毛白杨基因组DNA甲基化遗传变异及遗传效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr.)是我国重要的白杨派乡土树种,具有速生、材质优良、抗病性强等特点,在黄河流域发挥着重要的生态和环境保护作用,具有较高的经济、生态与社会价值,因此,对其进行遗传改良备受关注。先前的研究多集中于该树种的传统遗传学研究,如遗传多样性评价、遗传结构分析、数量性状的QTLs解析等,但未涉及表观遗传变异领域。然而目前的研究表明,表观遗传,特别是]DNA甲基化修饰在植物基因表达调控过程中扮演着重要的角色,且可以在不同世代间遗传。因此,对毛白杨群体的表观遗传变异及遗传效应进行研究具有重要的理论与应用价值。本论文首次以毛白杨432个基因型构成的自然群体和130个种内杂交子代无性系为试材,利用MSAP标记技术、多元统计和单标记分析等手段对其基因组DNA甲基化遗传变异、遗传效应进行了分析。本论文取得的主要结果如下:
     1.毛白杨木质部、叶片基因组甲基化相对水平不同。自然群体木质部基因组总甲基化相对水平为26.57±5.86%,其中全甲基化相对水平为13.10±2.28%,半甲基化相对水平为13.47±4.64%;总甲基化相对水平低于非甲基化相对水平(42.71±6.73%,P<0.001),全甲基化相对水平低于半甲基化相对水平(P<0.001)。130个毛白杨种内杂交子代无性系功能叶片基因组非甲基化相对水平为71.86±1.01%,高于总甲基化相对水平(17.87±1.47%,P<0.01),全甲基化相对水平(9.26±0.96%)高于半甲基化相对水平(8.61±1.10%,P<0.01)。
     2.毛白杨自然群体木质部基因组DNA甲基化存在丰富的表观遗传变异。9个种源间毛白杨基因组DNA甲基化(或非甲基化)相对水平差异显著,其中山东毛白杨总甲基化相对水平和半甲基化相对水平最大,北京毛白杨全甲基化相对水平最大,河南毛白杨非甲基化相对水平最大;同时,北京、河北、山东及河南种源内毛白杨全甲基化相对水平和半甲基化相对水平具有显著性差异,河北、山东、河南、山西和陕西种源内毛白杨DNA总甲基化相对水平和非甲基化相对水平差异显著。在表观遗传多样性方面,陕西种源毛白杨多样性最丰富(1.211),而甘肃种源多样性最小(0.811)。9个种源毛白杨表观遗传分化系数分布于0.054和0.366之间,自然群体GsT值为0.159。表观遗传结构分析显示,甲基化敏感多态性数据矩阵(MSP)组间变异占7.700%,组内变异占92.300%,第一、第二主成分共解释总惯量的64.50%。山西毛白杨除与河南毛白杨有部分交集外,与其它各种源毛白杨无交叉。而河南毛白杨则与河北、陕西等种源毛白杨有交集。甲基化类型数据矩阵(CG-CNG)组间变异占9.000%,组内占91.000%,第一、第二主成分共解释总惯量的73.11%,河南毛白杨与其它多数种源毛白杨在一定程度上有交集,而河北、山西种源毛白杨相互独立。MSP和CG-CNG矩阵具有极显著正相关性,典型对称协惯量分析认为MSP和CG-CNG矩阵分布具有相似性,第一、第二主成分分别解释了总的协惯量的68.51%、4.26%,并且CG-CNG的贡献率较大。由于植物材料定植于相同地点和取材时间的一致,消除了环境和发育阶段特异表达带来的误差,实验推测毛白杨木质部甲基化可经有丝分裂过程被继承,其表观遗传变异与遗传变异并不完全一致,并推测河南可能是毛白杨自然分布中心。
     3.毛白杨自然群体木材品质等9个表型性状呈正态分布,它们之间存在显著相关性,并且树高与非甲基化相对水平呈显著负相关、与全甲基化相对水平呈显著正相关;单标记分析共检测到1101个多态性MSAP标记位点与木质素含量等9个表型性状相关联,每一标记可解释表型遗传变异1.057%(P<0.043)-7.784%(P<0.001),其中470个标记位点与两个或两个以上上表型相关联。
     4.创制毛白杨种内杂交子代新种质295份,其中130个无性系功能叶片净光合速率(Pn,14.83士3.76μmol m-2S-1)、气孔导度(Gs,0.29±0.09mol m-2s-1)、胞间二氧化碳浓度(Ci,264.50±30.94μmol mol-1),幼苗高生长(H,133.59±50.44cm)和地径(D,16.29±5.20mm)等表型数据呈正态分布,且Pn分别与H、D间呈正相关(P<0.05);表型性状Pn、Gs、H、D均与总甲基化相对水平、半甲基化相对水平显著正相关。MSAP单标记分析共检测到81个多态性MSAP标记位点与光合特征因子显著连锁,每一标记可解释表型遗传变异的3.395%(P=0.036)-18.982%(P<0.001),其中13个标记同时与生长性状显著连锁。对以上81个候选标记位点进行克隆与测序,成功获得59条基因序列,它们与编码原叶绿索酸脂还原酶的基因、或与编码细胞色素P450CYP4/CYP19/CYP26亚家族的基因、或与编码参与光合系统Ⅱ(photosystem Ⅱ)有关功能蛋白的基因等具有同源性。因此,毛白杨基因组光合基因响应基因组甲基化,并且可以影响生长性状,具有表观遗传效应。
Chinese white poplar{Populus tomentosa Carr), belonging to the section under Populus Duby, with fast-growing, high quality timber characteristics, and disease resistance, is one important native tree species in China. It plays an important role in ecological and environmental protection along the Yellow River and has great economic, ecologica and social values. Therefore, researchers focus much attention to the improvement of this tree species. Previous researches focus on genetic variation in P. tomentosa, such as evaluation of genetic diversity, genetic structure and QTLs linkage analysis, etc. However, little knowledge is known about on the epigenetic variant which plays an important role in the process of plant gene expression and regulation and can be inherited that revealed by emerging evidence. This dissertation firstly studied the genomic DNA methylation in432individuals from natural population in P. tomentosa, and one intraspecific hybridization population including130genotypes.The methylation sensitive amplification polymorphism (MSAP) techniques, multivariate statistical analysis and single marker analysis were used for exploring the epigenetic variant in DNA methylation and its effects on phenotype variation in population. The major results of this dissertation were as follows:
     1. The genomic DNA methylation relative levels in xylem and leaves were not the same. Within the432individuals of natural population from P. tomentosa, the relative total methylation and non-methylation levels were26.57±5.86%and42.71±6.73%, respectively. The relative non-methylation level was significantly higher than the relative total methylation level (P<0.001). Also, compared to the relative CG methylation level (13.10±2.28%), the relative CNG methylation level (13.47±4.64%) was higher (P<0.001). In the population of130hybrids, the genomic non-methylation relative level was71.86±1.01%, which was larger than the relative total methylation level (17.87±1.47%)(P<0.001).The relative full methylation level was higher than the relative hemi-methylation level(8.61±1.10%)(F<0.001).
