使用木薯原料和外部代谢调控策略提高丁醇发酵的丁醇/丙酮比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁醇是重要的平台化合物,也是一种高效的清洁液态燃料。利用产溶剂梭菌(Clostridia)和生物质原料发酵生产丁醇受到人们越来越多的关注。在使用梭菌发酵生产溶剂过程中,溶剂产物丁醇、丙酮和乙醇的比例约为6:3:1(w/w)。在保证总溶剂生产效率不变或者提高的前提下,尽量提升主产品—丁醇占总溶剂的比例、或者丁醇/丙酮比,一直是研究者所追求的目标。另外,玉米、小麦等农产品受到种植条件的制约,使用上述生物质生产生物丁醇影响到了人类食物的供给安全。因此,亟需寻找廉价、对种植条件要求低的高产非粮原料作为替代原料生产生物丁醇。针对上述问题,本论文以丙酮丁醇梭菌Clostridium acetobutylicumATCC824为实验菌株,以发酵途径关键酶基因转录水平测定和代谢通量计算为分析手段,以玉米和木薯为原料,在7L厌氧发酵罐下,开展丁醇发酵研究。论文提出了丁醇发酵的有效优化调控策略,并对使用不同原料下的发酵性能进行了比对研究,旨在提高丁醇/丙酮比、实现非粮木薯原料对传统玉米原料的有效替代、改善丁醇发酵的整体性能。主要结果总结如下:
     (1)研究和比较了以木薯和玉米为原料、传统和原位萃取发酵操作模式下的丁醇发酵性能。结果表明,木薯原料发酵的相转型(产酸相→产溶剂相)严重滞后、丁醇产量和生产效率低下,整体发酵性能无法达到玉米原料发酵的相应水平。通过一系列试行发酵实验最终发现,在以木薯为原料、油醇为原位萃取剂的萃取发酵中,发酵产气显著减弱后适时添加2.5g·L-broth–1酵母浸粉,发酵产气迅速回升、发酵相转型可在数小时内顺利完成,最终丁醇总产量达到35.38g·L-broth–1。
     (2)适时添加酵母浸粉(2.5g·L-broth–1)的优化调控策略,适用于以木薯为原料的多种丁醇发酵操作模式,可解除发酵相转型延滞、促进相转型的发生和完成。丁醇总产量分别达到13.61g·L–1(传统)、34.37g·L–1(油醇萃取)和18.37g·L–1(生物柴油萃取)。更加重要的是,以木薯为原料、辅以适时酵母浸粉添加的优化调控策略,可以大幅度提高丁醇发酵的丁醇/丙酮比。其中,油醇萃取发酵的丁醇/丙酮比可接近3.0:1,相比玉米原料、相同发酵操作模式下的水平提高了61.5%,整体发酵性能的改善更加明显。
     (3)分析测定了木薯原料丁醇发酵中,代谢途径的关键酶编码基因转录水平,发酵液中游离氨基酸的浓度及其变化。结果表明:适时添加酵母浸粉后,催化有机酸(乙酸、丁酸)吸收的辅酶A转移酶得到激活,其编码基因ctfAB的转录水平提高了约15倍;同时,菌体开始大量合成有利于丁醇生产的组氨酸族和天冬氨酸族氨基酸。两者共同作用,促进了木薯原料发酵的相转型、极大地提高了丁醇产量和生产效率。
     (4)在以木薯和玉米为原料进行发酵的条件下,利用代谢通量计算的手段、对碳代谢和还原力再生的最适匹配关系进行了分析,并对代谢途径中关键酶基因转录水平/中间产物进行了测定。结果表明:在木薯原料发酵产溶剂期,丁酸激酶基因buk和辅酶A转移酶基因ctfAB转录水平低、丁酸生成/吸收再利用闭环的代谢强度低;催化丁醇合成最后两步反应的NADH依存型关键酶、丁醛脱氢酶和丁醇脱氢酶的基因adhE和bdhB转录水平也低;但是,NADH再生速率水平高。高NADH再生速率和低丁酸闭环代谢强度共同作用,最终导致木薯丁醇发酵丁醇/丙酮比大幅提高。
     (5)分别以葡萄糖和酵母浸粉为碳氮源,探讨了不同碳氮配比对丁醇发酵相转型和丁醇/丙酮比的影响。结果发现,产酸期的碳氮比要控制在适中(46.7~93.4mol·mol–1)水平,此时,菌体能够正常生长、有机酸不过量生成,相转型可以顺利完成;产溶剂期的碳氮比保持在较高水平(≥93.4mol·mol–1)时,丁醇/丙酮比可达到3.0:1以上。以木薯为原料、在发酵转型期适时添加酵母浸粉的丁醇发酵优化调控策略的有效性和可靠性得到了进一步的实验验证。
     (6)依据理论分析结果,弱化丁酸生成/吸收再利用闭环的代谢强度有望提高丁醇发酵的丁醇/丙酮比和总溶剂生产效率。为此,在使用木薯和玉米为原料进行传统丁醇发酵、发酵进入产溶剂期后,脉冲式地添加少量丁酸(总添加量3.0g·L-broth–1)或乙酸(4.0g·L-broth–1),期望达到提高丁醇/丙酮比和总溶剂生产效率的目的。其中,添加少量丁酸的调控策略对玉米原料丁醇发酵最为有效,平均丁醇/丙酮比可以提高23%、从1.92上升到2.36:1;平均总溶剂生产效率也可以提高16%、从0.355g·L–1·h–1上升到0.410g·L–1·h–1。但是,上述调控策略对提高木薯原料丁醇发酵的性能没有明显效果,因为使用木薯原料进行丁醇发酵时,辅酶A转移酶活性低、丁酸闭环代谢强度已经很低,外添丁酸起不到降低丁酸闭环代谢强度的效果。
