甘蓝型油菜—白芥体细胞杂种后代的分子和细胞学鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜(Brassica napus L., 2n=38,AACC)是我国油菜的主要栽培品种,但其作为异源四倍体种起源发生的历史较短,遗传背景也较狭窄;加之我国甘蓝型油菜引种国外,因此其遗传基础单一的问题尤为突出。鉴于甘蓝型油菜在生产中的重要地位,如何利用现代生物技术将近缘种属中的优良性状(如黄籽性状、抗病基因)导入栽培油菜中去,拓宽甘蓝型油菜遗传背景是非常重要的。油菜黄籽性状具有较好的营养和加工品质,已受到油菜育种学家的重视,而甘蓝型油菜自然种质中不存在黄籽资源,目前甘蓝型油菜中的黄籽资源均来自芸薹属种间的基因流动,尚未见芸薹属以外黄籽种质资源转入的报道。
     白芥(Sinapis alba L., 2n=24, SS)属于十字花科白芥属,和油菜亲缘关系非常近,且具有很多优良的农艺性状(如黄籽、抗裂角等),对十字花科多种病虫害具有较高的抗性,如抗病毒病、黑胫病、黑斑病和线虫病等。目前国内有关对白芥的利用报道的很少。本研究是在获得甘蓝型油菜和白芥体细胞杂种的基础上,将属间杂种不断与甘蓝型油菜进行连续多代回交及自交,通过基因组原位杂交分析(GISH),追踪外源染色体(白芥)在各个时期的行为。此外,我们首次将白芥的黄籽性状转入甘蓝型油菜,并对其进行了细胞学及分子生物学鉴定,这对于拓宽油菜的遗传背景以及品质改良和育种具有重要的应用价值。以白芥特异的重复序列为探针进行荧光原位杂交(FISH)检测,在黄籽株系D244-18中检测到白芥染色体的易位片段。
     根据拟南芥等的类黄酮合成相关基因的保守序列设计27对兼并引物,共13个基因的16对引物在双亲之间扩增出多态性,其中TT3、TT19和TTG1各有2对引物均扩增出多态性,TT1、TT2、TT8、TT10、TT12、TT18、BAN、PAL、PAP和AHA10各有1对引物扩增出多态性,说明白芥的类黄酮合成基因与甘蓝型油菜存在显著差异。用这16对引物在黄籽后代中进行扩增,除TT2-2引物在黄籽后代中扩增出亲本白芥的特异带外,其它引物在黄籽后代中的扩增带型均与亲本扬油6号一致。而引物TT2-2的PCR扩增结果显示后代黄籽材料同时具有亲本白芥和甘蓝型油菜的特异条带,因此可以推断白芥的部分DNA序列通过易位进入了甘蓝型油菜。对TT2-2引物在黄籽后代D244-18中扩增的白芥特异条带1800bp左右进行克隆、测序。测序结果(1672bp)在NCBI Genbank中对测序结果进行比对(BLAST),结果显示:61-468、664 -1709两个区段的碱基与Brassica rapa BAC clone(LOCUS:AC189336,GI:199580018)同源性分别达到97%和99%,全序列一致性为82%;而469-663区段195个碱基序列在Genbank中无仍何匹配结果。根据测序结果设计引物Sa1,在白芥和黄籽后代中扩增出预期产物(1408bp),而亲本扬油6号的扩增产物比白芥和黄籽后代小200bp左右,进一步说明了黄籽后代中的该特异产物来自白芥。此外, Sa1引物在现有市场上通过种间杂交所获的3个黄籽品种(系)进行比较发现没有白芥所特有的条带,表明我们通过和白芥属杂交所获的黄籽材料与其他来源的黄籽材料存在差异。
The genetic basis of Brassica napus L. (2n=38, AACC), one of the most important oilseed crops worldwide, is quite narrow. The species originated in Europe and was introduced into China as an oil crop in the 1950s. In view of its important role in economic manufacture, how to exploit valuable characters like yellow-seed and disease resistant genes from related species into B. napus using modern biotechnology is in face of breeders. Because of better nutrition and processing quality, yellow-seeded trait is becoming an increasingly important objective of rapeseed breeding. None yellow-seed exists in natural B. napus, and even the existed yellow rapeseed is bred via interspecific hybridization of Brassia species, novel yellow-seeds introduced from the related genus has not been reported.
     Sinapis alba L., a member of the Brassicaceae, possesses desirable agronomic characteristics such as yellow seed color, tolerance to drought stress, reduced pod shattering, resistance to virus diseases, blackleg disease, black spot and beet cyst nematodes. Somatic hybrids of B. napus and S. alba obtained by electrofusion have been described previously. For creation of high yielding rapeseed lines with improved disease resistance and seed quality, these hybrids were subsequently backcrossed with B. napus and self-pollinated to obtain a BC3F1 generation with valuable agronomic characteristics derived from S. alba. This material contains various interesting phenotypes that may be useful for rapeseed breeding.
     The objective of this study was to carry out character observation and trace the chromosome behaviors through genomic in situ hybridization (GISH). On the other hand, we obtained yellow-seed variants in the BC3F1 progenies, which were characterized by both molecular and cytological analysis. Polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) techniques were applied to demonstrate the presence of S. alba chromatin and putative S. alba genome introgressions in B. napus and S. alba interspecific progenies. In addition, we used minisatellite core sequence 33.6 as primer also obtained a 300bp band in D244 which was specific to S. alba. FISH using the PCR-derived fragments of DNA hybridized to mitotic metaphase chromosomes of D244, enabled dependable discrimination of S. alba chromatin introgression, showing a significant hybridization signal on one of the 38 chromosomes.
