
    [13] Falkenstein Z. and Coogan J J. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. J. Phys. D: Appl. Phys., 1997, 30(5): 817-825.
    
    [14] Babaeva N Y and Naidis G V. Two-dimensiongal modelling of positive streamer dynamics in non-uniform electeic fields in air. J. Phys. D: Appl. Phys., 1996, 29(9): 2423-2431.
    
    [15] Li J and Dhali S K. Simulation of microdischarges in a dielectric-barrier discharge. J. Appl. Phys., 1997, 82 (9): 4205-4210.
    
    [16] Steinle G, Neundorf D, Hiller W and Pietralla M Two-dimensional simulation of filaments in barrier discharges J. Phys. D: Appl. Phys. 1999, 32(12) :1350- 6.
    
    [17] Georghiou G E, Morrow R and Metaxas A C. The two-dimensional simulation of streamersusing the FE-FCT method. J. Phys. D: Appl. Phys. , 2000, 33(3): L27 - 32.
    
    [18] Kozlov K, Shepelyuk O S, and. Samoilovich V G. Spatio-temporal evolution of dielectric barrier discharge channels at atmospheric pressure. Proc. 12th Ind. Conf. Gas Discharges and Their Applications, 1995, Tokyo, Japan, 2: 142-145.
    [19] Kulikovsky A A. Positive streamer between parallel plate electrodes in atmospheric pressure air. J. Phys. D: Appl. Phys., 1997, 30(3): 441-50.
    [20] Guikema J, Miller N, Niehof J, et. al. Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system. Phys. Rev. Lett. 2000, 85(8) : 3817-3820.
    [21] Muller I, Punset C, Ammelt E, Purwins H. -G and Boeuf J P. Self-organized filaments in dielectric barrier glow discharge. IEEE Trans on Plasma Science, 1999, 27 (1) : 20-21.
    [22] Klein M, Miller N and Walhout M. Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system. Phys. Rev. E 2001, 64: 026402-05.
    [23] Brauer I, Punset C, Purwins H G and Boeuf J P. Simulation of self-organized filaments in a dielectric barrier glow discharge plasma J. Appl. Phys., 1999, 85 (11): 7569-7572.
    [24] Dong L F, Liu F Ch, Liu Sh H, et al. Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure. Phys. Rev. E . 2005, 72: 046215.
    [25]Gurevich E L Zanin A L, Moskalenko A S, and Purwins H. -G. Concentric-Ring Patterns in a Dielectric Barrier Discharge System. Phys. Rev. Lett., 2003, 91(15), 154501-3.
    [26] Dong L F, Yin Z Q, Wang L, et al. Square pattern formation in a gas discharge system. Thin Solid Films 2003, 435(1-2): 120-123.
    [27] Radu I. Diagnostics of Dielectric Barrier Discharge in Noble Gases: Atmospheric Pressure Glow and Pseudoglow Discharges and Spatio-Temporal Patterns. IEEE Trans on Plasma Science, 2003, 31(3) :411-421.
    [28] Breazeal W, Flynn K M and Gwinn E G. Static and dynamic two-dimensional patterns in self-extinguishing discharge avalanches. Phys. Rev.E, 1995, 52(2): 1503-1515.
    [29] 董丽芳.气体放电等离子体动力学. 保定:河北大学出版社, 2004.
    [30] Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. J. Phys. D: Appl. Phys., 2002, 35(8): 751-761.
    [31] Trunec D, Brablec A and Buchta J. Atomspheric pressure glow discharge in neon. J. Phys. D: Appl. Phys. 2001, 34(11): 1697-1699.
    [32] Napartovich A P. Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasmal. Plasmas and Polymers, 2001, 6(1) :1-14.
    [33]Chen A M, Chen C M and Chen C F. Growth of carbon nanotubes by microwave plasma chemical vapor deposition using CH_4 and CO_2 gas mixture. Thin Solid Films, 2002, 420-421 (complete) : 230-234.
    [34]Larson JM, Swihart M T, and Girshick S L. Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond. Diamond and Related Materials, 1999, 8(10): 1863-1874.
    [35]Hallil A, Despax B. Internal r. f. plasma parameters correlated with structure and properties of deposited hydrocarbon films. Thin Solid Films, 2000, 358(1-2): 30-39.
    
