聚乙二醇介质中硫脲衍生物及聚合物支载磺酸催化下氨基烃基-2-萘酚的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类进步和社会可持续发展,生态环境、社会资源等方面的问题愈来愈成为国际社会关注的焦点,环境经济性已经成为了技术创新的重要推动力。这对化学学科提出了新的要求和挑战,促使绿色化学和绿色合成成了当前化学研究的热点。难溶性载体试剂参与下的固相合成使分离操作简单易行;可溶性聚乙二醇支载下的液相合成显示出液相反应的稳定高效性,同时兼顾大分子聚合物容易沉降分离的优点;无毒且稳定的小分子PEG作为反应介质,往往表现出醚和醇的双重性质和功能。而这些都是绿色合成及洁净化工尝试的重要侧面。本文在综述有关PEG参与的固相合成、液相合成、以及PEG为介质的相关化学研究的基础上,就PEG支载的可溶性催化剂、聚苯乙烯-PEG支载的固相催化剂存在下的合成以及PEG-400作为介质的合成进行了研究,具体内容如下:
     1、在PEG-400介质中,各种取代酰氯依次与硫氰酸铵、芳胺或芳酰肼作用,得到12种N-苯基-N/-5-(2/-硝基苯基)-2-呋喃甲酰基硫脲、11种1-芳氧乙酰基-4-[(5/-邻硝基苯基)-2/-呋喃甲酰基]氨基硫脲、14种2-苯并呋喃甲酰基硫脲、9种2-苯并呋喃甲酰基氨基硫脲和12种N-芳基-N/-苯甲酰基硫脲,共计58种化合物。该法的优点是无毒无挥发的PEG-400为溶剂的同时兼作相转移催化剂,反应时间短,反应条件温和,产率高,后处理简单。
     2、合成了可溶性聚乙二醇支载的磺酸(PEG-OSO3H)及交联聚苯乙烯键合聚乙二醇支载的磺酸(PS-PEG-OSO3H)两种催化剂,并将它们分别应用于芳香醛、β-萘酚和酰胺(或尿素)三组分一锅法合成氨基烃基-2-萘酚的研究中,得到了28种氨基烃基-2-萘酚。固相催化剂作用于合成反应时操作简单、催化剂能够良好地回收再利用;可溶性催化剂催化的反应发生在均相体系,良好地导能传质条件使得反应效率更高,同时催化剂也可回收并重复利用。
     3、在强碱诱导下的碱性PEG-400介质中,硼氢化钠、硒粉和卤代烃反应高产率得到二硒醚。相对于乙醇、水等作为介质合成二硒醚,以PEG-400为介质减少了剧毒气体硒化氢的排放,同时硼氢化钠的利用率有所提高。更为重要的是乙醇、水等介质本身能导致硼氢化钠的分解,而PEG-400由于兼具了醇和醚的双重性质:前者保证了在强碱诱导下预期的反应能够顺利进行,后者又减弱了溶剂对硼氢化钠的分解副反应。
The ecological and durative environment has become the focus of the world with the progress of society. Environmental economics has become an important steering wheel for technological innovation. So, development of environmentally friendly chemical synthesis has been obtained considerable interesting both in academic and industrial research. The replacement of toxic and volatile organic solvents as reaction media or an efficient catalyst with environmentally acceptable alternatives are an area of tremendous importance in modern organic synthesis. Basing the review about solid-phase synthesis with simple separation, the liquid phase organic synthesis supported by the solution polyethylene glycol and the chemical reactions in the medium of PEG, herein we are going to study the synthesis of 1-amidoalkyl-2 -naphthols in presence of the solution catalyst or the solid catalyst and the synthesis of thiourea in PEG-400 medium. Three branches are included in this paper.
     1. In PEG-400 treatment of the corresponding acylchloride with ammonium thiocyanate, aromatic amines or arylhydrazide gave 12 N-aryl-N/-(5-(2/-nitrophenyl) -2-furoyl)-thioureas, 11 1-aryloxyacetyl-4 -(5/-(2// -nitrophenyl)-2/-furoyl) -thiosemicarbazides, 14 N-aryl-N' -(2-benzofuroyl)-thioureas, 9 1-aroyl-4 -(2'-benzofuroyl) -thiosemicarbazides, and 12 N-aryl-N/-benzoylthioureas. A total of 58 compounds have been synthesized. And all these compounds were characterized by Elemental analysis, IR and 1H NHR. The merits of the method is non-toxic PEG-400 as the solvent, at the same time doubles as a phase transfer catalyst. The mission is finished with short time, mild conditions, high yields and simple work-up.
     2. Polymer bound sulfonic acid was prepared on nonsoluble polystyrene–poly(ethylene glycol) (PS–PEG) resin. The PS–PEG-bound sulfonic acid exhibited good catalytic activity in the synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, with good yield and good recyclability. This method presents are markable technique toward an efficient synthesis of 1-amidoalkyl-2-naphthols.