     According to flavonoid biosynthetic genes of Arabidopsis thaliana, 27 primers were designed for PCR identification of S. alba, B. napus and intergeneric hybrid progenies, of which 16 primers derived from 13 genes amplified polymorphism between both parents, suggesting that significant deviation of flavonoid biosynthetic genes exists between B. napus and S. alba. Further identification of yellow seed progenies with above 16 primers indicated that TT2-2 yielded a S. alba-specific band (1800bp) in progeny lines, whereas amplified bands of progenies by other primers were consistent with‘Yangyou 6’. This result further confirmed that part of S. alba genes was transferred to B. napus through introgressions. A gene fragment of 1672bp in length results from the 1800bp band of D244-18, which was amplified by primer TT2-2 was sequenced. BLAST analysis indicated segment similarity of two base region 61-468 and 664-1709 to B. napus BAC clone (LOCUS: AC189336, GI: 199580018) was 97% and 99%, respectively. No matched data in genebank was found resemble to the 195 bases of region 469-663. Another primer Sa1, designed according to the sequencing result, obtained a prospective 1408bp fragment in S. alba and yellow seed lines, which was differ from the 1200bp band of‘Yangyou 6’, proving S. alba gene exists in yellow seed progenies. In addition, above S. alba specific gene fragment was absent in other three yellow seed varieties produced through interspecific hybridization, illuminating our yellow seed germplasm was different from some of other yellow seed resources tested.
引文
1.丁斌,王洪刚,孙海艳,架生,高居荣。小堰麦异附加系的细胞学及分子标记鉴定[J]。山东农业大学学报(自然科学版),2003,34:172-177
    2.伍晓明,许鲲,王汉中等。甘蓝型油菜与新疆野生油菜属间杂种的获得与分子鉴定[J]。中国油料作物学报,2002,24(4):5-9
    3.何志俊,向长萍. DNA分子标记技术在瓜类蔬菜遗传育种中的应用[J].长江蔬菜,2008(8):36- 38
    4.余舜武,张端品,宋运淳。基因组原位杂交的新进展及其在植物中的应用[J]。武汉植物学研究,2001 , 19 (3) : 248– 254
    5.傅寿仲,戚存扣,蒲惠明等。江苏油菜种质资源研究进展[J]。中国油料作物学报,2001,23(2):69-73
    6.傅寿仲。中国油菜品质育种进展,江苏农业学报[J],1999,15(4):241-246
    7.傅廷栋。刘后利科学论文选集[C]。北京:北京农业大学出版社,1994
    8.刘勇,刘红雨,曾正宜。利用小孢子培育技术筛选油菜抗菌核病材料[J]。西南农业学报,1997,1:108-112
    9.刘后利,油菜遗传育种[M],中国农业大学出版社,1956
    10.刘忠松,官春云,李栒等?世缎陀筒擞虢娌诵陀筒酥旨湓咏谎芯縖J]。中国油料作物学报,2001,23(2):82-86
    11.刘润堂,白建荣,温琪汾。簇毛麦抗白粉病基因的导入及AFLP标记[J]。山西农业大学学报,2004,3:222-224
    12.刘选明,官春云,李恂.油菜单倍体植株叶原生质体培养再生植株[J] .农业生物技术学报, 1999 ,7(1):47-50.
    13.周汉平,李滨,李振声。蓝粒小麦易位系选育的研究[J]。西北植物学报,1995,15:125-128
    14.唐祈林,荣廷昭,宋运淳等。玉米×四倍体多年生玉米F1减数分裂构型及不同构型的染色体来源研究[J]。中国农业科学, 2004 ,37 (4): 473-476
    15.唐道城等。白芥及油菜产量性状抗旱性鉴定指标研究初探[J]。干旱地区农业研究,1999,17:62-66
    16.孙海艳,王利沙。8种大白菜过氧化物酶同工酶分析[J]。现代农业科技, 2009, 5: 8-9
    17.孙蒙祥,杨弘远,周嫦.用乙二醇诱导选定成对原生质体的融合[J].植物学报, 1994, 36: 489-493.
    18.寿森炎,冯壮志,苗立祥,廖芳滨。番茄抗青枯病基因的AFLP分子标记[J]。遗传(北京),2006, 28(2): 195-199
    19.巩振辉等。白菜-白芥属间远缘杂种黑斑病抗性研究[J]。园艺学报,1994,21:401-403
    20.张丽,颜泽洪,郑有良等。小麦中国春背景下长穗偃麦草Ee染色体组特异AFLP及STS标记的建立[J]。农业生物技术学报,2008,16(3):464-473
    21.张秀春,彭明,吴坤鑫等。利用双T-DNA载体系统培育无选择标记转基因大豆[J]。大豆科学,2006,11,25 (4) : 369– 372
    22.张绍松,Peterka H, Budahn H等。油萝卜抗包囊线虫基因的染色体定位及其在油菜附加系中的稳定性[J]。中国农业科学,2008,41(1):93-101
    23.张赞平,侯小改。染色体分带技术及其在植物物种生物学中的应用[J]。河南科学,1996,14:121-125
    24.戚存扣,盖钧镒,章元明。甘蓝型油菜芥酸含量的主基因+多基因遗传[J]。遗传学报,2001,28(2):182-187
    25.李再云,刘后利。甘蓝型油菜与诸葛菜的属间新杂种[J]。华中农业大学学报,1995, 14(1): 33-37.