Butanol is an important platform chemical, and clean, high-performance liquid bio-fuelas well. Bio-butanol production by Clostridia spp. with biomass as the substrates has becomemore and more attractive. In butanol fermentation by Clostridia, solvent products of butanol,acetone and ethanol are produced at a ratio of6:3:1(w/w). Continuously increasing butanol tototal solvents ratio or butanol/acetone ratio without sacrificing the total solvents productivityhas been the objective pursued by many researchers. On the other hand, bio-butanolproduction using corn and sugar as the substrates has threatened food supply safety forhuman-beings, as the arable lands for those valuable agricultural products are limited.Therefore, using the cheap and high productive non-grain crops capable of growing atin-arable lands as the substrate substitutes for bio-butanol production has become an urgenttask. Focusing on those problems, in this dissertation, butanol fermentations were conductedin a7L anaerobic fermentor and their performance was compared, using Clostridiumacetobutylicum ATCC824as the protocol strain and corn/cassava as substrates. Optimalbutanol production strategies using different substrates or metabolic regulation modes wereproposed to enhance butanol/acetone ratio and entire fermentation performance, as well as torealize the effective substrate substitution of using non-grain cassava crop to replace the cornmaterial, with the aids of metabolic flux calculations and key enzymes transcriptional levelanalysis. Major contents and results of the dissertation were summarized as follows:
     (1) Fermentation performance with traditional and in-situ extractive operation modes,using cassava and corn as substrates were investigated. In fermentations on cassava substrate,the severe phase shift delay leads to a very low butanol concentration or productivity, theoverall performance could not reach that of fermentations on corn substrate. Preliminaryanalysis on the apparent fermentation data, components of the medium and substrate itselfspeculated that low nitrogen source content in cassava-based substrate accounts for the poorperformance of fermentations on cassava. Through a serial of trial-and-error experiments, itwas found that in extractive fermentation on cassava with oleyl alcohol as the extractant, byadding2.5g·L-broth–1of yeast extract after the occurrence of significant gas productiondecrease, phase shift smoothly occurred by the indication of a quick gas production recovery.Butanol concentration reached competitively high levels of35.38g·L-broth–1.