     Another efficient and environmentally friendly process for the synthesis of 1-amidoalkyl-2-naphthols via the same three-component condensation reaction using soluble poly(ethyleneglycol)-bound sulfonic acid has been developed. The functionalized poly(ethylene glycol) acted simultaneously as catalyst in the condensation. The workup was easy, and the products were obtained in good to excellent yields and high purities.
     3. Diselenides were synthesized by the reaction of sodium borohydride, selenium powder and halohydrocarbon in the media of PEG-400. At the same time, the PEG-400 do the role of surfactant. Sodium borohydride and halohydrocarbon can be dissolved while it ensure good energy change and mass transfer with the reaction. The toxic hydrogen selenide gas was reduced, while the utilization of sodium borohydride was over a lot when the PEG-400 instead of ethanol. More importantly, ethanol could cause decomposition of sodium borohydride, and PEG-400 combines the dual nature of alcohol and ether, The former guarantees the expected reaction to be able to successfully carry out when alkali was present. The latter weakens the decomposition of sodium borohydride.
引文
[1] Anastas P. T.,Warner J. C. Green Chemistry Theory and Practice. Oxford Univ. Press. 1998.
    [2]杜灿屏,刘鲁生,张恒.21世纪有机化学发展战略.化学工业出版社.2002: 58.
    [3] Fang Y. X.,Xiong X. J.,Wang Y. L.,Zhang K. Chin. J. Synth. Chem. 2003, 11: 213-218.
    [4] Trost B. M. Sci. 1991, 254: 1471-1477.
    [5] Wender P. A. Chem. Rev. (Editorial) 1996, 96: 1-2.
    [6] Wang W. H, Zhang J. X.,Wu S. H. Chin. J. Org. Chem. 2005, 25.: 125-134.
    [7] Yan H, Xing G. J.,Hu J.,Huang J. Y. Chem. Res. Appl.2002, 12: 355-359.
    [8] Trost B. M., Duman J.,Villa M. J. Am. Chem. Soc. 1992, 114: 9836-9845.
    [9] Rikken G. L. J. A., Raupach E. Nature.2000,405: 932-935.
    [10] Caddick S. Tetrahedron. 1995, 51: 10403-10432.
    [11] Marquez H.,Perez E. R.,Plutn A. M.,Morales M.,Loupy A.Tetrahedron Lett. 2000, 41: 1753-1756.
    [12] Li Z.,Wang X. C. Synth. Commun. 2002, 32: 3087-3092.
    [13] Zhang G. L., Li Z., and Wang X. C. Synth. Commun. 2002, 32: 3107-3112.
    [14] Warwick. Special Edition of the Journal Ultrasonics Covering the RSC Sonochemistry Symposium. Ultrasonics. 1987, 25(January Issue).
    [15] Durant A., Delplancke J. L. Eur. J. Org. Chem. 1999, 11: 2845-2851.
    [16] Hutchinson J. H., Pattenten G., Myers P. L. Tetrahedron Lett. 1987, 28: 1313- 1316.
    [17] (a).Jessop P. G., Ikariya T., Noyori R. Acc. Chem. Res., 2002, 35: 746-756. (b).Oakes R. S, Clifford A. A, Rayner C. M. J . Chem. Soc. Perkin Trans. I, 2001, 917-941.(c).Leitner W. Acc. Chem. Res. 2002, 35: 746-756.
    [18] Li G. P., Jiang H. F., Li J. H. Chin. J. Org. Chem. 2002, 22: 433-435.
    [19] (a).Welton T. Chem. Rev., 1999, 99: 2071-2083. (b).Wasserscheid P., Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772-2789. (c).Dupont J., Souza R. F., Suarez P. A. Z. Chem. Rev. 2002, 102: 3667-3692. (d).Wasserscheid P., Welton T. IonicLiquids in Synthesis. Weinheim: Wiley2VCH, 2003. (e).Welton T. Coord. Chem. Rev. 2004, 248: 2459-2477. (f).Song C. E. Chem. Commun., 2004, 1033-1043.
    [20] Wasserscheid P., Keim W. Angew. Chem. Int. Ed. 2000, 39: 3773-3789.
    [21] (a).Luo Z. Y., Zang Q. S., Oderaotoshi Y., Curran D. P. Sci. 2001, 291: 1766-1769. (b).Horvath I. T. Acc. Chem. Res. 1998, 31: 641-650.
    [22] Kelment I., Lutjens H., Knochel P. Angew. Chem. Int. Ed. Engl. 1997, 36: 1451-1560 .
    [23] (a).Loupy A. Top. Curr. Chem. 1999, 206: 153-208. (b).Balema V. P., Wiench J. W., Pruski M., Pecharsky V. K. J. Am. Chem. Soc. 2002, 124: 6244- 6245. (c).Dolman S. J., Satterly E. S., Hoveyda A. H., Schrock R. R. J. Am. Chem. Soc. 2002, 124: 6991-6997. .
    [24] Xu Q. Y., Chao B., Wang Y. M., Dittmer D. C. Tetrahedron. 1997, 53: 12131-12146 .
    [25] Tanaka K., Toda F. Chem. Rev. 2000, 100: 1025-1074.
    [26] Lu G., Zhang Q., Xu Y J. Chin. J. Synth. Chem. 2004, 24: 600- 608.