    26.李学宝,郑世学,董五倍等。甘蓝型油菜抗虫转基因植株及其抗性分析[J]。遗传学报,1999,26( 3) : 262- 268
    27.李宗芸,栗茂腾,黄荣桂等。基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究[J]。中国油料作物学报,2002,24:10-14
    28.李懋学,张赞平。作物染色体及其研究技术[M]。北京:中国农业出版社,1996。
    29.李振声,蒋立训。蓝粒单体小麦研究(一)[J]。遗传学报,1982,9:431-439
    30.李海生. ISSR分子标记技术及其在植物遗传多样性分析中的应用[J]。生物学通报, 2004, 39 (2) : 19 - 21
    31.江树业等。水稻农垦58与农垦58S的RAPD和ISSR分析农业生物技术学报[J], 2000, 8 (1) : 63 - 66
    32.潘刚,周勇明,2003,甘蓝型油菜遗传转化的研究进展[J],中国油料作物学报,25:90-98
    33.潘大仁,Fred W.甘蓝型油菜与萝卜属间杂种的获得及酶学分析[J]。福建农业大学学报,1997,26(4):492-495
    34.熊兴华,官春云,李恂等。基因枪法向甘蓝型油菜转移反义FAD2基因的研究[J]。湖南农业大学学报(自然科学版),2003,29(3)∶188-191
    35.熊兴华,官春云,李栒等?世缎陀筒薴ad2基因片段的克隆及反义表达载体的构建[J]。中国油料作物科学报,2002,24(2):1-4
    36.牛应泽,汪良中,刘玉贞等。利用人工合成甘蓝型油菜创造油菜新种质[J]。中国油料作物学报,2003,25(4):11-15
    37.王新发,王汉中,刘贵华。现代生物技术在油菜育种中的应用及前景[J]。中国油料作物学报,2004,23: 74-77
    38.王新发,王汉中,刘贵华等。导入双价基因的转基因杂交油菜亲本及其对菌核病抗性的研究[J]。植物学通报,2005,22(3)∶292- 301
    39.王新发,王汉中,刘贵华等。现代生物技术在油菜育种中的应用及前景[J]。中国油料作物学报,2002,24(3):74-77
    40.王新望,王军丽,段霞瑜等。普通小麦中来自黑麦的抗白粉病Pm20基因的抗谱分析和AFLP定位[J]。科学通报,2001,46(8):666-669
    41.王景雪,赵福永,徐培林等。油菜转抗草甘膦、抗虫基因获得双抗植株[J]。遗传学报,2005,32(12)∶1293- 1300
    42.王秀娥,赵彦,张清平,王苏玲,周波,陈佩度,刘大钧。利用PCR技术初步鉴定小麦加州野大麦异染色体系[J]。南京农业大学学报,2004,27:1-5
    43.瞿礼嘉,顾红雅,胡苹等.现代生物技术导论[M].北京:高等教育出版社;德国:施普林格出版社, 1999
    44.程振东,卫志明,许智宏.用PEG法把外源基因导入甘蓝型油菜原生质体再生转基因植株[J ] .实验生物学报, 1994 , 27(3) : 341-351
    45.罗鹏,傅华龙。甘蓝型油菜与紫罗兰属间杂交的植物油遗传学研究[J]。植物学报,2003. 45 (4 ) : 432-436
    46.胡大有,王爱云。甘蓝型油菜与萝卜属间杂种的获得及分子鉴定[J]。中国油料作物学报,2006,28(4):476-479
    47.胡琼,李云昌,梅德生等。属间体细胞杂交创建细胞雄性不育系及其鉴定[J]。中国农业科学,2004,37(3):333-338
    48.苑泽宁。小麦异源易位系的鉴定及应用[J]。齐齐哈尔大学学报,2004,20(1):-108
    49.蒲晓斌,张锦芳,李浩杰,黄驰,李治华,张启行,蒋梁材。甘蓝型油菜太空诱变后代农艺性状调查及品质分析[J]。西南农业学报,2006,19:373-377
    50.蓝海燕,王长海,张丽华等。导入β-1,3-葡萄糖酶及几丁质酶基因的转基因可育油菜及抗菌核病的研究[J]。生物工程学报,2000,16(2):142-145
    51.袁有喜,牛应泽,文成敬。人工合成甘蓝型油菜对菌核病的抗性分析[J],西北农业学报,2001,10(2): 91– 93
    52.谢永俊等。云南地方油菜种质资源抗(耐)病毒病、菌核病和霜霉病的鉴定研究[J]。云南农业大学学报,2001,16:889-92
    53.赵云,张义正,杜林方,王茂林。Scu无花瓣油菜遗传及农艺性状的初步研究[J]。四川大学学报(自然科学版),2000,37:103-106
    54.赵志刚。甘蓝型油菜与诸葛菜属间杂种后代的遗传学研究[C]。华中农业大学博士学位论文,2008。
    55.赵淑清,武维华。DNA分子标记和基因定位.生物技术通报,2000(6):1-4
    56.赵继新,陈新宏,王小利,武军,傅杰,何蓓如,宋亚珍,孙志刚。普通小麦-华山新麦草异代换系和附加系的C-分带鉴定[J]。西北农林科技大学学报,2003,31:1-4
    57.陈雁,饶勇强,孟金陵。转双价广谱抗病基因创造甘蓝型油菜抗菌核病新品种的研究[J]。分子植物育种,2003,1(4)∶457- 463
    58.马占强,林良斌.分子标记技术在油菜育种中的应用[J].分子植物育种,2004,2: 728-732
    59.马朝芝,傅廷栋, Stine Tuevesson,等.用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性[J].中国农业科学, 2003, 36 (11) : 1 403 - 1 408
    60.马渐新,周荣华,董玉深。小麦抗条锈病基因定位及分子标记研究进展[J]。生物技术通报,1999,l:51-61
    61.齐向辉,史进文等。DNA分子标记简介[J]。河北林业标记简介,2003(2):46-48
    62.齐莉莉,刘大钧,陈佩度。从普通小麦-簇毛麦易位系中分离与抗病基因连锁的分子标记[J]。高新技术通讯,1993,8:31-341
    63. Ahmad I, Day JP, Macdonald MV, et al. Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola[J]. Ann Bot, 1991,67 :521-525
    64. Ali HBM, Lysak MA, Schubert I. Chromosomal localization of rDNA in the Brassicaceae [J]. Genome, 2005, 48: 341Y346
    65. Ali SNH, Ramanna MS, Jacobsen E, Visser RGF. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses[J]. Theor Appl Genet, 2001, 103: 687-695
    66. Antonious GF, Bomford M, Vincelli P. Screening Brassica species for glucosinolate content[J]. Journal of Environment Science and Health, 2009, 44(3):311-316
    67. Banga SS, Banga SK, Bhaskar PB, Ahuja I, Payal B. Alloplasmic line of Brassica napus L. with Erucastrum canariense cytoplasm is male sterile[J]. In : Proc 11th Intern Rapeseed Congr, Copenhagen, Denmark, 6-10 July 2003a, 324-325
    68. Banga SS, Deol JS, Banga SK. Alloplasmic male sterile Brassica juncea with Enarthrocarpus lyratus cytoplasm and the introgression of gene(s) for fertility restoration from cytoplasmic donor species[J]. Theor Appl Genet, 2003b, 106 :1390-1395
    69. Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe T. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid[J]. Theor Appl Genet, 1998, 96 :177–186
    70. Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon R J. Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background[J]. Plant Breed, 2007, 126:581-587
    71. Bochkaryova EB, Gorlov SL. Utilization of interspecific hybridization and mutagenesis of yellow seed spring rapeseed[J]. In proceeding of 9th international rapeseed congress, 1995, 32 : 1150-1152