    [36]Jung C O, Chi K K, Hwang B G, et al. Advanced plasma technology in microelectronics. Thin Solid Films, 1999, 341(1-2): 112-119.
    
    [37]Nishikawa K, Otera H, Tomohisa S, et al. Transport mechanisms of ions and neutrals in low-pressure, high-density plasma etching of high aspect ratio contact holes. Thin Solid Films. 2000, 374(2): 190-207.
    
    [38]Feldsien J, Kim D, Economou D J. Si02 etching in inductively coupled C2F6 plasmas: surface chemistry and two-dimensional simulations. Thin Solid Films, 2000, 374(2): 311-325.
    
    [39] Roth J R, Ku Y, Tsai P P -Y. et al. A study of the sterilization of nonwoven webs using one atmosphere glow discharge plasma, Proceedings of the 1996 TAPPI Conference, N. C. , March 11-13, 1996, pp. 225-230.
    [40]Roth J R, Sherman D M, Gadri R B et al., A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere. IEEE Trans. Plasma Sci., 2000, 28(1): 56-63.
    [41] P. P. Tsai, L. C. Wadsworth, J. R. Roth, Surface Modification of Fabrics Using a One-Atmosphere Glow Discharge Plasma to Improve Fabric Wettability Textile Res. J. 1997 , 67(5) : 359-369.
    [42] Montie T C, Wintenberg K K, Roth J R. An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) for Sterilization of Surfaces and Materials. IEEE Trans. Plasma Sci., 2000, 28(1): 41-50.
    [43] Wintenberg K K, Sherman D M, Roth J R, et al. Air Filter Sterilization Using a One Atmosphere Uniform Glow Discharge Plasma (the Volfilter) IEEE Trans. Plasma Sci. 2000, 28(1): 64-71.
    [44]Gadri R B, Roth J R, Montie T C, et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surface and Coatings Technology, 2000, 131: 528-524.
    [45].Kogoma M and Okazaki S. , Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure J. Phys. D:Appl. Phys. 1994, 27(9): 1985-1987.
    
    [46] Sawada Y, Ogawa S and Kogoma M Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge J. Phys. D: Appl. Phys., 1995, 28(8): 1661 - 1669.
    [47] Mori T, TanakaK, Inomata T, Takeda A and Kogoma M. Development of silica coating methods for powdered pigments with atmospheric pressure glow plasma. Thin Solid Films, 1998, 316: 89 - 92.
    
    [48] Massines F and Gouda G, A comparison of polypropylen-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D: Appl. Phys. , 1998, 31(24): 3411-3420.
    
    [49] F. Massines, R. Messaoudi, C. Mayoux, Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment. Plasmas and Polymers, 1998, 3(1): 43-59.
    
    [50] Massines F , Gouda G, Gherardi N, Duran M and Croquesel E. The Role of Dielectric Barrier Discharge Atmosphere and Physics on Polypropylene. Surface Treatment Plasmas and PolymersIssue. 2001. 6(1-2): 35 - 49.
    
    [51] Von Engle A, Seeliger R, and Steenback M. On the glow dischargeat high pressure. Zeit. fur Physik., 1933, 85:144-160.
    
    [52] Bartnikas R. Note on discharges in helium under a. c. conditions. Brit. J. Appl. Phys., 1968, 1 (2) : 659-661.
    
    [53] Kekez M M, Barrault M R and Craggs J D. Spark channel formation. J. phys. D: Appl. Phys., 1970, 3(12): 1886-1896.
    
    [54]K. G. Donohoe. The Development and Characterization of an Atmospheric Pressure Nonequilibrium Plasma Chemical Reactor. Ph.D. dissertation, Calif. Inst. Technol., Pasadena, CA, 1976.
    