    [27] Wang J. J., Li R. X. . Chem. Edu. 2004, 4: 4-6.
    [28] Zhang Z., Wang X. C., Li Z. Synth. Commun. 2004, 34, (8): 1407.
    [29] (a).Li C. J., Chan T. H. New York: Wiley & Sons, 1997. (b).Brink G. J., Arends I. W., Sheldon R. A. Sci. 2000, 287: 1636-1639. (c).Lindstroem U. M. Chem. Rev. 2002, 102: 2751-2772. (d).Lubineau A. Top. Curr. Chem. 1999, 206, 1-40. (e).Li C. J. Chem. Rev. 2005, 105: 3095-3165. (f).Li C. J., Chen L. Chem. Soc. Rev. 2006, 35: 68-82.
    [30] (a).Wang X. C., Zhang Z., Quan Z. J., Wang M. G., Wang F., Li Z., Yang C. Y.. Chin. J. Org. Chem. 2006, 26: 967-970. (b).Wang X. C., Zang Z., Quan Z. J., Wang M. G., Wang F, Li Z. Synth. Commun. 2006, 36: 843–847,
    [31] (a).Desimone J. M. Sci. 2002, 297: 799-803. (b).Poliakoff M., Fitzpatrick J. M., Farren T. R., Anastas P. T. Sci. 2002, 297: 807-810. (c).Andrade C. K. Z., Alves L. M. Curr. Org. Chem. 2005, 9: 195-218.
    [32] (a).Chen J., Spear S. K., Huddleston J. G., Rogers R. D. Green Chem. 2005, 7: 64-82. (b).Zhou H. F., Fan Q. H., He Y. M., Gu L. Q., Chen X. Z. Pro. Chem. 2009, 1: 1517-1528
    [33] Sataniello E., Ferraboschi P., Sozzani P. J. Org. Chem. 1981, 46: 4584-4585
    [34] Sataniello E., Fiecchi A., Manzocchi A., Ferraboshi P. J. Org. Chem. 1983, 48: 3074-3077
    [35] Chandrasekhar S., Narsihmulu C., Chandrashekar G., Shyamsunder T. Tetrahedron Lett. 2004, 45: 2421-2423
    [36] Drasekhar S., Shyamsunder T., Chandrashekar G., Narsihmulu C. Synlett, 2004, 3: 522-524 [ 37 ] (a).Gladysz J. A. Chem. Rev. 2002, 102: 3215-3892.(b).De Vos D. E., Vankelekom I. F. J., Jacobs P. A. Weinheim: Wiley2VCH, 2000 (c).Cole2Hamilton D. J. Sci. 2003, 299: 1702-1706
    [38] (a).Fan Q. H., Li Y. M., Chan A. S. C. Chem. Rev., 2002, 102: 3385-3466. (b).Li Y. M., Fan Q. H., Chan A. S. C. Asymmetric Organic Reaction: Catalyst Recovery and Reuse. Beijing: Chemical Industry Press, 2002.
    [39] Da Silva L. H. M.. Loh W. Chem. Commun., 1998, 787-788
    [40] Rosa R. G., Martinelli L., Da Silva L. H M., Loh W. Chem. Commun., 2000, 33-34
    [41] Heldebrant D. J., Jessop P. G. J. Am. Chem. Soc. 2003, 125: 5600-5601
    [42] Walter L. Nature. 2003, 423: 930-931
    [43] (a).Noyori R. New York: Wiley, 1994. (b).Tang W.J., Zhang X.M. Chem. Rev., 2003, 103: 3029-3069
    [44] Xu L. J., Lam K.L., Ji J. X., Wu J., Fan Q. H., Lo W. H., Chan A. S. C. Chem. Commun., 2005, 1390-1392.
    [45] (a).Lam K. H., Xu L. J., Feng L. C., Fan Q. H., Lam F. L., Lo W. H., Chan A. S. C. Adv. Synth. Catal. 2005, 347: 1755-1758. (b).Tang W.J., Zhu S. F., Xu L. J., Zhou Q. L., Fan Q. H., Zhou H. F., Lam K., Chan A. S. C. Chem. Commun., 2007, 613-615
    [46] Heldebrant D. J., Witt H. N., Walsh S. M., Ellis T., Rauscher J., Jessop P. G. Green Chem. 2006, 8: 807-815
    [47] Noyori R., Hashiguchi S. Acc. Chem. Res., 1997, 30: 97-102
    [48] Hashiguchi S., Fuji A., Takehara J., Ikariya T., Noyori R. J. Am. Chem. Soc., 1995, 117: 7562-7563
    [49] Wang F., Liu H., Cui L F., Zhu J., Deng J G., Jiang Y. Z. J. Org. Chem. 2005, 70: 9424-9429
    [50] Zhou H. F., Fan Q. H., Huang Y. Y., Wu L., He Y.M., Tang W.J., Gu L. Q., Chan A. S. C. J. Mol. Catal. A: Chem., 2007, 275: 47-53
    [51] Haimov A., Neumann R. Chem. Commun., 2002, 876-877.