    72. Botstein B, White R L, Skolnick M, Davis RW. Construction of a genetic linkage map using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980, 32:314-331
    73. Boukar O, Kong L, Singh BB, Murdock L and Ohm HW. AFLP and AFLP-derived SCAR marker associated with Striga gesnerioides resistance in Cowpea [J]. Corp Science, 2004, 44: 1259~1264
    74. Brown J, et al. Yield reduction in Brassica napus, B.rapa, B.juncea, and Sinapis alba caused by flea beetle (Phyllotreta cruciferae (Goeze) (Coleotera: Chrysomelidae)) infestation in northern Idaho [J]. J Econ Entomol, 2004, 97:1642-1647
    75. Brugmans B, Fernandez CA, Bachem CW, van Os H, van Eck HJ, Visser R G. A novel method for the construction of genome wide transcriptome maps [J]. Plant J, 2002, 31: 211?222
    76. Brumfield RT, Beerli P, Nickerson DA, and Edwards SV. The utility of single nucleotide polymorphisms in inferences of population history [J]. Trends Ecol Evol, 1999, 18: 249-256
    77. Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus: A tool for pyramiding potyvirus resistance genes in pepper [J]. Genome, 1999, 42: 1111?1116
    78. Cegielska-Taras T, Pniewski T, Szala L. Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet, 2008, 49(4): 343-347
    79. Chai GH, Bai ZT, Wei F, King GJ, Wang CG, Shi L, Dong CH, Chen H, Liu SY. Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet, 2010, DOI 10.1007/s00122-010-1279-8
    80. Chen BY, Cheng BF, Jorgensen RB, Heneen WK. Production and cytogenetics of Brassica campestris-alboglabra chromosome addition lines [J]. Theor Appl Genet, 1997, 94: 633-640
    81. Chen BY, Cheng BF, Jorgensen RB, Heneen WK. Production and cytogenetics of Brassica campestris-alboglabra chromosome addition lines [J]. Theor Appl Genet, 1997, 94: 633-640
    82. Chen BY, Heneen WK, J?nsson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour [J]. Plant Breed. 1988, 101: 52–59
    83. Chen BY, Heneen WK. Inheritance of seed color in Brassica campestris L. and breeding for yellow-seeded B.napus L. [J]. Euphytica, 1992, 59 :157-163
    84. Chen BY, Heneen WK, J?nsson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour[J]. Plant Breed, 1988, 101: 52–59
    85. Chen Q. Indentification of wheat Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes [J]. Theor Appl Genet1, 1994, 89: 70- 75
    86. Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep, 2010, DOI 10.1007/s00299-010-0828-6
    87. Chevre AM, Leon AP, Jenczewski E, Eber F, Delourme R, Renard M, Brun H. Introduction of llack leg resistance from Brassica rapa into B.napus[J]. In : Proc 11th Intern Rapeseed Congr, Copenhagen, Denmark, 6-10 July 2003, 1 : 32-35
    88. Coral G. Electrofusion of Sacchavonmyces cerevisiae auxotropphic mutants of identical mating type using a laboratory - made system [ J ]Turkish Journal of Biology, 2003, 27 (1) : 1-5
    89. Danesh D and Young ND. Partial resistance loci for tomato bacterial wilt show differential race specificity [J]. Tomato Genetics Cooperative Report, 1994, 44: 12-13
    90. Daun J K, DeClercq DR. Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin[J]. J Am Oil Chem Soc, 1988, 65:122–126
    91. Devos KM, Gale MD. The use of random amplified polymorphic DNA makers in wheat [J]. Theor Appl Gere, 1992, 84: 567 -572
    92. Ebinuma H, Sugita K, Matsunaga E, et a1. Selection of marker-free transgenic plants using the isopentenyl transferase gene[J]. Proc Natl Acad Sci USA, 1997, 94: 2117– 2121
    93. Ellneskog-Staam P, Salomon B, VonBothmer R, et al. Trigenomic origin of the hexaploid Psammopyrum athericum (Triticeae: Poaceae) revealed by in situ hybridization [J]. Chrom. Res, 2001, 9: 243-249
    94. Fan Z, Tai W, Stefansson BR. Male sterility in Brassica napus L. associated with an extra chromosome[J]. Can J Genet Cytol, 1985, 27 : 467-471
    95. Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus[J]. Theor Appl Genet, 1998, 96 :852–858
    96. Fukui K, Nakayama S, Ohmido N, et al. Quantitative karyotyping of the three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes [J]. Theor Appl Genet, 1998, 96: 325-330.