     2. The genome methylation in the xylem of natural P. tomentosa population showed great epigenetic variation. Firstly, significant differences among different natural populations were detected. Among the nine populations, the relative methylation/non-methylation levels were significantly different. The relative total methylation level and relative hemi-methylation level in the Shandong population were the greatest among the9populations. The relative full methylation level in the population of Beijing displayed the greatest value and the largest relative non-methylation level was found in the population of Henan. It was also found significant differences between relative CG methylation level and relative CNG methylation level within the populations of Beijing (P=0.026), Hebei (P=0.018), Shandong (P=0.002) and Henan (P=0.001), as well as significant differences between relative total methylation level and relative non-methylation level within the populations of Hebei (P=0.001), Shandong (P=0.012), Henan (P<0.001), Shanxi (P<0.001), Shaanxi (P<0.001), respectively. Secondly, the Shaanxi population had the maximum value in epigenetic diversity and thus it showed higher variation than other populations. However, the Gansu population displayed the least Shannon's diversity. Coefficients of epigenetic differentiation (GST) within each population were distributed from0.054to0.366and a GST=0.159was obtained within the432genotypes. According to the methylation sensitive matrix (MSP), the first two principal components explained64.50%of the variant which could be partitioned into between-(7.700%) and within-(92.300%) populations. The Shanxi population was non-overlapping with other populations except for a partial intersection with the Henan population which also intersected with Hebei, Shaanxi, and other populations. While the first two principal components, which could also be partitioned into between-(9.000%) and within-(91.000%) populations, of methylation pattern matrix (CG-CNG) explained73.11%of the variation in total inertia. The Henan population intersected with other populations to some degree, but the populations of Hebei and Shanxi were independent of each other. The relationship between MSP and CG-CNG profiles was significantly positively correlated. And the distributions of the two profiles were similarly that was detected by a typical symmetric co-inertia analysis. The first two principal components explained68.51%,4.26%of the total inertia, respectively, and CG-CNG token great contribution. Eliminating environmental-and stage-specificity factors, it was suggested that DNA methylation could be fixed and inherited though mitosis. Compared to genetic structure, data also suggested that epigenetic and genetic variation do not completely match.
     3. The phenotype values in the content of lignose and other eight traits were displayed normal distribution, and they correlated in linear. The hight of tree were correlated negatively with relative non-methylation level, but gave positive correlation with relative CG methylation level, respectively. Using the single MSAP molecular marker analysis, we obtained that1101markers were associated with the nine timber traits.125markers were associated with content of Iignose,127markers were associated with content of holocellulose,72markers were associated with content of a-cellulose,190markers were associated with fiber length,134markers were associated with fiber width,140markers were associated with microfiber angle,312markers were associated with diameter at breast height,414markers were associated with height of tree, and345markers were associated with volume of timber, respectively. The contribution of each associated marker to explain the variant in phenotype was ranged in a percentage from1.057%(P<0.043) to7.784%(P<0.001). And470markers were associated with more than one phenotype trait.
