双频容性耦合等离子体鞘层特性的流体力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
容性耦合等离子体(CCP)被广泛地应用于微电子制造工业的刻蚀、薄膜沉积和其它表面处理工艺中。在刻蚀工艺中,反应腔室内的等离子体密度和轰击到电极上的离子能量起着极其重要的作用,因为等离子体密度直接影响刻蚀速率,离子能量则影响刻蚀的选择性及对产品的损伤,实现对等离子体密度和离子能量的独立控制可以间接的调制刻蚀率、选择性等工艺参数。双频CCP(DF-CCP)被认为是一种解决等离子体密度和离子能量分离控制的有效方法,可以产生大面积均匀等离子体,并且通过调节高、低频的放电参数可以有效的控制等离子体密度、轰击到基片上的离子能量等关键物理参数。其结构简单、成本低,因而在新一代的刻蚀设备中得到了广泛应用。
     等离子体必须经过鞘层才能与基片发生相互作用,因此,双频偏压容性耦合等离子体(DF-CCP)鞘层中的各物理参量及其物理过程对等离子体刻蚀工艺有着直接的影响,使得双频鞘层特性一直受到研究者们的关注。
     在第二章中针对双频偏压等离子体鞘层建立了一维流体力学模型。该模型假设离子满足流体力学方程,电子遵循玻尔兹曼关系,瞬时电场由泊松方程确定;并采用等效电路方法建立了电流平衡方程,来自洽地确定鞘层厚度和鞘层电势之间的关系。
     本章分别研究了在双射频偏压和双脉冲偏压条件下的鞘层特性及参数,如鞘层内的离子密度,电场的空间分布以及充电效应。结果表明:等离子体鞘层特性受高、低频共同调制,等离子体密度主要受高频调制,离子能量主要受低频调制。而且在双脉冲条件下绝缘基片上积累的电荷,明显低于双射频条件下的正电荷。
     在第三章针对电极的位形为一个台阶或一个柱形圆槽情况,建立了二维的流体力学模型,研究了等离子体鞘层中各物理参量的变化规律。其中描述离子的流体力学方程采用通量修正算法(FCT)方法来解,二维的泊松方程用超松弛高斯—赛德尔迭代方法求得。计算的结果表明:极板电位与鞘层的厚度受到高低频电源的共同调制,鞘层内同一位置的电位降随着放电气压的增加而减小,且在电极附近等势线的形状与电极的位形相似,即所谓的“Plasma molding”效应;等离子体的密度也有与电位降类似的变化规律,而且电场和离子流速在电极位形发生变化的台阶内侧很强,且变化很快。
Capacitively coupled plasmas (CCPs) are used extensively in the macro-electronics manufacturing as etching, deposition and other surface treatment devices; for etching processing, plasma density and ion energy bombarding the electrodes are crucial issues because the high plasma density leads to high etch rates while ion bombardment energy is vital for improving selectivity and avoiding dielectric damage. Controlling the plasma density and the ion energy independently can modulate etch rates, etching selectivity and other processing parameters indirectly. Dual frequency CCP has been considered as an effective tool for the independent control of the plasma density and ion bombarding energy, since it can generate large area uniformly plasma. The plasma parameters such as plasma density, ion bombardment energy can be effectively controlled by modulating the discharge parameters of low and high frequency sources. For its simple configuration and low cost, it has been widely used in the next generation plasma etching equipments.
     Ions must pass through the sheath before reacting with the wafer; hence, plasma etching processing is determined directly by physical parameters and process in the sheath, so the sheath characteristics is extensively studied by many research workers.
     In Chapter 2 , a one dimensional fluid model is developed for plasma sheaths. Ion density and ion drift velocity are described by cold fluid equations, electron density is given by Boltzmann relation and instantaneous electric field is determined by Poisson's equation; the relation between the sheath thickness and potential is determined self-consistently by the current balance equation which is obtained from the equivalent circuit model.
     We studied the characteristics and parameters of plasma sheath driven by dual radio frequency and dual pulse respectively, such as plasma density, sheath electron spatiotemporal distribution and charging effect. The results show characteristics of the sheath are modulated by low and high sources; plasma density is modulated by high source but ion energy modulated by low one independently; and the surface charge density on the insulating substrate with the pulse bias is obviously lower than that of the radio frequency bias.
     In Chapter 3, a two dimensional model is also developed for the case of an electrode with a step or cylindrical hole, physical parameters of plasma sheath is studied under the different discharge pressure; The fluid equations describing the ion were solved by Flux Corrected Transport (FCT) method, and two dimensional Poisson equation is solved by the Successive-Over-Relaxation (SOR) Gauss-Seidel iterative method. The results show the electrode potential and sheath thickness were controlled by both low-frequency and high-frequency sources, the potential at the same position in the sheath decreased as the pressure increased, while the shape of potential-isoline near the electrode is similar with the shape of electrode, which is also referred as "Plasma molding" effect; ion density in sheath has the similar profiles with potential; radial electric field and ion velocity at inner side of hole are strong and changed significantly in space.
引文