    97. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype[J]. The Plant Cell, 2007, 19 : 3403-3417
    98. Gaikward K, Kirti PB, Sharma A, Prakash S, Chopra VL. Cytogenetical and molecular investigations on somatic hybrids of Sinapis alba and Brassica juncea and their backcross progeny[J]. Plant Breed, 1996, 115: 480-483
    99. Gill BS, Kimber G. Giemsa C-banding technique for cereal chromosomes [J]. Cereal Res. Comm, 1974, 2: 87-94
    100. Gowers S. The transfer of characters from Brassica campestris L to Brassica napus L : production of clubroot-resistant oil-seed rape (Brassica napis ssp. Oleifera) [J]. Euphytica, 1980, 31 : 971-976
    101. Hasan M, Friedt W, Pons-Kühnemann J, Freitag NM, Link K, Snowdon RJ. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus)[J]. Theor Appl Genet , 2008, 116:1035-1049
    102. Heath DW, Earle ED. Synthesis of low linolenic acid rapeseed ( B rassica napus. L) through protoplast fusion [J ] . Euphytica ,1997 , 93 (3) : 339 - 343.
    103. Henderson CAP, Pauls KP. The use of haploid to develop plant that expresses several recessive traits using light-seeded canola (Brassica napus) as an example[J]. Theor Appl Genet, 1992, 83(4): 476-479
    104. Heyn FW. Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus[J]. Cruciferae Newsl, 1976, 1: 15-16
    105. Hitz WD, Yadav NS, Reiter RS, et al. Reducing polyunsaturation in oil of transgenic canola and soybeen [A]. Plant Lipid Metabolism [C]. Netherlands: Kluwer Academic, 1995, 506-508
    106. Howell EC, Barker GC, Jones GH, et al. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea[J]. Genetics, 2002, 161: 1225-1234
    107. Howell PM, Sharpe AG, Lydiate DJ. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus) [J]. Genome, 2003, 46:454-460
    108. Hu Q, Anderson SB, Dixelius C, et al. Production of fertile intergeneric somatic hybrids betweenBrassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool [J]. Plant Cell Rep, 2002, 21:147– 152.
    109. Hughes SL, et al. Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus[J]. Thero Appl Genet, 2003, 107:1119-1173
    110. James C. Global review of commercialized transgenic corps [J]. ISAAA Briefs, 2001, No.24.
    111. James DW, Jr Lim E, Keller J, Plooy I, Ralston E, Dooner HK. Directed tagging of the Arabidopsis fatty acid elongation 1(FAE1) gene with the maize transposon activator [J]. Plant Cell, 1995, 7: 309?319
    112. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL. Arabidopsis map-based cloning in the post–genome era [J]. Plant Physiol, 2002, 129: 440?450
    113. Ji Y, Chetelat RT. Homoeologous pairing and recombinationin Solanum lycopersicoides monosomic addition and substitution lines of tomato [J]. Theor Appl Genet, 2003, 106: 979-989
    114. Jia JZ. Abstract of Plant GenomeⅢ[M]. San Digo, USA, 1995, 1101
    115. Joshi SP, Gupta VS, A ggarwal RK, et al. Genetic diversity and phylogenetic relationship as revealed by inter simple scequence repeat (ISSR) polymorphism in the genus Oryza[J]. Theor Appl Genet, 2000, 100: 1 311 - 1 320
    116. Kaneko Y, et al. Fine genetic mapping of the TuMV locus causing systemic veinal necrosis by turnip mosaic virus infection in Arabidopsis thaliana[J]. Thero Appl Genet , 2004, 110:33-40
    117. Kashkush K. et al. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid [J]. Genetics, 2006, 160: 1651-1659.
    118. Kato A, Vega JM, Han FP, et al . Advances in plant chromosome identification and cytogenetic techniques [J]. Current Opinin Plant Biol, 2005, 8 : 148 -154
    119. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers [J]. Plant J, 1993, 4: 403?410
    120. Koornneef M. Mutation affecting the testa colour in Arabidopsis [J]. Arabidopsis Inf Serv, 1990, 27:1-4
    121. Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica [J]. Genetics, 1996, 144: 1903-1910.
    122. Lagercrantz U. Comparatitive mapping between Arabidopsis thaliana and Brassica nigra indicacates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements [J]. Genetics, 1998, 150: 1217-1228.
    123. Lander ES, 1996, The new genomics: global views of biology [J]. Science, 274: 536-539
    124. Lelivelt CLC, Krens FA. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) into Brassica napus L. gene poll through intergeneric somatic hybridization with Raphanus sativus L. [J]. Theor Appl Genet, 1992, 83 : 887-894
    125. Lelivelt CLC, Leunissen EHM, Frederiks HJ, Helsper JPFG, Krens FA. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by sexual and somatic hybridization[J]. Theor Appl Genet, 1993, 85 : 688-696
    126. Lemieux B. Overview of DNA chip technology [J]. Mol Breed, 1998, 4: 277-289
    127. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed Xavonoids [J]. Annu Rev Plant Biol , 2006, 57:405–430
    128. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J].Theor Appl Genet, 2001,103:455-461
    129. Li ZY, Ge XH. Unique chromosome behavior and genetic control in Brassica×Orychophragmus wide hybrids: a review. Plant Cell Rep, 2007, 26:701-710
    130. Liu HL. Studies on the breeding of yellow seeded Brassica napus L[J]. In Proceedings of the 6thInternational Rapeseed Congress, Paris, France. Groupe Consultatif International de Recherche Sur la Colza, Paris, France. 1983, 1 :637–641
    131. Liu H, Han J, Hu X. Studies on the inheritance of seed coat colour and other related characters of yellow seeded B. napus[J]. In: Wratten N, Salisbury PA (eds) Proc 8th Int Rapeseed Congr, The Regional Institute, Gosford, Australia, 1991, 5:1438-1444
    132. Liu S, Wang H, Zhang J, et al. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum [J]. Plant Cell Rep, 2005, 24: 133-144
    133. Liu X, Lu T, Yu S, Li Y, Huang Y, Huang T, Zhang L, Zhu J, Zhao Q, Fan D, Mu J, Shangguan Y, Feng Q, Guan J, Ying K, Zhang Y, Lin Z, Sun Z, Qian Q, Lu Y, and Han B. A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies, Plant Mol. Biol., 2007, 65: 403-415
    134. Liu ZW, Fu TD, Tu JX, Chen BY. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.) [J].Theor Appl Genet, 2005, 110(2): 303-310
    135. Liu Z, Yang X, Fu Y, Zhang Y, Yan J, Song T, Rocheford T, Li J. Proteomic analysis of early germs with high-oil and normal inbred lines in maize [J]. Mol Biol Rep 2009, 36(4):813-821.