     4. New germplasm in intra-hybridization were created and295offspring were obtained. In total,1532clones were reproduced from200genotypes. Research on the130offspring including390clones, it showed that the photosynthetic characteristics data and growth traits were normally distributed. The net photosynthetic rate (Pn,14.83±3.76μmol m-2s-1),stomatal conductance (Gs,0.29±0.09mol m-2s-1), and intercellular CO2concentration (Ci,264.50±30.94μmol mol-1) showed the similar trends. Positive correlations were found between Pn and height of the seedling(H,133.59±50.44cm), and basal diameter (D,16.29±5.20mm), respectively. Positive correlations between phenotype (such as Pn, Gs, H and D) and total relative methylation level and relative CNG methylation level were investigated. Eighty one candidate markers were linked with Pn, Gs, and/or Ci,13of which were also linked with growth traits detected by using the single MSAP molecular marker analysis. Each marker could explain3.395%{P=0.036)-18.982%{P<0.001) of the variant in phenotype. Sequencing and BLAST analysis showed that candidate markers were linked to genes encoding protochlorophyllide reductase and proteins of cytochrome P450CYP4/CYP19/C YP26subfamilies, and linked to genes taking part in, e.g., photosystem Ⅱ. Therefore, the regions defined by the MSAP candidate markers are linked to genes that are essential for photosynthetic characteristics that respond to DNA methylation and subsequently affect growth traits.
引文
[1]褚延广.欧洲黑杨(Populus nigra L.)水、光资源高效利用相关单核苷酸多态性(SNP)研究[D].北京,中国林业科学研究院,2009.
    [2]邓大君,邓国仁,吕有勇,等.变性高效液相色谱法检测CpG岛胞嗜咤甲基化[J].中华医学杂志,2001,81(3):158-161.
    [3]邓松录,狄晓艳,王孟本,等.杨树无性系光合特征的研究[J].植物研究,2006,26(5):600--608.
    [4]丁明明,苏晓华,黄秦军.欧洲黑杨基因资源稳定碳同位素组成特征[J].林业科学研究,2006,19(3):272-276.
    [5]丁明全.盐胁迫下胡杨表达谱微阵列分析及差异表达基因的功能解析[D].北京:北京林业大学,2011.
    [6]范保星.DNA甲基化检测方法[J].国外医学遗传学手册,2002,25(2):99-101.
    [7]方升佐,徐锡增,吕十行编著.杨树定向培育[M].合肥:安徽科学技术出版社,2004.
    [8]高健,吴泽民,彭镇华.滩地杨树光合作用生理生态的研究[J].林业科学研究,2000,13(2):147-152.
    [9]洪舟,施季森,郑仁华,等.杉木亲本自交系及其杂交种DNA甲基化和表观遗传变异[J].分子植物育种,2009,7(3):591-598.
    [10]胡新生,刘建伟,王世绩.四个杨树无性系在不同温度和相对湿度条件下净光合速率的比较研究[J].林业科学,1997,33(2):107-116.
    [11]江锡兵,李博,张志毅,等.美洲黑杨与大青杨杂种无性系苗期光合特性研究[J].北京林业大学学报,2009,31(5):151-154.
    [12]江锡兵,宋跃朋,马开峰,等.杨树杂种无性系生长与光合生理遗传变异研究[J].西北植物学报,2011,31(9):1779-1785.
    [13]黎明,翟晓巧,范国强,等.土霉素对豫杂一号泡桐丛枝病幼苗形态和DNA甲基化水平的影响[J].林业科学,2008,44(9):152-156.
    [14]李博.毛白杨及毛新杨转录组图谱构建及若干性状的遗传学联合分析[D].北京:北京林业大学,2009.
    [15]李海飞,李洪义.DNA甲基化的分析与状态检测[J].医学综述,2004,10(3):131-133.
    [16]李静怡,张志毅.三倍体毛白杨无性系光合特性的研究[J].北京林业大学学报,2000,22(6):12-15.
    [17]李鸣,周永斌.辽阳地区不同杨树品种光合速率的研究[J].西北林学院学报,2006,21(6):28-31.
    [18]李文文,黄秦军,丁昌俊,等.南方型和北方型美洲黑杨幼苗光合作用的日季节变化[J].林业科学研究,2010,23(2):227-233.
    [19]林强,扈东青,方荣俊,等.桑树光合系统I psaE基因的克隆及表达分析[J].蚕业科学,2010,36(3):377-382.
    [20]刘宝.表观遗传变异与作物遗传改良[J].吉林农业大学学报,2008,30(4):386-393.
    [21]刘建伟,胡新生,刘雅荣,等.半干早地区八种杨树无性系间苗期净光合速率变化的研究[J].林业科学研究,1994,7(5):475-480.
    [22]苏东凯,周永斌,唐庆华,等.不同杨树品种光合生理生态特性研究[J].西北林学院学报, 2006,21(2):39--41.
    [23]苏玉,王溪,朱卫国.DNA甲基转移酶的表达调控及主要生物学功能[J].遗传,2009,31(11):1087-1093.
    [24]孙贝娜.DNA甲基化检测方法的研究进展[J].生命科学仪器,2009,7(4):11-14.