     (2) The optimal regulation strategy of adaptively adding yeast extract (2.5g·L-broth–1) atphase shift stage could be effectively applied for all fermentations on cassava-based substrate,including traditional and extractive operation modes with oleyl alcohol/bio-diesel as theextractants, and final butanol concentration could reach the competitively high levels of13.61g·L-broth–1,34.37g·L-broth–1and18.37g·L-broth–1respectively, as compared with those offermentations on corn. More importantly, the proposed regulation strategy could significantlyincrease butanol/acetone ratio in fermentations on cassava-based substrate. Especially,butanol/acetone ratio in extractive one using oleyl alcohol as extractant achieved to3.0:1withthe strategy, and had a61.5%increment compared to that in corn-based substrate. Overall performance was largely improved.
     (3) When adopting the proposed regulation strategy for fermentations on cassava-basedsubstrate, variations of the key enzyme genes transcriptional levels and concentrations of freeamino acids released into broth were analyzed. The results showed that after activating thestrategy, CoA-transferase was stimulated and the encode gene ctfAB transcriptional level wasenhanced by15-fold; histidine and aspartic amino acid families, which are beneficial forbutanol synthesis, were also significantly accumulated. Both contributed to the smooth phaseshift, which largely enhanced buatnol concentration and productivity in turn.
     (4) The optimal balances in between carbon metabolic and reductive power flows wereanalyzed by metabolic flux calculation, and gene transcriptional levels of the key enzymes inmain metabolic routes were also measured, when fermenting on corn-and cassava-basedsubstrates. The results indicated that during solventogenic phase when fermenting oncassava-based substrate, transcriptional levels of genes ctfAB and buk encodingCoA-transferase and butyrate kinase were low, resulting in a weak metabolic strength inbutyrate formation/re-assimilation closed loop; on the other hand, transcriptional levels ofgenes adhE and bdhB, encoding the two NADH-dependent enzymes catalyzing the final tworeactions for butanol synthesis were also low; however, NADH regeneration rate was muchhigher. The weakened metabolic strength in butyrate closed loop and higher NADHregeneration rate lead to a higher butanol/acetone ratio in cassava-based butanol fermentation.
     (5) The effect of carbon/nitrogen sources (C/N) ratio on phase shift and butanol/acetoneratio was investigated using glucose/yeast extract as the carbon/nitrogen sources. If C/N ratiowas controlled in a moderate range (46.7~93.4mol·mol–1) during acidogenic phase, cellscould grow normally without severe organic acids accumulation so that phase shift couldsmoothly occurred. On the other hand, during solventogenic phase, a higher C/N ratio (≥93.4mol·mol–1) could increase butanol/acetone ratio above3.0:1. The effectiveness and reliabilityof the optimal regulation strategy of adaptively adding yeast extract for enhancingcassava-based butanol fermentation performance were further experimentally verified.
     (6) Theoretically, weakening metabolic strength of the butyrate closed loop wouldenhance buatnol/acetone ratio. Consecutively feeding a small amount of butyrate/acetateduring solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loopswas attempted to increase butanol/acetone ratio and total solvent productivity in butanolfermentations with corn-and cassava-based media. Consecutively feeding a small amount ofbutyrate (a total of3.0g L-broth–1) is most effective in improving performance of corn-basedbutanol fermentation, as it simultaneously increased average butanol/acetone ratio by23%(1.92to2.36:1) and total solvent productivity by16%(0.355to0.410g·L–1·h–1) as comparedwith those of control. However, the butyrate feeding strategy could not improvebutanol/acetone ratio and total solvent productivity in cassava-based butanol fermentations,where the metabolic strength of butyrate closed-loop had already been very low.