    136. Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, and Verdier V. Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz) [J]. Theor Appl Genet , 2005, 110: 425-431
    137. Maataoui A, et al. Effect of water stress on the aggressiveness of oilseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S.arvensis L.) [J]. Common Agric Appl Biol Sci, 2003, 68:433-440
    138. Meng JL, Shi SW, Gan L, Li ZY, Qu XS. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. Campestris (AA) and B. carinata (BBCC) with B. napus[J]. Euphytica, 1998,103: 329–333
    139. Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J. Development of isothiocyanate-enriched broccoli and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells[J]. Theor Appl Gen, 2003, 106:727-734
    140. Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A. CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper[J]. Genome, 2000, 43: 137?142
    141. Namai H, Sarashima M, Hosoda T. Interspecific and intergeneric hybridization breeding in Japan[J]. In : S. Tsunoda K H, Gomez-Campo C eds., Brassica crops and wild allies : biology and breeding, Japan Sci, Soc Press, Tokyo, 1980, 191-204
    142. Negi MS, Devic M, Delseny M and Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection [J]. Theoretical and Applied Genetics, 2000, 101: 146~152
    143. Nelson MN, Mason AS, Castello MC, Thomson L, Yan GJ, Cowling WA. Microspore culture preferentially selects unreduced (2n) gametes from an interspecifc hybrid of Brassica napus L.×Brassica carinata Braun. Theor Appl Genet, 2009, 119: 497-505
    144. Nesi N, Jond C, Debeaujon I, et al. The Arabidopsis TT2 Gene Encodes an R2R3 MYB Domain Protein That Acts as a Key Determinant for Proantho cyanidin Accumulation in Developing Seed [J].The Plant Cell, 2001, 13:2099- 2114
    145. Ng JK and Liu WT. Miniaturized platforms for the detection of single-nucleotide polymorphisms [J]. Anal Bioanal Chem, 2006, 386: 427-434
    146. Niu Y, Wu GZ, Ye R, Lin WH, Shi QM, Xue LJ, Xu XD, Li Y, Du YG, Xue HW. Global analysis ofgene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana [J]. Molecular Plant, 2009, 2 (5):1107-1122; doi:10.1093/mp/ssp042
    147. ?lsson G. Self-incompatibility and out crossing in rape and white mustard[J]. Hereditas, 1960, 46 : 241-252
    148. Padilla G, Cartea ME, Velasco P, Haro AD, Ordas A. Variation of glucosinolates in vegetable crops of Brassica rapa[J]. Phytochemistry, 2007, 68 : 536-545
    149. Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep, 2010, Epub ahead of print.
    150. Peterka H, Budahn H, Schrader O, Ahne R, Schutze W. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition[J]. Theor Appl Genet, 2004, 109: 30-41
    151. Potapov DA, Osipova GM. Development of yellow-seeded Brassica napus in Siberia[J]. In : Proc
    11th Intern Rapeseed Congr, Copenhagen, Denmark, 6-10 July 2003, 1 :250-252
    152. Poulsen MH. Result of interspecific crossing of Brassica carinata and B.oleracea for breeding yellow-seeded B.napus[A]. Program and Abstracts of 8th International Rapeseed Congress[C]. Saskatoon, 1991,58
    153. Powell W, Achray GC, Provan J. Polymorphism revealed by simple sequence repeats [J]. Trends Plant Sci., 1996, 1: 215-222
    154. Prevost A, WilkinsonM J. A new sysmtem of comparing PCR primers applied to ISSR finger printing of potato cultivars [J]. Theor Appl Genet, 1998, 98: 107 - 112
    155. Primard-Brisset C, Poupard JP, Horvais R, Eber F, Pelletier G, Renard M, Delourme R. A new recombind double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.)[J]. Theor Appl Genet, 2005, 111 :736-746
    156. Qi CK, Fu SZ, Pu HM. A successful transfer of yellow-seeded trait from Brassica carinata to B.napus[J]. In : Proc 8th Intern Rapaseed Congr Cambridge, UK 4-7 July 1995, 4 :1137-1140
    157. Rahman MH. Inheritance of petal colour and its independent segregation from seed colour in Brassica rapa[J]. Plant Breed, 2001,120:197-200
    158. Rahman MH. Introgression of alleles of the isozymic locus glucosephosphate isommerase-2 (GP1-2) forms the CC genome of Brassica carinata to the CC genome of Brassica alboglabra and their independent segregation from seed colour[J]. Plant Breed, 2001, 120: 363-364
    159. Raina SN, Mukai Y. Genomic in situ hybridization in Arachis ( Fabaceae) identifies the diploid wild progenitors of cultivated ( A.. hypogaea) and related wild ( A..monticola) peanut species [J] . Plant Syst Evol, 1999, 214(1-4): 251-262
    160. Rashid A, Rakow G, Downey RK. Development of yellow seeded Brassica napus through interspecific crosses[J]. Plant Breed, 1994, 112 : 127-134
    161. Ren JP, Dickson MH, Earle ED. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea [J]. Theor Appl Genet, 2000, 100: 810– 819.