    [55] Donohoe K G andWydeven T. Plasma polymerization of ethylene in an atmospheric pressure discharge. J. Appl. Polymer Sci., 1979, 23 (9) : 2591-2601.
    
    [56] Yagi S, Hishii M, Tabata N, et al. Silent discharge CO laser. Laser Eng., 1977, 5(3): 171 - 176.
    
    [57] Beaulieu A J. Transversely excited atmospheric pressure CO lasers. Appl. Phys. Lett., 1970, 16(12): 504-505.
    
    [58] Nakamura K, Yukawa N, and Mochizuki T. Optimization of the discharge characteristics of a laser device employing a plasma electrode. Appl. Phys. Lett., 1986, 49(22): 1493-1495.
    
    [59] Slade P D and Serafetinides A. Stable discharges in an HF laser with large electrode separation. IEEE J. Quantum Electron. 1978, QE-14(5): 321-322.
    
    [60] Gibson A F, Hall T A, and Hatch C B. Discharge stabilization in HF lasers using resistive electrodes. IEEE J. Quantum Electron. 1977, QE-13 (10) : 801-803.
    
    [61] Cserfalvi T, Mezel P, and Apai P. Emission studies on a glow discharge in atmospheric pressure air using water as a cathode. J. Phys.D: Appl. Phys., 1993, 26(12): 2184-2188.
    
    [62] Sugawara M, Murata K, Ohshima T, and Kobayashi K. A hollow cathode discharge as a cold uniform plasma source. J. Phys. D: Appl. Phys., 1981, 14(9): L137-L140.
    [63] Akishev Yu S, Deryugin A A, Kochetov I V, etal. DC glow discharge in air flow at atmospheric pressure in connection with waste gases treatment. J. Phys. D: Appl. Phys., 1993, 26(10): 1630-1637.
    
    [64] Yokoyama T, Kogoma M, Moriwaki T, Okazaki S. The mechanism of the stabilized glow plasma at atmospheric pressure. J. Phys. D: Appl. Phys. 1990, 23(8): 1125-1128.
    
    [65] Okazaki S, Kogoma M, Uehara M, Kimura Y. Appearance of a stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source J. Phys. D: Appl. Phys. 1993, 26(5): 889-892.
    
    [66] Kanazawa S, Kogoma M, Moriwaki T and Okazaki S Stable glow plasma at atmospheric pressure. J. Phys. D: Appl. Phys. 1988, 21(5): 838-840.
    
    [67] Trunec D, Brablec A, Stastny F, and Bucha J. Experimental study of atmospheric pressure glow discharge. Contrib. Plasma Phys. 1998, 38(3): 435-445.
    
    [68] Tepper J and Lindmayer M. Investigations on two different kinds of homogeneous barrier discharges at atmospheric pressure. Proc. 7~(th) Int. Symp. High Pressure, Low Temperature Plasma Chemistry, Greifswald, Germany, 2000, 1:38-43.
    
    [69] Kunhardt E E, Becker K, and Amore Lr. Suppression of the glow-to-arc transition. Proc. XII Int. Conf. on Gas Discharges and Their Applications, Greifswald, Germany, Sept. 1997, p. 87.
    
    [70] Kunhardt E E, Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans. Plasma Sci., 2000, 28(1): 189-200.
    
    [71] Brenning N, Axnas I, Nilsson J 0, and Eninger J E. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate of homogeneity. IEEE Trans. Plasma Sci. 1997, 25(1): 83-88.
    
    [72] Rabehi A, Gadri R B, Segur P, Massines F, and Decomps Ph. Numerical modelling of high-pressure glow discharges controlled by dielectric barrier. Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Arlington, Texas, 23-26 October, 1994, pp. 840-845.
    
    [73] Massines F, Gadri R B, Decomps P, et al. Atmospheric pressure dielectric controlled glow discharges: Diagnostics and modeling. Proc. 22rd Int. Conf. Phenomena in Ionized Gases, Hoboken, NJ, 1996, 363:306-315.
    