    [25]万劲,方升佐,翟学昌.7个杨树能源林无性系的初步选择[J].林业科技开发,2008,22(3):35-38.
    [26]韦彦余,赵民安,王晓军.植物体细胞无性系变异在植物性状改良中的应用[J].植物生理学通讯,2004,40(6):763-770.
    [27]未丽,徐秉良,雷江丽,等.胡杨叶绿素a/b结合蛋白基因的克隆及序列特性分析[J].中国农业科技导报,2008,10(4):63-69.
    [28]吴瑞云.4个杨树杂交品系的净光合速率特征[J].中南民族学院学报(自然科学版),1999,18(4):10-12.
    [29]徐煲铧,杨晓慧,李百炼,等.毛白杨纤维素合酶基因PtCesA4的克隆、表达及单核苷酸多态性分[J].林业科学,2009,45(5):1-10.
    [30]徐纬英主编.杨树[M].哈尔滨:黑龙江人民出版社,1988.
    [31]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [32]杨敏生,林青,邢秀岩.新育优良无性系741杨光合特性的初步分析[J].河北林学院学报,1991,6(3):161-165.
    [33]杨晓慧,张有慧,张志毅,等.毛白杨干细胞决定基因Wuschel的克隆及其单核苷酸多态性分析[J].林业科学,2009,45(1):44-49.
    [34]殷宏章.光合作用研究的历程.见:上海植物生理研究所和中国科学院北京植物研究所编著:光合作用研究进展[M].北京:科学出版社,1976:1-21.
    [35]张志毅,李善文,何占国.中国杨树资源与杂交育种研究现状及发展对策[J].河北林业科技,2006(Supp):20-24.
    [36]周永斌,马学文,姚鹏,等.不同生长速度杨树品种的光合生理特性研究[J].沈阳农业大学学报,2007,38(3):336--339.
    [37]朱之悌,张志毅,赵勇刚.毛白杨优树快速繁殖方法的研究[J].北京林业大学学报,1986,4:1-7.
    [38]Adorjan P, Distler J, Lipscher E, et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis[J]. Nucl Acids Res,2002,30(5):e21.
    [39]Amado L, Abranches R, Neves N, et al. Development-dependent inheritance of 5-azacytidine-induced epimutations in triticale:analysis of rDNA expression patterns[J]. Chromosome Res,1997,5(7):445-50.
    [40]Arnholdt-Schmitt B. Physiological aspects of genome variability in tissue culture. II. Growth phase-dependent quantitative variability of repetitive BstN I fragments of primary cultures of Daucus carota L.[J]. Theor Appl Genet,1995,91:816-823.
    [41]Ashikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cuItivars[J]. Plant Mol Biol,2001,45(1):31-39.
    [42]Assaad FF, Tucker KL, Signer ER. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis[J]. Plant Mol Biol,1993,22:1067-1085.
    [43]Bassman JH, Zwier JC. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoides clones[J]. Tree Physiol,1991,2:145-159.
    [44]Bender J, Fink GR (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis[J]. Cell,1995,83:725-734.
    [45]Bender J. DNA methylation and epigenetics[J]. Annual Review of Plant Biology,2004,55:41-68.
    [46]Bensaada M, Kiefer H, Tachdjian G, et al. Altered patterns of DNA methylation on chromosomes from leukemia cell lines:identification of 5-methylcytosines by indirect immunodetection[J]. Cancer Genet Cytogenet,1998,103(2):101-109.
    [47]Berry J, Downton WJS. Environmental regulation of photosynthesis. In:Govindjee (ed). Photosynthesis Vol II[M]. New York:Academia Press,1982, pp 163-343.
    [48]Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis[J]. Plant Cell, 2003,15:2236-2239.
    [49]Bird AP, Southern EM. Use of restriction enzymes to study eukaryotic DNA methylation. I. The methylation pattern in ribosomal DNA from Xenopus laevis[S]. J Mol Boil,1978,118:27-47.
    [50]Bocharst A, Hodal L, Palmgren G, et al. DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene[J]. Plant Physiol,1992,99:409-414.
    [51]Bowes G. Facing the inevitable:plants and increasing atmospheric CO2[J]. Annu Rev Plant Physiol Mol Biol,1993,44:309-332.
    [52]Brown PHT. DNA methylation in plants andits role in tissue culture[J]. Genome,1989, 31:717-729.
    [53]Burn JE, Bagnall DJ, Metzger JD, et al. DNA methylation, vernalization, and the initiation of flowering[J]. Proc Natl Acad Sci USA,1993,90:287-291.
    [54]Bussell JD. The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae)[J]. Mol Ecol,1999,8:775-789.
    [55]Casella E, Ceulemans R. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture[J]. Tree Physiol,2002,22(18):1277-1288.
    [56]Causevic A, Delaunay A, Ounnar S, et al. DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines[J]. Plant Physiol Biochem,2005, 43:681-691.
    [57]Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J]. Mol Genet Genomics,2002, 268:543-552.