    162. Rosa EAS. Chemical composition. In :Gomez-Campo,C.(Ed.), Biology of Brassica Coenospecies[J]. Elsevier Science B.V., Amsterdam, 1999, 315–357
    163. Roy NN. Interspecific transfer of Brassica juncea-type high blackey resistance to Brassica napus [J]. Euphytica,1984 .33: 295-303.
    164. Ruecker B. The inheritance of seed color in winter oilseed rape (Brassica napus L.)[J]. Cruciferace-Newsletter, 1991, (l4-l5): 50-51
    165. Saal B, Brun H, Glais I, Struss D. Identification of a Brassica juncea-derived recessive gene confering resistance to Leptosphaeria maculans in oilseed rape[J]. Plant Breed, 2004, 123 : 505-511
    166. Sakai T, Liu HJ, Iwabuchi M, Kohno-Murase J, Inamura J. Introduction of a gene from fertility restored radish (Raphanus sativus) into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and iodacetoamide-treated protoplasts from a cytoplasic male-seterile hybrid of B.napus[J]. Theor Appl Genet, 1996, 9 : 373-379
    167. Sankar AA, Moore GA. Evalutilon of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map[J]. Theor Appl Genet, 2001, 102: 206 - 214
    168. Schelfhout CJ, Snowdon R, Cowling WA, et al. A PCR based B-genome-specific marker in Brassica species [J]. 2004, 109: 917-921
    169. Schenck HR , Robbelen G. Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris [ J ] . Zplanzebzuchtg , 1982 , 89 : 278-288.
    170. Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, and Weisshaar B. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana[J]. Genome Res., 2003,13: 1250-1257
    171. Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family [J]. Plant Physiol Biochem [J], 2001, 39: 253-262.
    172. Sharp PJ, et al. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes indentifying each homoeologious chromosome [J]. Theor Appl1 Genet, 1988, 78: 342- 348
    173. Sharpe AG, Lydiate DJ. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding[J]. Genome, 2003, 46:461-468
    174. Shirley BW, Kubasek WL, Storz G, et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis [J]. Plant J, 1995, 8: 659-671
    175. Shirzadegan M. Inheritance of seed colour in Brassica napus L[J]. Z. Pflanzenzuecht, 1986, 96(2): 140-146
    176. Snowdon RJ, Friedrich T, Friedt W. Identifying the chromosomes of the A- and C-genome diploid Brassica species B.rapa (syn. campestris) and B.oleracea in their amphidiploid B,napus [J]. Theor Appl Genet, 2002, 104: 533-538
    177. Snowdon RJ, Friedt W, Kohler A et al. Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape (Brassica napus L.) [J]. Ann Bot, 2000, 86: 201-204
    178. Snowdon RJ, Ko¨hler W, Friedt W, Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids[J]. Theor Appl Genet, 1997, 95: 1320-1324
    179. Snowdon RJ, Winter H, Diestal A, Sacristan MD. Development and charactrization of Brassica napus-Sinapis avensis addition lines exhibiting resistance to Leptosphaeria maculans[J]. Theor Appl Genet, 2000, 101 : 1008-1014
    180. Snowdon R, Lühs W, Friedt W. Oilseed Rape[J]. Genome Mapping and Molecular Breeding in Plants, 2007,Volume 2, Oilseeds, C. Kole (Ed.) Springer-Verlag Berlin Heidelberg. Plant Physiol., 2003, 132(1): 84-91
    181. Somers DJ, Demmon G. Identification of repetitive, genome-specific probes in crucifer oilseed species [J]. Genome, 2002, 45:485-492
    182. Somers DJ, Rakow G, Prabhu VK, Friesen KRD. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus [J].Genome, 2001, 44(6): 1077-1082
    183. Song KM, Tang K, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution [J]. Proc Natl Acad Sci USA, 1995, 92: 7719-7723.
    184. Stiewe G, R?bbelen G. Establishing cytoplasmic male sterility in Brassica napus by mitochondrial recombination with B.tournefortii[J]. Plant Breed, 1994, 113 : 294-304
    185. Struss D, Bellin U, Robbelen G. Development of B-genome chromosome addition lines of Brassica napus using different interspecific Brassica hybrids [J]. Plant Breed, 1991, 106:209-214
    186. Struss D,Quiros CF, Plieske J, R?bbelen G. Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers[J]. Theor Appl Genet, 1996, 93 : 1026-1032
    187. Tan GX, Jin HJ, Li G, He RF, Zhu LL, He GG. Production and characterization of a complete set of individual chromosome addition lines from Oryza officinalis to Oryza sativa using RFLP and GISH analysis [J]. Theor Appl Genet, 2005, 111:1585-1595
    188. Tang ZL, Li JN, Zhang XK, Chen L, Wang R. Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources[J]. Plant Breed, 1997, 116 : 471-474
    189. Taylor DC, Francis T, Guo Y, Brost JM, Katavic V, Mietkiewska E, Michael GE, Lozinsky S, Hoffman T. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J, 2009, 7(9): 925-938
    190. Tonguc M, Griffiths PD. Transfer of powdery mildew resistance from Brassica carinata to seed fertility and the presentation of an instance of improvement of its fertility[J]. Euphytica, 1988, 39 : 141-151
    191. Tu YQ, Sun J, Ge XH, Li ZY. Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies. Genome, 2010, 53(2): 146-156
    192. Tung C.W., Wei X., Yap I., Youens-Clark K., Ware D., and Stein L. Gramene: a growing plant comparative genomics resource [J]. Nucleic Acids Res., 2008, 36(D): 947-953