    [74] Massines F, Segur P. Gherardi N and Ricard A. Physics and chemistry of a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modeling. Surf. Coat. Technol. 2003, 174 - 175 : 8 - 14.
    
    [75] Naude N, Cambronne J-P, Gherardi N and Massines F Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge J. Phys. D: Appl. Phys. 2005, 38(4): 530-538.
    [76] Gherardi N, Gouda G, Gat E, Ricard A, Massines F. Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Sci. Technol., 2000 , 9(3): 340-346.
    
    [77] Gherardi N and Massines F Mechanisms Controlling the Transition from Glow Silent Discharge to Streamer Discharge in Nitrogen. IEEE Trans on Plasma Science 2001, 29(3): 536-544.
    
    [78]Gadri R B. One Atmosphere Glow Discharge Structure Revealed by Computer Modeling. IEEE Trans on Plasma Science, 1999, 27(1): 36-37.
    
    [79]Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F. Influence of elementary processes over an homogeneous barrier discharge in helium. Proc. of VIII Int. Symp. on High Pressure Low Temperature Plasma Chemistry. Puhajarve, Estonia, 21 - 25 July 2002, 1:48-52.
    
    [80] Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F Some aspects of modeling of an uniform barrier discharge in nitrogen. Proc. Of 16th ESCAMPIG. Grenoble, France, 14-18 July 2002, 1:233-234.
    
    [81]Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure. J. Phys. D: Appl. Phys. 2003, 36(1): 39 - 49.
    
    [82] Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F. On the stability of a homogeneous barrier discharge in nitroger relative to radial perturbations. J. Phys. D: Appl. Phys. 2003, 36(8): 975-981.
    
    [83]Radu I, Bartnikas R, and Wertheimer M R. Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry: experiments and model. J. Phys. D: Appl. Phys. 2004, 37: 449-462.
    
    [84] Radu I, Bartnikas R, and Wertheimer M R. Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry. J. Phys. D: Appl. Phys. 2003, 36: 1284-1291.
    
    [85] Kong M G and Deng X T. Electrically efficient production of a diffuse nonthermal atmospheric plasma. IEEE Trans. Plasma Sci. 2003, 31(1): 7-18.
    
    [86] Deng X T and Kong M G. Frequency range of stable dielectric-barrier discharges in atmospheric He and N_2. IEEE Trans. Plasma Sci. 2004, 32(4): 1709-1715.
    
    [87] Mangolini L, Anderson C, Heberlein J and Kortshagen U. Effects of current limitation through the dielectric in atmospheric pressure glows in helium. J. Phys. D: Appl. Phys. 2004, 37(7): 1021-1030.
    
    [88] Wang X X, Li Ch R, Lu M Z, et al. Study on an atmospheric pressure glow discharge. Plasma Sources Sci. Technol. 2003, 12: 358-361.
    
    [89]Georghiou G E, Papadakis A P, Morrow R, et al. Numerical modeling of atmospheric pressure gas discharge leading to plasma production. J. Phys. D: Appl. Phys. 2005, 38:R303 - R328.
    [90] Wu C and Kunhardt E E. Formation and propagation of streamers in N2 and N2 - SF6 mixtures Phys. Rev. A, 1988, 37(11): 4396-406.
    