    [58]Ceulemans R, Impens U, Steenackers V. Variations in photosynthetic, anatomical, and enzymatic leaf traits and correlations with growth in recently selected Populus hybrids[J]. Can J For Res, 1987,17:273-283.
    [59]Ceulemans R, Scarascia-Mugnozza G, Wiard BM, et al. Production physiology and morphology of Populus species and their hybrids grown under short rotation. I. Clonal comparisons of 4-year growth and phenology[J]. Can J For Res,1992,22:1937-1948.
    [60]Chenault N, Arnaud-Haond S, Juteau M, et al. SSR-based analysis of clonality, spatial genetic structure, and introgression from the Lombardy poplar into a natural population of Populus nigra L. along the Loire River[J]. Tree Genet Genomes,2011,7:1-14.
    [61]Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature,1999,401:157-161.
    [62]Dahl C, Guldberg P. DNA methylation analysis techniques[J]. Biogerontology,2003,4:233-450.
    [63]Devaux P, Kilian A, Kleinhofs A. Anther culture and Hordeum bulbosum-derived barley doubled haploids:mutations and methylation[J]. Mol Gen Genet,1993,241:674-679.
    [64]Du QZ, Wang BW, Wei ZZ, et al. Genetic diversity and population structure of Chinese white poplar(Populus tomentosa) revealed by SSR markers[J]. J Hered,2012,103:853-862.
    [65]Eckenwalder JE. Systematics and evolution of Populus. In:Stettler RF, Bradshow HD, Heilman Jr PE, Hinckley TM (eds) Biology of Populus and its implication for management and conservation[M]. NCR Research Press, Ottawa, Ontario, Canada,1996, pp:113-138.
    [66]Elmayan T, Proux F, Vaucheret H. Arabidopsis RPA2:a genetic link among transcriptional gene silencing, DNA repair, and DNA replication[J]. Curr Biol,2005,15(21):1919-1925.
    [67]Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Ann Rev Plant Physiol, 1982,33:317-345.
    [68]Faville MJ, Silvester WB, Allan Green TG, et al. Photosynthetic characteristics of three asparagus cultivars differing in yield[J]. Crop Sci,1999,39:1070-1077.
    [69]Fedoroff N. Transposons and genome evolution in plants[J]. Proc Natl Acad Sci USA,2000, 97(13):7002-7007.
    [70]Finnegan EJ, Peacock WJ, Dennis ES. DNA methylation, a key regulation of plant development and other processes[J]. Curr Opion Genet Develop,2000,10:217-223.
    [71]Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development[J]. Proc Natl Acad Sci USA,1996,93:8449-8454.
    [72]Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? [J]. J Cell Biochem,2002,87:117-125.
    [73]Gitan RS, Shi HD, Chen CM, et al. Methylation-specific oligonucleotide microarray:a new potential for high-throughput methylation analysis[J]. Genome Res,2002,12(1):158-164.
    [74]Gong L, Song XX, Li M, et al. Extent and pattern of genetic differentiation within and between phenotypic populations of Leymus chinensis (Poaceae) revealed by AFLP analysis[J]. Can J Bot, 2007,85:813-821.
    [75]Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE)[J]. Nucleic Acids Res,1997, 25(12):2529-2531.
    [76]Gourcilleau D, Bogeat-Triboulot M, Thiec DL, et al. DNA methylation and histone acetylation: genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity[J]. Ann For Sci,2010,67:208.
    [77]Gruenbaum Y, Naveh-Many T, Cedar H, et al. Sequence specificity of methylation in higher plant DNA[J]. Nature,1981,292:860-862.
    [78]Hanai LR, Floh EIS, Fungaro MHP, et al. Methylation patterns revealed by MSAP profiling in genetically stable somatic embryogenic cultures of Ocotea catharinensis (Lauraceae)[J]. In Vitro Cellular & Developmental Biology-Plant,2010,46:368-377.
    [79]Hasbun R, Valledor L, Berdasco M, et al. In vitro proliferation and genome DNA methylation in adult chestnuts[J]. Act Hort,2005,693:333-339.
    [80]Hatada I, Hayashizaki Y, Hirotsune S, et al. A genomic scanning method for higher organisms using restriction sites as landmarks[J]. Proc Natl Acad Sci USA,1991,88(21):9523-9527.
    [81]Hauben M, Haesendonckx B, Standaert E, et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield[J]. Proc Natl Acad Sci USA,2009,106:20109-20114.
    [82]Henikoff S, Matzke MA. Exploring and explaining epigenetic effects[J]. Trends Genet,1997, 13(8):293-295.
    [83]Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands[J]. Proc Natl Acad Sci USA,1996,93(18):9821-9826.
    [84]Herrera CM, Bazaga P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis[J]. New Phytol,2010,187:867-876.
    [85]Hoekenga OA, Muszynski MG, Cone KC. Developmental patterns of chromatin structure and DNA methylation responsible for epigenetic expression of a maize regulatory gene[J]. Genetics, 2000,155(4):1889-1902.
    [86]Holliday R. Epigenetics:An overview[J]. Dev Genet,1994,15:453-457.
    [87]Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development[J]. Science,1975,186:226-232.