引文
1. Dürre P. Biobutanol: an attractive biofuel[J]. Biotechnol J,2007,2(12):1525-1534
    2. Gabriel C, Crawford F. Development of the butyl-acetonic fermentation industry[J]. Ind Eng Chem,1930,22(11):1163-1165
    3. Gabriel C. Butanol Fermentation Process1[J]. Ind Eng Chem,1928,20(10):1063-1067
    4. Jones D T, Woods D R. Acetone-butanol fermentation revisited[J]. Microbiol Rev,1986,50(4):484-524
    5. Nimcevic D, Gapes J R. The acetone-butanol fermentation in pilot plant and pre-industrial scale[J]. JMol Microbiol Biotechnol,2000,2(1):15-20
    6. Rose A H. Industrial microbiology[M]. London: Butterworths,1961.160-166
    7. Lee S Y, Park J H, Jang S H, et al. Fermentative butanol production by clostridia[J]. Biotechnol Bioeng,2008,101(2):209-228
    8. Chiao J, Sun Z. History of the acetone-butanol-ethanol fermentation industry in China: Development ofcontinuous production technology[J]. J Mol Microbiol Biotechnol,2007,13(1-3):12-14
    9. Ni Y, Sun Z. Recent progress on industrial fermentative production of acetone-butanol-ethanol byClostridium acetobutylicum in China[J]. Appl Microbiol Biotechnol,2009,83(3):415-423
    10. Rice R W, Sanyal A K, Elrod A C, et al. Exhaust-gas emissions of butanol, ethanol, andmethanol-gasoline blends[J]. J Eng Gas Turbines Power,1991,113(3):377-381
    11.刘娅,刘宏娟,张建安,等.新型生物燃料—丁醇的研究进展[J].现代化工,2009,28(6):28-31
    12. Alasfour F N. Butanol-A single cylinder engine study: Engine performance[J]. Int J Energ Res,1997,21(1):21-30
    13. Schwarz W, Gapes J. Butanol-rediscovering a renewable fuel[J]. BioWorld Europe,2006,1:16-19
    14.黄潇,蔡颖慧.生物丁醇研究现状及进展[J].科技情报开发与经济,2011,20(35):148-150
    15.马晓建,李洪亮,刘利平.燃料乙醇生产与应用技术[M].北京:化学工业出版社,2007.189-272
    16.徐芳.丙酮丁醇梭菌生产丁醇及代谢调控的初步研究[D]:[硕士学位论文].无锡:江南大学,2009
    17.程丽鸿.丁/辛醇市场回顾与展望[J].化学工业,2010,28(11):11-14
    18.余黎明,张东明.国内外丁辛醇发展趋势分析[J].化学工业,2012,29(12):21-26
    19. Comyns A E. Bio-futures[J]. Focus Catal,2007,2007(8):1
    20. Comyns A. Biobutanol: a European jv for BP and DuPont[J]. Focus Catal,2009,2007(8):3
    21. Hess G. BP and dupont plan ‘biobutanol’[J]. Chem Eng News,2006,84(9):9
    22.周京波.英计划用甜菜生产生物丁醇,用作车辆驱动燃料[J].功能材料信息,2007,3(5):47
    23.沈佩芝,任诚.丁醇,辛醇生产技术与市场需求预测[J].化工进展,2005,24(2):216-220
    24.顾阳,蒋宇,吴辉,等.生物丁醇制造技术现状和展望[J].生物工程学报,2010,26(7):914-923
    25. Monot F, Martin J R, Petitdemange H, et al. Acetone and butanol production by Clostridiumacetobutylicum in a synthetic medium[J]. Appl Environ Microbiol,1982,44(6):1318-1324
    26. Keis S, Bennett C F, Ward V K, et al. Taxonomy and phylogeny of industrial solvent-producingclostridia[J]. Int J Syst Bacteriol,1995,45(4):693-705
    27. Johnson J L, Toth J, Santiwatanakul S, et al. Cultures of ''Clostridium acetobutylicum'' from variouscollections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct typesbased on DNA-DNA reassociation[J]. Int J Syst Bacteriol,1997,47(2):420-424
    28. Keis S, Shaheen R, Jones D T. Emended descriptions of Clostridium acetobutylicum and Clostridiumbeijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp nov and Clostridiumsaccharobutylicum sp nov[J]. Int J Syst Evol Microbiol,2001,51(6):2095-2103
    29. Winzer K, Lorenz K, Zickner B, et al. Differential regulation of two thiolase genes from Clostridiumacetobutylicum DSM792[J]. J Mol Microbiol Biotechnol,2000,2(4):531-541