    193. UN. Genome-analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization [J]. Japan J Bot, 1935, 7: 389-452.
    194. Useche FJ, Gao G, Harafey M, and Rafalski A. High-throughput identification, database storage and analysis of SNPs in EST sequences [J]. Genome Inform., 2001, 12: 194-203
    195. van Deynze AE, Pauls KP. The inheritance of seed color and vernalization requirement in Brassica napus and using doubling haploid populations[J]. Euphytica, 1994, 74: 77-83
    196. Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by overexpression of a yeast glycerol-3-phosphate dehydrogenase under the control of a see-specific promoter. Plant Biotechnol, 2007,5: 431-441
    197. Vosa CG, Marchi P. Quinacrine fluorescence and Giesma staining in plants [J]. Nature, New Biol, 1972, 237: 191-192
    198. Voss A, Snowdon R J, Luhs W, Friedt W, Intergeneric transfer of nematode resistance from Raphanus sativus into Brassica napus genome[J]. Acta Hortic, 2000, 539 : 129-134
    199. Wang L, Ning S B, SongY C, LuY T. The progress and application of fluorescent in situ hybridization [J]. Acta Bot Sin, 2000, 42: 1 101-1 107
    200. Wang N, Wang YJ, Tian F, King GJ, Zhang CY, Long Y, Shi L, Meng JL. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytologist, 2008, research, 751-764
    201. Wang YP, Snowdon R J, Rudloff E, Wehling P, Sonntag K. Cytogenetic characterization and fael gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica[J]. Genome, 2004, 47:724-731
    202. Wang YP, Sonntag K, Rudloff E, Chen J M. Intergeneric somatic hybridization between Brassica napus and Sinapis alba[J]. Integrative J Plant Biol, 2005, 47: 84-91
    203. Wang Z, Mao H, Dong C H, Ji R Q, Cai L, Fu H, Liu S Y. Over expression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in Oilseed Rape [J]. Molecular Plant-Microbe Interactions, 2009, 22(3):235-244
    204. Wang Z, Mao H, Dong CH, Ji RQ, Fu RQ, Cai L, Fu H, Liu SY. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiotum in oilseed rape. Mol Plant Microbe Interact, 2009, 22(3): 235-244
    205. Warwick S I, et al. Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae) [J]. 2nd edition. Ottawa, Ont. 2000, PartⅣ,11-12
    206. Wei W, Li Y, Wang L, Liu S, Yan X, Mei D, Li Y, Xu Y, Peng P, Hu Q. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering[J]. Theor Appl Genet, 2010, 120: 1089-1097
    207. Weisshaar B, Jenkins GI. Phenylpropanoid biosynthesis and its regulation [J]. Curr Opin. Plant Biol, 1998, 1,251- 257
    208. Williams KJ, Fisher JM, Langridge P. Development of a PCR-based allele specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat [J] . Genome , 1996 , 39 :798 801
    209. Winter H, Diestel A, Gartig S, Krone N, Sterenberg K, Sacristan MD. Transfer of new black leg resistance into oilseed rape[J]. In : Proc 11th Intern Rapeseed Congr, Copenhagen, Denmark, 6-10 July 2003, 1 :19-21
    210. Xu BB, Li JN, Zhang XK, Wang R, Xie LL,Chai YR. Cloning and molecular characterization of a functional flavonoid 3’-hydroxylase gene from Brassica napus. Journal of Plant Physiology, 2007, 164: 350-363
    211. Xu CY, Zeng XY, Li ZY. Establishment and characterization of Brassica juncea-Orychophragmus violaceus additions, substitution and introgressions[J]. Euphytica, 2007, 156: 203-211
    212. Yao XC, Du XZ, Ge XH, Chen JP, Li ZY. Intra- and intergenomic chromosome pairings revealed by dual-color GISH in trigenomic hybrids of Brassica juncea and B. carinata with B. maurorum. Genome, 2010, 53(1): 14-22
    213. Zamir D. Improving plant breeding with exotic genetic libraries [J]. Nat Rev Genet, 2001, 2: 983-989
    214. Zhang C, Yang Z, Gui X, Liu Y, Mao X, Xia G, Lin L. Somatic hybridization between Brassica napus and Eruca sativa mill. Sheng Wu Gong Cheng Xue Bao, 2008, 24(5): 793-802
    215. Zhang FL, Takahata Y. Microspore mutagenesis and in vitro selection for resistance to soft rot disease in Chinese cabbage(Brassica campestris L. ssp. pekinensis) [J]. Breed Sci, 1999,49 :161-166
    216. Zhao J W, Buchwaldt L, Rimmer S R, Sharpe A, Mcgregor L, Bekkaoui D, Hegedus D. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum [J]. Molecular Plant Pathology, 2009, 10(5), 635-649
    217. Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus[J]. Plant Breed, 2003, 122:19-23
    218. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.) [J]. Theor Appl Genet, 2003, 106, 759–764
    219. Zhao J, Udall J, Quijada P, Grau C, Meng J, Osborn T. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L[J]. Theor Appl Genet, 2006, 112, 509–516
    220. Zhu JQ, Zhang JT, Tang RJ, Lv QD, Yang L, Zhang HX. Molecular characterization of ThIPK2, aninositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiol Plant, 2009, 136(4): 407-425
    221. Zhu YL, Song QJ, Hyten DL, van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, and Cregan PB. Single-nucleotide polymorphisms insoybean[J], Genetics, 2003, 163: 1123-1134
    222. Zietkiewiez E, Rafalske A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J].Genome, 1994, 20:178- 183