    [88]Hou P, Ji M, Liu Z, et al. A microarray to analyze methylation patterns of p16(Ink4a) gene 5'-CpG islands[J]. Clin Biochem,2003,36(3):197-202.
    [89]Idso SB. A general relationship between CO2-induced increases in net photosynthesis and concomitant reductions in stomatal conductance[J]. Environmental and Experimental Botany,1991, 31:381-383.
    [90]Ingelbrecht I, Houdt HV, Montagu MV, et al. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation[J]. Proc Natl Acad Sci USA,1994,91:10502-10506.
    [91]Isebrands JG, Ceulemans R, Wiard BM. Genetics variation in photosynthetic traits among Populus clones in relation to yield[J]. Plant Physiol Biochem,1988,26(4):427-437.
    [92]Jablonka E, Goiten R, Marcus M, et al. DNA hypomethylation causes an increase in DNase I sensitivity and advance in the timing of replication of the entire X chromosome[J]. Chromosoma, 1985,93:152-156.
    [93]Jacobsen SE, Meyerowitz EM. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis[J]. Science,1997,277:1100-1103.
    [94]Kaeppler SM, Phillips RL. Tissue culture-induced DNA methylation variation in maize[J]. Proc Natl Acad Sci USA,1993,90(19):8773-8776.
    [95]Kakutani T, Munakata K, Richards EJ, et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddml mutation of Arabidopsis thaliana[J]. Genetics,1999, 151:831-838.
    [96]Kalisz S, Purugganan MD. Epialleles via DNA methylation:consequences for plant evolutionfJ]. Trends Ecol Evol,2004,19:309-314.
    [97]Kaminen-Ahola N, Ahola A, Maga M, et al. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model[J]. PLoS Genet,2010,6:1000811.
    [98]Kankel MW, Ramsey DE, Stokes TL, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics,2003,163(3):1109-1122.
    [99]Keyte AL, Percifield R, Liu B, et al. Infraspecific DNA methylation polymorphism in cotton {Gossypium hirsutum L.)[J]. J Hered,2006,97:444-450..
    [100]Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J]. Science,2004,303:521-523.
    [101]Kooter JM, Matzke MA, Meyer P. Listening to the silent genes:trans2 gene silencing, gene regulation and pathogen control [J]. Trends Plant Sci,1999,4(9):340-347.
    [102]Kovarik A, Matyasek R, Leitch A, et al. Variability in CpNpG methylation in higher plant genomes[J]. Gene,1997,204:25-33.
    [103]Koxlowski TT, Kramer PJ, Pallardy SG. The physiological ecology of woody plants[M]. New York: Academic press,1991, pp:275-279.
    [104]Kuo KC, McCune RA, Gehrke CW, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA[J]. Nucl Acids Res,1980,8(20):4763-4776.
    [105]Lambers H, Poorter H. Inherent variation in growth rate between higher plants:A research for physiological causes and ecological consequences[J]. Adv Ecol Res,1992,23:187-261.
    [106]Larkin PJ, Scowcroft WR. Somaclonal variation-a novel source of variability from cell culture for plant improvement[J]. Thear Appl G-Venent,1981,60:179-214.
    [107]Li YD, Shan XH, Liu XM, et al. Utility of the methylation-sensitive amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (Hordeum brevisubulaturm)[J]. Ecol Res,2008,23:927-930.
    [108]Lira-Medeiros CF, Parisod C, Fernandes RA, et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment[J]. PLoS One,2010,5:e10326.
    [109]Lisch D. Epigenetic regulation of transposable elements in plants[J]. Annu Rev Plant Biol,2009, 60:43-66.
    [110]Liu B, Hu B, Dong YZ, et al. Speciation-induced heritable cytosine methylation changes in polyploidy wheat[J]. Progress in Natural Science,2000,10:601-606.
    [111]Liu S, Sun KP, Jiang TL, et al. Natural epigenetic variation in the female great roundleaf bat (Hipposideros armiger) populations[J]. Mol Genet Genomics,2012,287:643-650.
    [112]Long Y, Xia W, Li RY, et al. Epigenetic QTL mapping in Brassica napns[J]. Genetics Published Articles Ahead of Print,2011:111.131615.
    [113]Massicotte R, Whitelaw E, Angers B. DNA methylation:a source of random variation in natural populations[J]. Epigenetics,2011,6:421-427.
    [114]McClelland M. The frequency and distribution of methylatable DNA sequences in leguminous plant protein coding genes[J]. J Mol Evol,1983,19:346-354.
    [115]McClintock B. Genetic and cytological studies of maize[J].Carnegie Inst, Washington Year Book, 1957,56:393-401.
    [116]Messeguer R, Ganal MW, Steffens JC, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA[J]. Plant Mol Biol,1991,16:753-777.
    [117]Meyer P, Heidmann I, Niecndenhof I. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia[J]. Plant J,1993,4(1):89-100.
    [118]Montero LM, Filipski J, Gil P, Capel J, Martinez-Zapater JM, et al. The distribution of 5-methylcytosine in the nuclear genome of plants[J]. Nucleic Acids Res,1992,20:3207-3210.