    30. Shaheen R, Shirley M, Jones D T. Comparative fermentation studies of industrial strains belonging tofour species of solvent-producing clostridia[J]. J Mol Microbiol Biotechnol,2000,2(1):115-124
    31.张益棻,陈军,杨蕴刘,等.高丁醇比丙酮丁醇梭菌的选育与应用[J].工业微生物,1996,26(4):1-6
    32. Qureshi N, Blaschek H P. Recent advances in ABE fermentation: hyper-butanol producing Clostridiumbeijerinckii BA101[J]. J Ind Microbiol Biotechnol,2001,27(5):287-291
    33. Xue C, Zhao J, Lu C, et al. High-titer n-butanol production by Clostridium acetobutylicum JB200infed-batch fermentation with intermittent gas stripping[J]. Biotechnol Bioeng,2012,109(11):2746-2756
    34. Nolling J, Breton G, Omelchenko M V, et al. Genome sequence and comparative analysis of thesolvent-producing bacterium Clostridium acetobutylicum[J]. J Bacteriol,2001,183(16):4823-4838
    35. Bao G, Wang R, Zhu Y, et al. Complete genome sequence of Clostridium acetobutylicum DSM1731, asolvent-producing strain with multireplicon genome architecture[J]. J Bacteriol,2011,193(18):5007-5008
    36. Hu S, Zheng H, Gu Y, et al. Comparative genomic and transcriptomic analysis revealed geneticcharacteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA2018[J].BMC Genomics,2011,12(1):93-110
    37. Wu Y, Li Y, Yang K, et al. Draft genome sequence of butanol-acetone-producing Clostridiumbeijerinckii strain G117[J]. J Bacteriol,2012,194(19):5470-5471
    38. Nair R V, Bennett G N, Papoutsakis E T. Molecular characterization of an aldehyde/alcoholdehydrogenase gene from Clostridium acetobutylicum ATCC824[J]. J Bacteriol,1994,176(3):871-885
    39. Tummala S B, Junne S G, Papoutsakis E T. Antisense RNA downregulation of coenzyme A transferasecombined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenicClostridium acetobutylicum fermentations[J]. J Bacteriol,2003,185(12):3644-3653
    40. Mermelstein L D, Papoutsakis E T, Petersen D J, et al. Metabolic engineering of Clostridiumacetobutylicum ATCC824for increased solvent production by enhancement of acetone formationenzyme-activities using a synthetic acetone operon[J]. Biotechnol Bioeng,1993,42(9):1053-1060
    41. Jang Y S, Lee J Y, Lee J, et al. Enhanced butanol production obtained by reinforcing the directbutanol-forming route in Clostridium acetobutylicum[J]. Mbio,2012,3(5): e00314-12
    42. Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes inEscherichia coli[J]. Appl Microbiol Biotechnol,2008,77(6):1305-1316
    43. Nielsen D R, Leonard E, Yoon S H, et al. Engineering alternative butanol production platforms inheterologous bacteria[J]. Metab Eng,2009,11(4):262-273
    44. Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for1-butanolproduction[J]. Metab Eng,2008,10(6):305-311
    45. Steen E J, Chan R, Prasad N, et al. Metabolic engineering of Saccharomyces cerevisiae for theproduction of n-butanol[J]. Microb Cell Fact,2008,7(1):36
    46. Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum[J]. Appl EnvironMicrobiol,1985,50(5):1165-1170
    47. Borden J R, Papoutsakis E T. Dynamics of genomic-library enrichment and identification of solventtolerance genes for Clostfidium acetobutylicum[J]. Appl Environ Microbiol,2007,73(9):3061-3068