[1]C.O.Jung,K.K.Chi,B.G.Hwang,J.T.Moon,,M.Y.Lee and J.G.Lee,Advanced plasma technology in microelectronics;Thin Solid Films 341,112(1999)
    [2]Christophe Cardinaud),Marie-Claude Peignon,Pierre-Yves Tessier,Plasma etching:principles,mechanisms,application to micro- and nano-technologies;Applied Surface Science 164,72(2000)
    [3]K.NishikawaU,H.Ootera,S.Tomohisa,T.Oomori,Transport mechanisms of ions and neutrals in low-pressure,high-density plasma etching of high aspect ratio contact holes;Thin Solid Films 374,190(2000)
    [4]John Feldsien,Doosik Kim,Demetre J.EconomouU,SiO etching in inductively coupled C F plasmas:surface chemistry and two-dimensional simulations;Thin Solid Films 374,311(2000)
    [5]戴忠玲,射频及脉冲偏压等离子体鞘层流体力学模拟;(博士学位沦文),大连;大连理工大学,2004
    [6]L.W.Rangelow,Reactive ion etching for high aspect ratio silicon micromachining;Surface and Coating Technology,97,140(1997)
    [7]A.K.Paul~*,A.K.Dimri,R.P.Bajpai,Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application;Vacuum,68,191(2003)
    [8]J.Kiiham aki,H.Kattelus,J.Karttunen,S.Franssila,Depth and profile control in plasma etched MEMS structures;Sensors and Actuators,82,234(2000)
    [9]N.Miki,C.J.Teo,L.C.Ho,X.Zhang,Enhancement of rotordynamic performance of high-speed micro-rotors for power MEMS applications by precision deep reactive ion etching,;Sensors and Actuators A,104,263(2003)
    [10]Mi Chen,Chieng-Ming Chen,Chia-Fu Chen,Growth of carbon nanotubes by microwave plasma chemical vapor deposition using CH4and CO2gas mixture;Thin Solid Films,420-421,230(2002)
    [11]Chao Hsun Lin,Hui Lin Chang,Ming Her Tsai,Cheng Tzu Kuo,Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition;Diamond and Related Materials,11,922(2002)
    [12]J.M.Larson,M.T.Swihart 1,S.L.Girshick,Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond;Diamond and Related Materials,8,1863(1999)
    [13]Abdelbasset Hallil,Bernard Despax,Internal r.f.plasma parameters correlated with structure and properties of deposited hydrocarbon films;Thin Solid Films,358,30(2000)
    [14]L.R.Shaginyan,F.Fendrych,L.Jastrabik,L.Soukup,V.Yu.Kulikovsky J.Musil,CNxHy films obtained by ECR plasma activated CVD:the role of substrate bias(DC,RF)and some other deposition parameters in growth mechanisms;Surface and Coatings Technology 116-119,65(1999)
    [15]Lieberman M A,and Lichtenberg A J,Principles of Plasma Discharges and Material Processing;New York:Wiley,2005
    [16]戴忠玲,毛明,王友年,等离子体刻蚀工艺的物理基础;物理,35(8),693(2006)
    [17]Jae Koo Lee,Natalia Yu.Babaeva,Hyun Chul Kim,Oleg V.Manuilenko,and Jong Won Shon,Simulation of Capacitively Coupled Single- and Dual-Frequency RF Discharges;IEEE Transactions on Plasma Science,32(1),47(2004)
    [18]王帅,双频容性耦合等离子体物理特性的混合模拟;(博士学位论文),大连;大连理工大学,2008
    [19]Goto H H,Lowe H-D.,Ohmi T.Dual excitation reactive ion etcher for low energy plasma processing;Journal of Vacuum Science and Technology.A,10,3048(1992)
    [20]Michael A.Lieberman,Analytical Solution for Capacitive RF Sheath;IEEE Transactions on Plasma Science,16,638(1988)
    [21]Michael A.Lieberman,Dynamics of a Collisional,Capacitive RF Sheath;IEEE Transactions on Plasma Science,17(2),338(1989)
    [22]Valery A.Godyak,Natalia Sternberg,Dynamic model of the eledctrode sheaths in symmetrically driven rf discharges;Physical Review A,42,2299(1990)
    [23]M.A.Sobolewski,Dynamic model of the radio-frequency plasma sheath in a highly asymmetric discharge cell;Physical Review E,56(1),1001(1997)
    [24]J.Gierling and K.-U.Riemanna),Comparison of a consistent theory of radio frequency sheaths with step models;Journal &Applied Physics,83(7),3521(1998)
    [25]K.-U.Riemann,Theoretical analysis of the electrode sheath in rf discharges,Journal of Applied Physics;65(3),999(1989)
    [26]Erik A.Edelberg and Eray S.Aydil,Modeling of the sheath and the energy distribution of ions bombarding rf-biased substrates in high density plasma reactors and comparison to experimental measurements,Journal of Applied Physics;86(9),4799(1999)
    [27]Koichi Yamashita,Willian H.Miller,"Direct" Calculation of quantum mechanical rate constants via path integral mathodes:Application to the reaction path Hamiltonian,with numerical test for the H+H_2 reaction in 3D,J.Chem.Phys;82(12) 5475(1985)