    [52] Hou Z. S., Theyssen N., Brinkmann A., Leitner W. Angew. Chem. Int . Ed., 2005,44: 1346-1349
    [53] Jenzer G., Sueur D., Mallat T., Baiker A. Chem. Commun., 2000, 2247-2248
    [54] Chandrasekhar S., Narsihmulu C., Sultana S. S., Reddy N. R. Chem. Commun. 2003., 1716-1717
    [55] Beletskaya P., Cheprakov A. V. Chem. Rev. 2000, 100: 3009-3066
    [56] Chandrasekhar S., Narsihmulu C., Sultana S. S., Reddy N R. Org. Lett . 2002, 4: 4399-4401
    [57] Xu L J., Chen W. P., Ross J., Xiao J. L. Org. Lett. 2001, 3: 295-297
    [58] Cabri W., Candiani I. Acc. Chem. Res. 1995, 28: 2-7
    [59] Luo C. C., Zhang Y. H., Wang Y. G. J. Mol. Catal. A: Chem. 2005, 229: 7-12
    [60] Miyaura N., Suzuki A. Chem. Rev. 1995, 95: 2457-2483
    [61] Namboodiri V. V., Varma R. S. Green Chem. 2001, 3: 146-148
    [62] Corma A., García H., Leyva A. Tetrahedron. 2005, 61: 9849-9854
    [63] Wang L., Zhang Y. H., Liu L. F., Wang Y. G. J. Org. Chem. 2006, 71: 1284-1287
    [64] (a).Pei T., Widenhoefer R. A. J. Am. Chem. Soc. 2001, 123: 11290-11291. (b).Han X Q., Wang X., Pei T., Widenhoefer R. A. Chem. Eur. J . 2004, 10: 6333-6342. (c).Yang D., Li J. H., Gao Q., Yan Y. L. Org. Lett. 2003, 5: 2869-2871
    [65] Li J. H., Zhu Q. M., Liang Y., Yang D. J. Org. Chem. 2005., 70: 5347-5349
    [66] Choudary B. M., Jyothi K., Madhi S., Kantam M. L. Synlett. 2004, 2: 231-234
    [67] Kumar R., Chaudhary P., Nimesh S., Chandra R. Green Chem. 2006, 8: 356-358
    [68] Dalip K., Gautam P., Braja G. M., Rajender S. V. Tetrahedron Lett. 2008., 49: 6974–6976
    [69] Wang X. C., Quan Z J., Zhang Z. Tetrahedron. 2007, 63: 8227-8233.
    [70] (a). Basavaiah D., Rao P. D., Hyma R. S. Tetrahedron. 1996, 52: 8001-8062. (b). Baylis A. B., Hillman M. E. D. DE 2155113,1972 [Chem. Abstr. 1972., 77., 34174] .
    [71] Chandrasekhar S., Narsihmulu C., Saritha B., Sultana S. S. Tetrahedron Lett. 2004, 45: 5865-5867
    [72] List B., Lerner R. A., Barbas C. F. J. Am. Chem. Soc. 2000, 122: 2395-2396
    [73] (a).Chandrasekhar S., Narsihmulu C., Reddy N. R., Sultana S. S. Tetrahedron Lett. 2004, 45: 4581-4582. (b).Chandrasekhar S., Reddy N. R., Sultana S. S., Narsihmulu C., Reddy K. V. Tetrahedron. 2006, 62: 338-345
    [74] Reetz M T., Wiesenhfêer W. Chem. Commun. 2004, 2750-2751
    [75] Mazaahir K., Divya B., Neeraj K. M., Vikas B. Catal. Commun. 2008, 9: 2547–2549.
    [76] Kamigatio T., Ando T., Sawamoto M. Chem. Rev. 2001, 101: 3689-3745
    [77] Perrier S., Gemici H., Li S. Chem. Commun. 2004, 604-605
    [78] Behr A., Miao Q. J. Mol. Catal. A: Chem. 2004., 222: 127-132
    [1]庞冀燕,许遵乐.有机化学. 2005,25: 25-33
    [2] Takasugi M., Nagao S., Masamune T. Tetrahedron Lett. 1979, 20: 4675.
    [3] Pacher T., Seger C., Engelmeier D., Vajrodaya S., Hofer O., Greger H. J. Nat. Prod. 2002, 65: 820.
    [4] Sheen W. S.,Tsai I. L.,Teng C. M.,Chen I. S. Phyto-chemistry. 1994, 36: 213.
    [5] Mukhanova T. I., Granik V. G., Denisov A. V., Trubitsina T. K., Shvarts G. Y., Mashkovskii M. D. Pharm. Chem. J.(Engl. Transl.) 1994, 28: 893.
    [6] Takeuchi N., Kasama T., Ikeda R., Shimizu K., Hatakeyama K. Chem. Pharm. Bull. 1984, 32: 2249.
    [7] Sastry C. V. R., Bansal O. P., Lal B., Chaturvedi S. C., Srinivas J. S. Indian J. Chem. Sect. (B). 1991,30: 532.
    [8] kidwai M., Misra P, Kumar R., Saxena R. K., Gupta R., Bradoo S. Monatsh. Chem. 1998, 129: 961.