    [119]Muller E, Brown P T, Hartke S, et al. DNA variation in tissue-culture-derived rice plants[J]. Theor Appl Genet,1990,80:673-679.
    [120]Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA[J]. Nucl Acids Res,1980,8:4321-4325.
    [121]Ngernprasirtsiri J, Kobayashi H, Akazawa T. DNA Methylation is a determinative element of photosynthesis gene expression in amyloplasts from liquid-cultured cells of sycamore (Acer pseudoplatanus L.)[J]. Cell Structure and Function,1990,15:285-293.
    [122]Ngernprasirtsiri J, Kobayashi H, Akazawa T. Transcriptional regulation and DNA methylation of nuclear genes for photosynthesis in nongreen plant cells[J]. Proc Natl Acad Sci USA,1989, 86:7919-7923.
    [123]Noormets A, Sober A, Pell EJ, et al. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3[J]. Plant Cell and Environment,2001,24:327-336.
    [124]Oefner PJ, Bonn GK, Huber CG, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA[J]. J Chromatogr,1992,625(2):331-340.
    [125]Ogden B, McGough HN, Cowan RS, et al. SNP-based method for the genetic identification of ramin Gonystylus spp. timber and products:applied research meeting CITES enforcement needs[J]. Endang Species Res,2008,9:255-261.
    [126]Pan Q, Wang Z, Quebedeaux B. Responses of the apple plant to CO2 enrichment: changes in photosynthesis, sorbitol, other soluble sugars, and starch[J]. Aust J of Plant Physiol,1998, 25:293-297.
    [127]Parisod C, Christin PA. Genome wide association to fine scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae)[J]. New Phytol,2008,178:436-447.
    [128]Parisod C, Trippi C, Galland N. Genetic variability and founder effect in the pitcher plant Sarracenia purpurea (Sarraceniaceae) in populations introduced into Switzerland:from inbreeding to invasion[J]. Ann Bot,2005,95:277-286.
    [129]Pavlopoulou A, Kossida S. Plant cytosine-5 DNA methyltransferases:structure, function, and molecular evolution[J]. Genomics,2007,90:530-541.
    [130]Peerbolte R, Leenhouts K, Hooykaas-van Slogteren GMS, et al. Clones from a shooty tobacco crown gall tumor II:irregular T-DNA structures and organization, T-DNA methylation and conditional expression of opine genes[J]. Plant Mol Biol,1986,7:285-299.
    [131]Rabinowicz PD, Palmer LP, May BP, et al. Genes and transposons are differentially methylated in plants, but not in mammals[J]. Genome Res,2003,13(12):2658-2664.
    [132]Rachmayanti Y, Leinemann L, Gailing O, et al. Extraction, amplification and characterization of wood DNA from Dipterocarpaceae[J]. Plant Mol Biol Rep,2006,24:45-55.
    [133]Rassoulzadegan M, Grandjean V, Gounon P, et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse[J]. Nature,2006,441:469-474.
    [134]Reyna-Lopez GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms[J]. Mol Gen Genet,1997,253:703-710.
    [135]Rice WR. Analyzing tables of statistical tests[J]. Evolution,1989,43:223-225.
    [136]Ri-chard IS, Brettell, Dennis ES. Reactivation of a silent Ac following tissue culture is associated with heritable alteration in its methylation pattern[J]. Mol Gener Genel,1991,229:365-372.
    [137]Richards EJ. DNA methylation and plant development[J]. Trends in Genetics,1997,13:319-323.
    [138]Riddle NC, Richards EJ. The control of natural variation in cytosine methylation in Arabidopsis[i]. Genetics,2002,162:355-363.
    [139]Riggs AD, Porter TN. Overview of epigenetic mechanisms. In:Russo VEA, Martienssen RA, and Riggs AD (eds.), Epigenetic mechanisms of gene regulation[M]. Cold Spring Harbor laboratory Press, New York, USA,1996, pp:29-45.
    [140]Ronemus MJ, Galbiati M, Ticknor G, et al. Demethylation-induced developmental pleiotropy in Arabidopsis[J]. Science,1996,273:654-657.
    [141]Rowland DL. Diversity in physiological and morphological characteristics of four cotton wood (Populus deltoides var. wislizenii) populations in New Mexico: evidence for a genetic component of variation[J]. Can J For Res,2001,31(5):845-853.
    [142]Rudenko GN, Ono A, Walbot V. Initiation of silencing of maize MuDRIMu transposable elements [J]. Plant J,2003,33(6):1013-1125.
    [143]Santi DV, Garrentt CE, Barr PJ. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs[J]. Cell,1983,33:9-10.
    [144]Santos KF, Mazzola TN, Carvalho HF. The prima donna of epigenetics:the regulation of gene expression by DNA methylation[J]. Brazilian J Medical Biol Res,2005,38:1531-1541.
    [145]Schubeler D, Lorincz MC, Cimbora DM, et al. Genomic targeting of methylated DNA:influence of methylation on transcription, replication, chromatin structure, and histone acetylation[J]. Mol Cell Biol,2000,20:9103-9112.