    [28]Theodoros Panagopoulos,Demetre J.Economou,Plasma sheath model and ion energy distribution for all radio frequencics,Journal of Applied Physics;b;85(7),3435(1999)
    [29]Mark A.Sobolewski,Sheath model for radio-frequency-biased,high-density plasmas valid for all ω / ω_i,Physical Review E;62(6),8540(2000)
    [30]Deepak Bose,T.R.Govindan,M.Meyyappan,Ion dynamics model for collisionless radio frequency sheaths,Journal of Applied Physics;87(10),7176(2000)
    [31]J.Gierling,K.-U.Riemann,Comparison of a consistent theory of frequency sheaths with step models,Journal of Applied Physics;83(7) 3521(1998)
    [32]Blake P.Wood,Michael A.Lieberman,Allan J.Lichtcnberg,Sheath Motion in a Capacitively Coupled Radio Frequency Discharge,IEEE Transactions on Plasma Scence;19(4),619(1991)
    [33]Timothy E.Nitschke,David B.Graves,Matching an RF Sheath Model to a Bulk Plasma Model,IEEE Transactions on Plasma Science;23(4),717(1995)
    [34]Manish Chandhok,Jessy W.Grizzle,Modeling the Pressure Dependence of DC Bias Voltage in Asymmetric,Capacitive RF Sheaths,IEEE Transactions on Plasma Science,26(2),181(1998)
    [35]M.N.A.Dewan,Patrick J.McNally,P.A.F.Herbert,Modeling of harmonic contributions to non-symmetrical RF plasmas,Journal of Materials Processing Technology;118,343(2001)
    [36]Valery A.Godyak,Robert B.Piejak,Benjamin M.Alexandrovich,Electrical Characteristics of Parallel-Plate RF Discharges in Argon,IEEE Transactions on Plasma Science;19(4),660(1991)
    [37]Valery A.Godyak,Natalia Sternberg,Smooth Plasma-Sheath Transition in a Hydrodynamic Model,IEEE Transactions on Plasma Science;18(1),159(1990)
    [38]Mark A.Sobolewski,Measuring the ion current in high-density plasmas using radio-frequency current and voltage measurements,Journal of Applied Physics,90(6),2660(2001)
    [39]Michael Klich,Nonlinearity of the radio-frequency sheath,Journal of Applied Physics;79(7);344(1996)
    [40]Karla B(o|¨)rnig,Modeling a collisional,Capacitive sheath for surface modification applications in radio-frequency discharges,Applied Physics Letters;60(13),1553(1992)
    [41]Hua-Tan Qiu,You-Nian Wang,Teng-Cai Ma,Collisional effects on the radio-frequency sheath dynamics,Journal of Applied Physics;90(12),5884(2001)
    [42]H.M(u|¨)ller,A.A.Howling,C.Hollenstein,Power Laws for the Spatial Dependence of Electrical Parameters in the High-Voltage Capacitive RF Sheath,IEEE Transactions on Plasma Science,28(5),1713(2000)
    [43]M.Ardehali,Monte Carlo simulation of ion transport through radio frequency collisional sheaths,Journal of Vacuum Science and Technology A;12(6),3242(1994)
    [44]M.J Kushner,Distribution of ion energies incident on electrodes in capacitively coupled rf discharges,Journal of Applied Physics;58(11),4024(1985)
    [45]Brian E.Thompson,Herbert H.Sawin,Donald A.Fisher,Monte Carlo simulation of ion transport through rf glow-discharge sheaths,Journal of Applied Physics,63(7),2241(1988)
    [46]J.Liu,G.L.Huppert,H.H.Sawin,Ion bombardment in rf plasmas,Journal of Applied Physics;68(8),3916(1990)
    [47]Michael S.Barnes,Johm C.Forster,John H.Keller,Ion Kinetics in Low-Pressure,Electropositive,RF Glow Discharge Sheaths,IEEE Transactions on Plasma Science;19(2),240(1991)
    [48]Dezhen Wang,Tengcai Ma,Ye Gong,A Monte Carlo simulation model for plasma source ion implantation,Journal of Applied Physics;73(9),4171(1993)
    [49]邱华檀,王友年,马腾才,碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响,物理学报,51(6),1332(2002)
    [50]Boris Briehl,Herbert M.Urbassek,Simulation of sheath dynamics and current nonuniformity in plasma-immersion ion implantation of a patterned surface,Journal of applied Physics;93(8),4420(2003)
    [51]R.Hrach,V.Hrachova,Self-consistent particle modellling of plasma-solid interaction:influence of negative ions,Vacuum;60,229(2001)
    [52]M.Paulus,L.Stals.U.R(u|¨)de,Two-dimensional simulation of plasma-based ion implantation,Journal of Applied Physics,85(2),761(1999)
    [53]M.Surendra,David B.Graves,Particle Simulations of Radio-Frequency Glow Discharges,IEEE Transactions on Plasma Science;19(2),144(1991)
    [54]Shuai Wang,Xiang Xu,You-Nian Wang,Numerial investigation of ion energy distribution and ion angle distribution in a dual-frequency capacitively coupled plasma with a hybrid model, Physics of Plasmas,14, 113501(2007)
    