    [9] Andreani A., Rambaldi M., Carloni P., Greci L., Stipa P. J. Heter. Chem. 1989, 26: 525.
    [10] Mazzone G., Pignatello R., Mazzone S., Panico A., Pennisi G. Il Farmaco. 1993, 48: 1207.
    [11] Vio L., Mamolo M. G., Laneve A. Il Farmaco. 1989, 44: 165.
    [12] Ladva K., Patel P., Upadhyay P., Parekh H. Indian J. Chem. Sect.(B) 1996, 35: 1062.
    [13] Wang X. C., Li Z., Da Y. X., Chen J. C., Wang X. C. Indian J. Chem. Sect. (B) 2001, 40: 422.
    [14]邹金山,薛思佳,管谦.合成化学. 2001, 9: 109.
    [15] Douglass I. B, Dains F. B. J. Am. Chem. Soc. 1934, 56: 719.
    [16] (a)Reeves W. P., Simmons J. R. A., Rudis J. A. Synth.Commun. 1981, 11: 781. (b)Li Z., Wang X. C., Da Y. X., Chen J. C. Synth. Commun. 2001, 31: 1433.
    [17] Wang X. C., Quan Z. J., Li Z.. J. Chem. Res. 2005,5: 71.
    [18] Li Y. J., Zhang Y. X., Xu Y. T., Sun S. Q., Wang Y., Liu S. N. Chin. J. Org . Chem. 2003, 23: 1442
    [19] Wang X. C., Zhang Z, Quan Z. J., Wang M. G., Wang F., Li Z., Yang C. Y. Chin. J. Org. Chem. 2006, 26: 967.
    [20] Zhang Z., Wang X. C., Li Z. Synth. Commun. 2004, 34: 1407.
    [21]陈继畴,魏太保,杨素铀.农药. 1991, 30: 8.
    [22]黄宪,黄志真.化学试剂. 1985, 7: 20.
    [23]李政,权正军,王喜存.有机化学. 2003, 23: 822.
    [24]权正军.西北师范大学硕士学位论文. 2004: 15.
    [25] Tanaka S. J. Am. Chem. Soc. 1951, 73: 872.
    [26]金桂玉,解敏雨,赵国锋.应用化学, 1995, 12: 99.
    [27] Krutosikova A., Kovac J., Sykora V. Collect. Czech Chem. commun. 1974, 39: 1892.
    [28]魏太保.西北师范大学硕士学位论文. 1991: 70.
    [1] Ba I., Su S., Wu Y. H. Indu. Catal. 2008. 16. 37.
    [2] Shaterian H. R., Yarahmadi H., Ghashang M. Bioorg. Med. Chem. Lett. 2008,18: 788.
    [3] (a). Chen J., Spear S. K., Huddleston J. G., Rogers R. D. Green Chem., 2005, 7: 64. (b). Zhou H. F., Fan Q. H., He Y. M., Gu L. Q., Chen X. Z. Pro. Chem. 2009, 1: 1517.
    [4] Merrifield R. B., J. Am. Chem. Soc. 1963, 85: 2149.
    [5] Bayer E., Mutter M. Nature. 1972, 237: 512.
    [6] (a). Wentworth P., Janda K. D. Curr. Opin. Biotedmol. 1998, 9:109. (b). Gravert D. J., Janda K. D. Chem. Rev. 1997, 97:411.
    [7] Mutter M., Hagenmaier H., Bayer E. Angew. Chem. Int. Ed. Engl. 1971, 10:811.
    [8]熊成东,王亚辉,袁明龙,邓先模.高分子通报, 2000, (1):39.
    [9] Ferruti P., Tanzi M. C., Rusconi L., Cecchi R. Makromol Chem. 1981, 182: 2183.
    [10] (a). Mutter M., Hagenmaer H., Bayer E. Angew. Chem. Int. Ed. 1971, 10: 811. (b). Pillai V. N. R., Mutter M., Bayer E., Gatfield I. J. Org. Chem. 1980, 45: 5363.
    [11] Glass J. D., Silver L., Sondheimer J., Pande C. S., Coderre J. Biopolym. 1979, 18: 383.
    [12] Shanbhag V. P., Johansson G. Biochem. Biophys. Res. Commun. 1974, 61: 1141.
    [13] (a). Karabinos J. V., Hazdra J. J. J. Org. Chem. 1962. 27: 4253. (b). Condor G. R., Fruitwala N. A., Shingari M. K. J. Chromatogr. 1983, 269: 171.
    [14] Kern W., Iwabuchi S., Sato H., Bohmer V. Makromol Chem. 1979, 180: 2539.
    [15] . Li Z., Wang J. K.,Wang X. C. Chem. Commun. 2003, 33: 3567.
    [16] (a). Zalipsky S., Gilon C., Zilkha A. Eur. Polym. J. 1983, 19: 1177. (b). Johansson G. Biochim. Biophys. Acta. 1970, 222: 381.
    [17] (a). Geckeler K. Ibid. 1979, 1: 427. (b). Ciuffarin E., Isola M., Leoni P. J. Org.Chem. 1981, 46: 3064.