    [91]Guo J M, et al. Two-Dimensional Nonequilibrium Fluid Models for Streamers. IEEE Trans. Plasma Sci. 1993, 21(6): 684-685.
    [92] Ward A L. Calculations of Cathode-Fall Characteristcs. J.Appl.Phys., 1962, 33(9): 2789-2794.
    [93] Deloche R, Monchicourt P, Cheret M, et al. High-pressure helium afterglow at room temperature. Phys. Rev. A., 1976, 13(3):1140-1176.
    [94] Kulikovsky A A The structure of streamers in N_2 I: fast method of space-charge dominated plasma simulation J. Phys. D: Appl. Phys. 1994, 27(12): 2556-2563.
    [95] Morrow R and Sato N. The discharge current induced by the motion of charged particles in time-dependent electric fields; Sato' s equation extended. J. Phys. D: Appl. Phys. 1999, 32(5): L20-L22.
    [96]Dhali S K and Williams P F. Two-dimensional studies of streamers in gas. J. Appl. Phys., 1987, 62(12):4696-4707.
    [97] Scharferter D L and Gummel H K. Large-Signal Analysis of a silicon Read Diode Oscillator IEEE Trans. Electron Devices 1969, ED-16(1): 64-77.
    [98]Boeuf J -P. Numerical model of rf glow discharges. Phys. Rev. A. , 1987, 36(6) : 2782-2792.
    [99]Boeuf J- P. A two-dimensional model of dc glow discharges. J. Appl. Phys. , 1988, 63(5):1342-1347.
    [100]Kulikovsky A A. A More Accurate Scharfetter-Gummel Algorithm of Electron Transport for Semiconductor and Gas Discharge Simulation. J. Compu. Phys., 1995, 119(1): 149-155.
    [101] Shon J W and Kushner M J. Excitation mechanisms and gain modeling of the high-pressure atomic Ar laser in He/Ar mixtures. 1994, J. Appl. Phys., 75(4): 1883-1890.
    [102] Stevefelt J, Pouvesle J M and Bouchoule A. Reaction kinetics of a high pressure helium fast discharge afterglow. J. Chem. Phys., 1982, 76(8): 4006-4015.
    
    [103] Pouvesle J M and BouchouleA , Stevefelt J, Modeling of the charge transfer afterglow excited by intense electrical discharges in high pressure helium nitrogen mixtures. J. Chem. Phys. 1982, 77(2): 817-825.
    [104] Segur P and Massines F. Proc. 13th Int. Conf. on Gas Discharges and Their Applications (GD 2000) (Glasgow 3-8 September 2000), 15.
    [105] Garrison B J, Miller W H and Schaefer H F. Penning and associative ionization of triplet metastable helium atoms. J. Chem. Phys., 1973, 59(6) : 3193-3198.
    