    [55] Ellen Meeks Mark A. Cappelli, A Multi-Fluid Stagnation-Flow Plasma Model with Self-Consistent Treatment of the Collisional Sheath, IEEE Transactions on Plasma Science; 21(6), 768(1993)
    
    [56] Chwan-Hwa "John" Wu, CHihwen "Chris" Li, Jyun-Hwei Tsai, Fongray Frank Young, Solving the Boltzmann Equation in a 2-D-Configuration and 2-D-Velocity Space for Capacitively Coupled RF Discharges, IEEE Transaction on Plasma Science; 23(4) ,550(1995)
    
    [57] Vladimir I. Kolobov , Valery A. Godyak, Nonlocal Electron Kinetics in Collisional Gas Discharge Plasmas, IEEE Transactions on Plasma Science; 23(4), 503(1995)
    
    [58] K.F. Stephens II and C.A.Ordonez, Sheath and presheath potentials for anode, cathode and floating plasma-facing surfaces, Journal of Applied Physics; 85(5),2522(1999)
    
    [59] M.Meyyappan, A continuum model for4 low-pressure radio-frequency discharges. Journal of Applied Physics; 69(12), 8047(1991)
    
    [60] Aleksey V. Vasenkoy, Bernie D. Shizgal, Self-consistent kinetic theory of a plasma sheath, Physical Review E ; 65. 046404(2002)
    
    [61] T. Kitajima, Y.Takeo, T. Makabe, Two-dimensional CT images of two-frequency capacitively coupled plasma, Journal of Vacuum Science and Technology A; 17(5), 2510(199)
    
    [62] Eakeshi Ohmori, Takeshi Goto,Toshiaki Makabe, Negative Charge injection to a wafer in a pulsed two-frequency capacitively coupled plasma for oxide etching; diagnostics by emission-selected computerized tomography, J.Phys.D:Appl.Phys.; 37, 2223(2004)
    
    [63] Tatyana V. Rakhimova, Oleg V. Braginsky et al. Experimental and Theoretical Study of Ion Energy Distribution Function in Single and Dual Frequency RF Discharges, IEEE Transactions on Plasma Science; 35(5), 1229(2007)
    