    [18] Harris J. M., Yalpani M., Van A., Lstine J. M., Struck E. C., Case M. G., Paley M. S., Brooks D. E. J. Polym. Sci. Polym.Chem.Ed. 1984, 22: 341.
    [19] (a). Mutter M. Tetrahedron Lett. 1978, 2839. (b). Suzaki T., Murakami Y., Takegami Y. J. Polym. Sci. Polym. Lett. Ed. 1979, 17: 241.
    [20] Devos R. J., Goethals E. J. Makromol Chem. Rapid Commun. 1985, 6: 53.
    [21] Harris J. M., Hundley N. H., Shannon T. G., Struck E. C. J. Org. Chem. 1982, 47: 4789.
    [22]袁明龙,熊成东,邓先模.中国专利, 1998,申请号9812401217.
    [23]Wang X. C., Wang J. K., Wu D. Q., Zong Y. X. SYNLETT. 2005,(17):2595–2598.
    [24] Johansson G., Hartman A. Proc. Int. Solvent Extract Conf. Lyon. 1974, 927.
    [25] Johansson G., Gysin R., Flanagan S. D. J. Biol. Chem. 1981, 256: 9126.
    [26] Geckeler K., Bayer E. Polym. Bull. 1980, 3: 347.
    [27] Geckeler K., Bayer E. PolymBull. 1979, 1: 691.
    [28] Royer G P., Anantharmaiah G. M. J. Am. Chem. Soc. 1979, 101: 3394.
    [29] Fradet A., Marechal E. Polym. Bull. 1981, 4: 205.
    [30] Ciuffarin E., Isola M., Leoni P. J. Org. Chem. 1981, 46: 3064.
    [31] Sauvagnat B., Lamaty F., Lazaro R., Martinez J. Tetrahedron Lett. 1998, 39: 821.
    [32] Blettner C. G., Koenig W. A., Stenzel W., Scotten T. Synlett. 1998: 295.
    [33] Reggelin M., Brenig V. Tetrahedron Lett. 1996, 37: 6851.
    [34] Reggelin M., Brenig V., Welcker R. Tetrahedron Lett. 1998, 39: 4801.
    [35] Reggelin M., Brenig V., Zur C. Org. Lett. 2000, 2: 531.
    [36] Blaskovich M. A., Kahn M. Synth. 1998: 965.
    [37] Moore M., Norris P. Tetrahedron Lett. 1998, 39: 7027.
    [38] Gordon E M., Barrett R. W., Dower W. J., Fodor F. P. A., Gallop M. A. J. Med. Chem. 1994, 37:1385.
    [39] Yoon J., Cho C. W., Han H., Janda K. D. Chem. Commun. 1998: 2703.
    [40] Nouvet A., Binard M., Lamaty F., Lazaro R. Tetrahedron. 1999, 55: 4685
    [41] Zhao X. Y., Metz W. A., Sieber F., Janda K. D. Tetrahedron Lett. 1998, 39: 8433.
    [42] Yang G. C., Chen Z. X., Hu C. L. Chin. J. Org. Chem. 2002, 22: 936
    [43] Lin X. F., Wang Y. G. Chin. J. Org. Chem. 2005, 25: 1157
    [44] Reggelin M., Brenig V. Org. Lett. 2000, 2: 531.
    [45] Sauvagnat B., Lamaty F., Lazaro R. Tetrahedron Lett. 1998, 39: 821.
    [46] Berengere S., Frederic L., Rene L. Tetrahedron Lett. 2000, 41: 6371.
    [47] Hori M., Janda K. D. J. Org. Chem. 1998, 63: 889.
    [48] Carsten G. B., Wilfried A. K. Tetrahedron Lett. 1999, 40:2101.
    [49] Cheng S., Comer D. D., Myers P. L. Tetrahedron Lett. 1999, 40:8975.
    [50] Wipf P., Venkatraman S. Tetrahedron Lett. 1996, 37:4659.
    [51] (a). Han H., Janda K. D. J. Am. Chem. Soc. 1996, 118:7632. (b). Han H., Janda K. D. Tetrahedron Lett. 1997, 38:1527. (c). Han H., Janda KD. Angew. Chem. Int. Ed. Engl. 1997, 36:741.
    [52] Wipf P., Venkatraman S. Tetrahedron Lett. 1996, 37:4659.
    [53] Harris J H., Liu Y., Chai S., Andrews M. D., Vederas J. C. J. Org. Chem. 1998, 63: 2407.
    [54] Hori M., Janda K. D. J. Org. Chem. 1998, 63: 889.
    [55] Sachin B. P., Pankajkumar R. S., Mandar P. S., Shriniwas D. S. Ultr. Sono chem. 2007, 14: 515.
    [56] Pillai U. R., Sahle D. E. Green Chem. 2004, 6: 161.
    [57] Kovacs G., Nadasdi L. Green Chem. 2003, 5: 213.
    [58] Choudary B. M., Kantam M. L., Reddy C. R. V. J. Mol. Catal. Chem. 1999, 146: 279.