    [146]Sha AH, Lin XH, Huang JB, et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis[J]. Mol Gen Genomics,2005,273:484-490.
    [147]Sherman JD, Talbert LE. Vernalization-induced changes of the DNA methylation pattern in winter wheat[J]. Genome,2002,45:253-260.
    [148]Sridhar VV, Kapoor A, Zhang KL, et al. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination[J]. Nature,2007,447:735-738.
    [149]Stettler RF, Koster R, Steenackers V. Interspecific crossability studies in poplars[J]. Theor Appl Genet,1980,58:273-282.
    [150]Stettler RF, Zsuffa L, Wu R. The role of hybridization in the genetic manipulation of Populus. In: Stettler RF, Bradshow HD, Heilman Jr PE, Hinckley TM (eds) Biology of Populus and its implication for management and conservation[M]. NCR Research Press, Ottawa, Ontario, Canada, 1996,pp:87-112.
    [151]Steward N, Ito M, Yamaguchi Y, et al. DNA methylation in maize nucleosomes and demethylation by environmental stress[J]. J Biol Chem,2002,277 (40):37741-37746..
    [152]Takamiya T, Hosobuchi S, Asai K, et al. Restriction landmark genome scanning method using isoschizomers (MspI/HpaH) for DNA methylation analysis[J]. Electrophoresis,2006, 27(14):2846-2856.
    [153]Tan MP.Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism [J]. Plant Physiol Biochem,2010,48:21-26.
    [154]Teixeira FK, Colot V. Repeat elements and the Arabidopsis DNA methylation landscape[J]. Hered, 2010,105:14-23.
    [155]Teyssier E, Bernacchia G, Maury S, et al. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening[J]. Planta,2008, 228:391-399.
    [156]Thioulouse J, Chessel D, Doledec S, et al. Ade-4:a multivariate analysis and graphical display software[J]. Stat Comput,1996,7:75-83.
    [157]Tixier MH, Sourdille RM, Leroy P, et al. Detection of wheat microsatellites using a non-radioactive silver-nitrate staining method[J]. J Genet Breed,1997,51:175-177.
    [158]Tsaftaris AS, Kafka M, Polidoros A, et al. Epigenetic changes in maize DNA and heterosis. In: CIMMYT (Abs). The genetics and exploitation of heterosis in crops[M]. Int. Symp. Mexico City, 1997, pp:112-113.
    [159]Urban O, SprtovaM, KosvancovaM, et al. Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones[J]. Tree Physiol,2008,28(8):1189-1197.
    [160]Vanyushin BF, Kirnos MD. DNA methylation in plants[J]. Gene,1988,74:117-121.
    [161]Vos P, Hogers R, Bleeker M, et al. AFLP:A new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,21:4407-4414.
    [162]Waddington CH. The epigenotype[J]. Endeavour,1942,1:18-20.
    [163]Wang YM, Lin XY, Dong B, et al. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene express ion [J]. Cell Mol Biol Lett, 2004,9:543-556.
    [164]Wigler M, Levy D, Perucho M. The somatic replication of DNA methylation[J]. Cell,1981, 24:33-40.
    [165]Winfield MO, Arnold GM, Cooper F, et al. A study of genetic diversity in Populus nigra subsp. betulifolia in the Upper Severn area of the UK using AFLP markers[J]. Mol Ecol,1998,7:3-10.
    [166]Xiong LZ, Xu CG, Maroof MA, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Mol Gen Genet,1999,261:439-446..
    [167]Zhang D, Zhang Z, Yang K, et al. Genetic mapping in (Populus tomentosa×Populus bolleana) and P. tomentosa Carr. using AFLP markers[J]. Theor Appl Genet,2004,108:657-662.
    [168]Zhang D, Zhang Z, Yang K. Identification of AFLP markers associated with embryonic root development in Populus tomentosa Carr.[J]. Silvae Genetica,2007a,56:27-31.
    [169]Zhang DQ, Zhang ZY, Yang K. QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populous tomentosa× P.bolleand)× P. tomentosa[J].Can J For Res,2006a,36:2015-2023.
    [170]Zhang MS, Yan HY, Zhao N, et al. Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter-strain hybrids[J]. Theor Appl Genet,2007b,115:195-207.
    [171]Zhang X, Shiu S, Cal A, et al. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genetics,2008, 4:e 1000032.
    [172]Zhang XY, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell,2006b,126:1189-1201.
    [173]Zhang ZY, Li FL. Studies on chromosome doubling triploid breeding of white poplar (I)[J]. Journal of Beijing Forestry University,1992,14:52-58.
    [174]Zhao XX, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids[J]. Plant Sci,2007,172:930-938.
    [175]Zhao XY, Ma KF, Zhang M, et al. Comparative analysis of the photosynthetic characteristics of three-year-old Populus tomentosa clones[J]. Forest Research,2011,24:370-378.
    [176]Zhao Y, Yu S, Xing C, et al. Analysis of DNA methylation in cotton hybrids and their parents[J]. Molecular Biology,2008,42:169-178.