    [64] C.H.Lee, D.H.Kim, N.-E.Lee, G.C.Kwon, Effect of different frequency combination on ArF photoresist deformation and silicon dioxide etching in the dual frequency superimposed capacitively coupled plasmas, J. Vac. Sci. Technol. A; 24(4) 1386(2006)
    
    [65] T. Gans, J. Schulze, D. O'Connell, and U. Czarnetzki, et. al, Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas, Appled Physics Letters; 89, 261502(2006)
    
    [66] M. M. Turner, P. Chabert, Collisionless Heating in Capacitive Discharges Enhanced by Dual-Frequency Excitation, Physcal Review Letters; 96, 205001(2006)
    
    [67] Frank R. Myers, Maniula Ramaswami, Timothy S. Cale, Prediction of Ion Energy and Angular Distributions in Single and Dual Frequency Plasmas, J. Electrochem.Soc., 141(5), 1313(1994)
    
    [68] Michael S. Barnes, John C. Forster, John H. Keller, Ion Kinetics in Low-Pressure, Electropositive, RF Glow Discharge Sheaths, IEEE Transactions on Plasma Science; 19(2), 240(1194)
    
    [69] H. C. Kim and J. K. Lee, Dual radio-frequency discharges: Effective frequency concept and effective frequency transition, J. Vac. Sci. Technol. A; 23(4), (651)2005
    
    [70] Zhen-Qun Guan, Zhong-Ling Dai, You-Nian Wang, Simulations of dual rf-biased sheaths and ion energy distributions arriving at a dual rf-biased electrode, Physics of Plasmas; 12, 123502(2005)
    
    [71] Aurel Salabas, Ralf Peter Brinkmann, Numerical investigation of dual frequency capacitively coupled hydrogen plasmas, Plasma Sources Science and Technology; 14, S53(2005)
    [72]Heon Chang Kim,Vasilios I.Manousiouthakis,Dually driven radio frequency plasma simulation with a three moment model,J.Vac.Sci.Technol.A;16.(4),2162(1998)
    [73]V.Georgieva,A.Bogaerts,Numerical simulation of dual frequency etching reactors:Influence of the external process parameters on the plasma characteristics,Journal of Applied Physics:98,023308(2005)
    [74]J K Lee,O V Manuilenko,N Yu Babaeva,H C Kim,JW Shon,Ion energy distribution control in single and dual frequency capacitive plasma sources,Plasma Sources Science and Technology;14,89(2005)
    [75]Go Wakayama and Kenichi Nanbu,Study on the Dual Frequency Capacitively Coupled Plasmas by the Particle-in-Cell/Monte Carlo Method,IEEE Transactions on Plasma Science;3I(4),638(2003)
    [76]Zhong-Ling Dai,You-Nian Wang,and Teng-Cai Ma,Spatiotemporal characteristics of the collisionless rf sheath and the ion energy distributions arriving at rf-biased electrodes,Physical Review E;65,036403
    [77]Zhong-Ling Dai,You-Nian Wang,Comparison between characteristics of radio frequency sheaths and pulse sheaths with insulating substrates,Surface and Coatings Technology;165,224(2003)
    [78]侯璐璟,射频鞘层中尘埃粒子的运动过程及尘埃晶格形成机理的研究;(博士学位论文),大连大连理工大学,2005
    [79]Academic Report:Boris J P,Landsberg A M,Oran E S,Gardner J H.1993,LCPFCT - A flux corrected transport algorithm for solving generalized continuity equations.Washington DC:Naval Research Laboratories,Naval Research Laboratory Memorandum Report No.6410-93-7192.
    [80]Doosik Kim and Demetre J.Economou,Plasma Molding Over Surface Topography:Simulation of Ion Flow,and Energy and Angular Distributions Over Steps in RF High Density Plasmas,IEEE Transactions on Plasma Science;30(5),2048(2002)
    [81]Hou Lujing,Wang Younian,Z.L.Miskvic,Two-Dimensional Fluid Simulation of Collisional Plasma Sheath over rf Powered Electrode with Cylindrical Hole,Plasma Science and Technology;6(4),2404(2004)
    [82]Doosik Kim and Demetre J.Economou,Simulation of a two-dimensional sheath over a flat wall with an insulator(?)conductor interface exposed to a high density plasma,Journal of Applied Physics;94(5),2852(2003)
    [83]Doosik Kim and Demetre J.Economou,Simulation of plasma molding over a ring on a flat surfacem,Journal of Applied Physics;94(5),3740(2003)