    [59] Li J. T., Yang W. J., Wang S. X., Li T. S. J. Hebei Uni. (Natural Science Edition). 2004, 24: 91.
    [60] Wen L., Lin Z Y., Zhou J Z., Gu P Y., Fu J K., Lin Z H. Acta. Phys. Chim. Sin. 2008, 24: 581.
    [61] Chen L. J., Zhao D. S., Guo S. H. Acta Chim. Sinica. 2007, 65: 1718.
    [62] Satoshi M. Mitsuo K. Chem. Rev. 2009, 109: 711.
    [63] Wang G. J., Liu Y. W., Yang Z. X., Wang X., Ming X. Chin. J. Org. Chem. 2007., 27,: 471.
    [64] Chaplin R. P., Burford R. R., Tory C. J., Polym. 1987, 28: 1418.
    [65] Zhang Z. E., Reactive and Functional Polymer Material. Chemical industry Press, Beijing, 2005(in Chinese).
    [66] Benaglia M., Puglisi A., Cozzi F. Chem. Rev. 2003, 103: 401.
    [67] Merrifield R. B. Am. Chem. Soc. 1963. 85: 2149.
    [68] (a). Song C. E., Lee S. Chem. Rev. 2002, 102: 3495. (b). Fan Q. H., Li Y. M., Chart A. S. C. Chem. Rev. 2002, 102: 3385. (c). De Vos D. E., Dallis M., Sels B. F., Jacobs P. A. Chem. Rev. 2002. 2: 3615. (d). Leadbeater N. E., Marco Chem. Rev. 2002, 2: 32l7. (e). Bergbreiter D. E. Chem. Rev. 2002, 2: 3345.
    [69] Jerabek K., Setink K. J. Reactive Polym. 1988, 9: 132.
    [70] Faulkner L. R. J. C&EN. 1984, 27: 28.
    [71] Ren J., Zhou Y. Y., Huang J. X. Chin. J. Colloid & polym. 2001, 19: 42.
    [72] (a). Guo M. L. Chin. J. Catal. 2003, 24: 483. (b). Chattim S., Bortoluss A. M., Loupy J. J.Appl. Polym. Sci. 2003, 90: 1255.
    [73] Anelli P. L., Czech B., Montanari F. J. Am. Chem. Soc. 1984, 106: 861.
    [74] Regen S. L. J. Am. Chem. Soc. 1975, 97: 5956.
    [75] Kondo S., Kawasoe S. Pure Appl.Chem. 1993, A30: 413.
    [76]夏天喜,金龙,英姿等,精细石油化工. 1996, 1: 7.
    [77]邹长军.电子材料科学与工程. 2005, 16: 9.
    [78] (a).俞善信,杨建文.离子交换与吸附. 1994, 5:461. (b).杨建文,俞善信.高分子通报. 1993, 4: 408.
    [79] Menger F. M., Chu C. H. J. Org. Chem. 1981, 46: 5044.
    [80] Bergbreiter. Macromolecules. 1998, 31: 6053.
    [81] Masaki Y., Tanaka N., Miura T. Tetrahedron Lett. 1998, 39: 5799.
    [82] Daniel F., Ciril J., Miquel A. Perics. Org. Lett. 2006, 8: 4653.
    [83] Delaney E. J., Wood L. E., Klotz I. M. J. Am. Chem .Soc. 1982, 104: 799.
    [84] Tomoi M., Akada Y., Kakiuchi H. Makromol Chem. Rapid Commun. 1982, 3: 537.
    [85] Welbes L. L., Scarrow R. C., Borovik A. S. Chem. Commun. 2004: 2544.
    [86] Dong H. L., Jong H. K., Bong H. J., Homan K., Juyoung P., Yoon S. L. Org. Lett. 2008, 10: 1609.
    [87] Gil S., Gonzalez R., Mestres R. Reactive and Functional Poly. 1999, 42: 65.
    [88]胡荣华,夏俊,蔡明中,应用化学, 2003, 20: 254.
    [89]吴世华,魏伟,杨秀.功能高分子学报. 2000, 13: 46.
    [90] Manfred T., Reet Z. Tetrahedron. 2002, 58: 6595.
    [91] Olga K., Frances H. A. Reviews. 1997, 15: 523.
    [92] Emilie B., Yolanda R. Tetrahedron Lett. 2002, 43: 8555.
    [93] Benaglia M., Celentano G., Cozzi F., Adv. Synth. Catal. 2001, 343: 171.
    [94] Toy P. H., Janda K. D., Tetrahedron Lett. 1999, 40: 6329.
    [95] Wang X. C., Quan Z. J., Wang F., Wang M. G., Zhang Z., Li Z. Synth. Commun. 2006, 36: 451.
    [96] Chacko A., Devi R., Abraham S., Mathew B. J. Appl. Polym. Sci. 2005, 96: 1897.
    [1]徐辉碧,杨祥良.化学进展, 2002, 14: 305.
    [2] Han C. X., Wang F. H., Zhang B. GPTCA(part B: Chem Anal). 2007, 43: 420.
    [3]苗键,高崎,许思来.微量元素与相关疾病.河南医科大学出版社, 1998, 8.