    [106] Mangolini L, Orlov K, Kortshagen U, Heberlein J and Kogelschatz U. Radial structure of low-frequency atmospheric-pressure glow discharge in helium. Appl. Phys. Lett. , 2002, 80(10): 1722-1724.
    [107] Akishev Yu S, Demyanov A V, Karalnik V B, et al. Pulsed Regime of the Diffusive Mode of a Barrier Discharge in Helium. Plasma Phys. Rep., 2001, 27(2): 164-171.
    [108] Kulikovsky A A. The structure of streamers in N2. Ⅱ:two-dimensional simulation. J. Phys. D: Appl. Phys., 1994, 27(12): 2564-2563.
    [109] Sommerer T J and Kushner J. Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N_2, O_2, He/N_2/O_2, He/CF_4/O_2, and SiH_4/NH_3 using a Monte Carlo-fluid hybrid model J. Appl. Phys. 1992, 71(4): 1654-1673.
    [110] Laux C O, Yu L, Packan D M, et al. Proceedings of the 30th AIAA Plasmadynamics and Lasers Conference, Norfolk, Virginia, June 1999, AIAA Paper 99-34?6.
    [111] Kim Y H, Hong S H, Hwang Y S, and Song Y H Proceedings of 14th International Symposium on Plasma Chemistry. 1999, 11, 9?3.
    [112] Cartwright D C, Trajmar S, Chutjian A and Williams W. Electron impact excitation of the electronic states of N_2. Ⅱ. Integral cross sections at incident energies from 10 to 50 eV. Phys. Rev. A, 1977, 16 (3): 1041-1051.
    [113] Matveyev A A and Silakov V P. Theoretical study of the role of ultraviolet radiation of the non-equilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. 1999, Plasma Sources Sci. Technol. 8(1): 162-178.
    [114] Guerra V and Loureiro J. Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge. Plasma Sources Sci. Technol., 1997, 6:361-372.
    [115] Meeks E, Larson R S, Vosen S R, Shon J W. Modeling chemical downstream etch systems for NF3/O-2 mixtures. 1997, J. Electrochem. Soc., 144 (1): 357-366.
    [116] Levron D and Phelps A V. Quenching of N_2(A~3∑_u~+,v=0.1) by N_2, Ar, and H_2. J. Chem. Phys., 1978, 69(5): 2260-2262.
    [117] Lorenz E N., Atmos J. Determ inistic Nonperiodic Flow. Sci. 1963, 20: 130~141.
    [118] 刘式达,梁福明,刘式适等自然科学中的混沌和分形.2003,北京大学出版社.
    [119] 张琪昌,王洪礼,竺致文等分岔与混沌理论及应用.2004,天津大学出版社.
    [120] Ott E, Grebogi G, Yorke J A. Controlling Chaos. Phys. Rev. Lett., 1990, 64(11): 1196~1199.
    [121] Sinha S. An Efficient Control Algorithms for Nonlinear Systems. Phys. Lett. A, 1991, 156: 475~478.
    [122] Lima R, Pettini M. Suppression of Chaos by Resonant Parametric Perturbations. Phys. Rev. A, 1990, 41(2): 726-733.
    [123] Braiman Y, Goldhirsch I. Taming Chaotic Dynamics with Weak Periodic Perturbations. Phys. Rev. Lett., 1991, 66(20): 2545~2548.
    [124] Guemez J, M atlas M A. Modified Method for Synchronizing and Cascading Chaotic Systems, Phys. Rev. E, 1995, 52(3): 2145~2148.[125] Guemez J, Matias M A. Synchronization in Small Assemblies of Chaotic system s, Phys. Rev. E, 1996, 53(4): 3059~3067.
    [126] Malescio G. Synchronization of Chaotic System s by Continuous Control, Phys. Rev. E, 1996: 53: 2949~2952.
    [127] Rosenblum M G, et al. Phase Synchronization of Chaotic Oscillators. Phys. Rev. Lett. 1996, 76: 1804~1807.
    [128] 方锦清,非线性系统中混沌的控制与同步及其应用前景(一) 物理学进展1996,16(1):1-6.
    [129] 王智勇 左铁钏,混沌及其对物理学与哲学思维的影响,自然辨正法研究 1997,13(8):23-27.
    [130] Pecora L M , Carroll T C, synchronization in chaotic system [J], Phys. Rev. Lett. 1990, 64 (8): 821-824.
    [131] Cuomo K M, Oppenheim A V, Strogatz S H Synchronization of Lorenz-based Chaotic Circuits with Applications to Communications. IEEE Trans. on CAS, 1993, 40 (10): 626~633.
    [132] Kocarev L, HalleK S, Eckert K, et al. Experimental Demonstration of Secure Communications via Chaotic Synchronization, Int. J. Bifurcation & Chaos, 1992, 2 (3): 709~713.
    [133] Dedieu H, Kennedy M P, Hasler. M. Chaos Shift Keying: Modulation and Demodulation of a Chaotic Carrier U sing Self-synchronizing Chua's Circuits. IEEE Trans. on CAS, 1993, 240 (10): 634~643.