    [4]黄卫平,刘放.广东微量元素科学. 1998, 5 : 6210.
    [5]周勋波,王海英,谢甫绨.辽宁农业科学, 2002 : 36238.
    [6]黄峙.食品科学, 2001 , 22 : 90.
    [7] (a).舒学军,桑晓燕,雷志伟,张界平.江西化工. 2006, 4: 50. (b).吴军,刘秀芳,徐汉生.化学试剂. 1999, 21: 145. (c).孟双明,李晓陆,陶学郁.河北大学学报. 1994, 14: 93.
    [8] Sharpless K. B., Lauer R. F. J. Am. Chem. Soc. 1973, 95 : 2697.
    [9] Liotta D. Ann. Chem. Res. 1984, 17: 28.
    [10] Liotta D. J. Org. Chem. 1981, 64: 2605
    [11] (a). Liotta D., Zima G. Tetrahedron Lett. 1978, 19: 4977. (b). Ryu L. Synthesis. 1984, 5: 439
    [12] Chen J, Zhou X. J. Chin. J. Org. Chem. 1987, 5 : 331
    [13] (a). Murai T., Ezaka T., Kanda T. Chem. Commun. (Cambridge), 1996, 15: 1809. (b). Kataoka T., Banno Y., Watanabe S. Tetrahedron Lett. 1997, 38: 1809. (c). Enders D, Whitehouse D. L. Synthesis. 1996, 5: 621. (d). Zhu L. S., Huang Z. Z., Huang X. Synth. Commun. 1997, 27 : 39. (e). Gosselin P., Bonfand E., Maignan C.. Synthesis, 1996, 9 : 1079.
    [14] Petit F., Furstoss R.. Synthesis, 1995, 12: 1517.
    [15] Furuta T., Takeuchi K., Iwamura M. Chem. Commun. (Cambridge), 1996, 2 : 157.
    [16]陈邦池,吕平.化学试剂. 1987, 93 : 157.
    [17]赵迎娣,黄宪.化学试剂, 1990, 12: 218.
    [18] Zippel S., Boldt P.. Synthesis, 1997, 2: 173.
    [19] Grieco P. A., Yokoyama Y., Gilman S. J. Org. Chem. 1977, 42: 2034.
    [20] Wirth T. Tetrahedron Lett. 1995, 36 : 7849.
    [21] Masamune S., Kaiho T., Garvey D. S. J. Am. Chem. Soc. 1982, 104: 5521.
    [22] Leonard W. R. J. Org. Chem. 1985, 50: 730.
    [23] (a). Tiecco M., Testaferri L., Tingoli M.. J. Org. Chem. 1990, 55: 429. (b). Wang L., Huang X. Synth. Commun. 1993, 23: 2817.
    [24] (a).年光昭夫.有机合成化学协会志.1985, 43: 921. (b).藤田贤一.有机合成化学协会志.1996,54: 166.
    [25]杜潍湘,徐汉生.化学试剂. 1990, 12: 224.
    [26] Toshimitsu A., Owada H., Terao K. J. Chem. Soc. Perkin. Trans. 1, 1985, 2: 373.
    [27]林寨伟,花文廷.化学通报. 1989, 6: 9.
    [28] Houllemare D., Ponthieux S., Outurquin F. Synthesis. 1997, 1: 101.
    [29] (a).王志光,马维勇,张椿年.化学试剂. 1993, 15 :25. (b).张联,周维善.化学学报. 1989, 47: 117.
    [30] Mikolajczy K. M., Mikina M., Graczyk P. Synthesis. 1996, 10 : 1232.
    [31] Pandey G., Rao K. S. S. P., Rao K. V. N. J. Org. Chem. 1996, 61: 6799.
    [32] Tiecco M., Testaferri L., Tingoli M. Gazz. Chem. Ital. 1996, 126: 635.
    [33] Steven V. L. Chem. & Ind. 1985: 2.
    [34] Zhou X. H. Tianjin Chem. Indu. 2008, 22: 27.
    [35] Evans P. A., Holmes A. B., Collins I. Chem. Commun. 1995: 2325.
    [36] Klute W., Krueger M., Hoffmann R. W. Chem. Ber. 1996, 129: 633.
    [37] Nishibayashi Y., Singh J. D., Fukuzawa S. J. Org. Chem. 1995, 60: 4114.
    [38] (a). Kurose N., . Takahashi T., Koizumi T. J. Org. Chem. 1996, 61 : 2932. (b). Nishibayashi Y., Chiba T., Ohe K. Chem. Commun. 1995: 1243
    [39] Torii S.有机合成化学协会志, 1990, 48: 553.
    [40] Vukicevic R., Konstantinovic S., Mihailovic M. L. Tetrahedron. 1991, 47: 859.
    [41] Klayman D. L., Griffin T. S. J. Chem. Soc. 1973, 95: 197.
    [42] Yang L. X., Wang J., Tao Y. H. Chin. J. Inorg. Chem. 2001, 17 : 905.
    [43] Wang R. F., Zang W. G., Fan J., Lu T. B. Chem. & Bioengin. 2005, 3 : 27.