    [134] Halle K S, Wu C W, Itoh M, et al. Spread Spectrum Communication through Modulation of Chaos, Int. J. Bifurcation & Chaos, 1993, 3 (2): 469~477.
    [135] Frey D R. Chaotic Digital Encoding: An Approach to Secure Communication. IEEE Trans. on CA S, 1993, GAS-40 (10): 660~666.
    [136] Cheung PY and Wong A Y. Chaotic Behavior and Period Doubling in Plasmas. Phys. Rev. Lett. 1987, 59(5): 551-554.
    [137] Qin J, Wang L, Yuan D P, Gao P, and Zhang B Z. Chaos and Bifurcations in Periodic Window Observed in Plasmas. Phys. Rev. Lett. 1989, 63(2): 163-166.
    [138] Greiner F, Klinger T, Klostermann H, et al. Experiments and Particle-in-Cell Simulation an Self-Oscillations and Period Doubling in Thermionic Discharges at Low Pressure. Phys. Rev. Lett. 1993, 70(20): 3071-3074.
    [139] Sijaeim D D., Ute Ebert, and Ismail Rafatov. Period doubling cascade in glow discharges: Local versus global differential conductivity. Phys. Rev. E 2004, 70: 056220.
    [140] Braun T, hisboa J A, Francke R E Observaton of Deterministic Chaos in Electrical Discharge in Gases. Phys. Rev. Lett. 1987, 59(6): 613-616.
    [141] Takeshi Hayashi. Mixed-Mode Oscillations and Chaos in a Glow Discharge. Phys. Rev. Lett. 2000, 84(15): 3334-3337.[142] Jiang Y, Wang H D, and Yu Ch X. Chaos Behavior and Self-oscillation in DC Discharge Plasma. Chin. Phys. Lett. 1988, 5(11): 489-492.
    [143] Ammelt E, Astrov Yu A, and Purwins H.-G. Stripe Turing structures in a two-dimensional gas discharge system. Phys. Rev. E 1997, 55(6): 6731—6740.
    [144] Astrov Yu A, Ammelt E and Purwins H.-G. Experimental Evidence for Zigzag Instability of Solitary Stripes in a Gas Discharge System. Phys. Lett. A. 1993, 78(16): 1329-1332.
    [145] Strumpel C, Ammelt E, Astrov Yu A, and Purwins H.-G E Dynamics of zigzag destabilized solitary stripes in a dc-driven pattern-forming semiconductor gas-discharge system. Phys. Rev. E 2000, 61(5): 4899-4904.
    [146] Strumpel C and Purwins H.-G Spatiotemporal filamentary patterns in a dc-driven planar gas discharge system. Phys. Rev. E 2001, 63(2): 026409-1-7.
    [147] C. Strumpel Astrov Yu A, and Purwins H.-G. Multioscillatory patterns in a hybrid semiconductor gas-discharge system. Phys. Rev. E. 2002, 65(6): 066210-1-5.
    [148] Ammelt E, Astrov Yu A, and Purwins H.-G. Hexagon structures in a two-dimensional dc-driven gas discharge system. Phys. Rev. E 1998, 58(6): 7109-7117.
    [149] Cheung PY, Donovan S, and Wong A Y. Observation of Intermittent Chaos in Plasma. Phys. Rev. Lett. 1988, 61(12): 1360-1361.
    [150] Feng D L, Zheng J, Huang W, and Yu C X. Type-Ⅰ-like intermittent chaos in multicomponent plasmas with negative ions. Phys. Rev. E 1996, 54 (3): 2839-2943.
    [151] Strohlein G, Peil A Experiment evidence of a low-dimensional attractor in the coupling of drift and ion-sound wave. Phys. Fluids B 1989, 1(6): 1168-1173.
    [152] Fan S H, Yang J H, Dai J B, et al. Observations of quasiperiodic chaos in plasma. Phys. Lett. A 1992, 164 (3): 295-298.
    [153] Ding W X, Huang W, Wang X D, and Yu C X Quasiperiodic Transition to Chaos in a Plasma Phys. Rev. Lett. 1993, 70(2): 170-173.
    [154] Ding WX, She H Q, Huang W, and Yu CX Controlling Chaos in a Discharge Plasma Phys. Rev. Lett. 1994, 72(1): 96-99.
    [155] Ding W X, Deutsch H, Dinklage A, and Wilke C. Observation of a Stange Nonchaotic Attactor in Neon Glow Discharge 1997, 55(3): 3769-3772.
    [156] W. Huang, W. X. Ding, D.L. Feng, and C. X. Yu. Estimation of a Lyapunov-exponent spectrum of plasma chaos. Phys. Rev. E 1994, 50(2), 1062-1069.
    [157] 刘秉正 彭建华 非线性动力学 高等教育出版社 2004
    [158] 张琪昌 王洪礼 竺致文等 分岔与混沌理论及应用 天津大学出版社 2005.1