    48. Tomas C A, Welker N E, Papoutsakis E T. Overexpression of groESL in Clostridium acetobutylicumresults in increased solvent production and tolerance, prolonged metabolism, and changes in the cell'stranscriptional program[J]. Appl Environ Microbiol,2003,69(8):4951-4965
    49. Kim B H, Bellows P, Datta R, et al. Control of carbon and electron flow in Clostridium acetobutylicumfermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanolyields[J]. Appl Environ Microbiol,1984,48(4):764-770
    50. Girbal L, Soucaille P. Regulation of Clostridium acetobutylicum metabolism as revealed bymixed-substrate steady-state continuous cultures role of NADH/NAD ratio and ATP pool[J]. J Bacteriol,1994,176(21):6433-6438
    51. Girbal L, Vasconcelos I, Saintamans S, et al. How neutral red modified carbon and electron flow inClostridium acetobutylicum grown in chemostat culture at neutral pH[J]. FEMS Microbiol Rev,1995,16(2-3):151-162
    52. Wang S, Zhu Y, Zhang Y, et al. Controlling the oxidoreduction potential of the culture of Clostridiumacetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity[J].Appl Microbiol Biotechnol,2012,93(3):1021-1030
    53. Tummala S B, Welker N E, Papoutsakis E T. Design of antisense RNA constructs for downregulation ofthe acetone formation pathway of Clostridium acetobutylicum[J]. J Bacteriol,2003,185(6):1923-1934
    54. Jiang Y, Xu C, Dong F, et al. Disruption of the acetoacetate decarboxylase gene in solvent-producingClostridium acetobutylicum increases the butanol ratio[J]. Metab Eng,2009,11(4-5):284-291
    55. Lehmann D, Hoenicke D, Ehrenreich A, et al. Modifying the product pattern of Clostridiumacetobutylicum[J]. Appl Microbiol Biotechnol,2012,94(3):743-754
    56. Green E M, Boynton Z L, Harris L M, et al. Genetic manipulation of acid formation pathways by geneinactivation in Clostridium acetobutylicum ATCC824[J]. Microbiology,1996,142(8):2079-2086
    57. Lehmann D, Radomski N, Luetke-Eversloh T. New insights into the butyric acid metabolism ofClostridium acetobutylicum[J]. Appl Microbiol Biotechnol,2012,96(5):1325-1339
    58. Kuit W, Minton N P, Lopez-Contreras A M, et al. Disruption of the acetate kinase (ack) gene ofClostridium acetobutylicum results in delayed acetate production[J]. Appl Microbiol Biotechnol,2012,94(3):729-741
    59. Harris L M, Desai R P, Welker N E, et al. Characterization of recombinant strains of the Clostridiumacetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models forsolventogenesis and butanol inhibition?[J]. Biotechnol Bioeng,2000,67(1):1-11
    60. Lenz T G, Morelra A R. Economic evaluation of the acetone-butanol fermentation[J]. Ind Eng ChemProd Res Dev,1980,19(4):478-483
    61. Qureshi N, Blaschek H P. ABE production from corn: a recent economic evaluation[J]. J Ind MicrobiolBiotechnol,2001,27(5):292-297
    62. Gapes J R. The economics of acetone-butanol fermentation: Theoretical and market considerations[J]. JMol Microbiol Biotechnol,2000,2(1):27-32
    63. Marchal R, Rebeller M, Vandecasteele J. Direct bioconversion of alkali-pretreated straw usingsimultanesous enzymatic hydrolysis and acetone-butanol fermentation[J]. Biotechnol Lett,1984,6(8):523-528
    64. Marchal R, Blanchet D, Vandecasteele J. Industrial optimization of acetone-butanol fermentation: astudy of the utilization of Jerusalem artichokes[J]. Appl Microbiol Biotechnol,1985,23(2):92-98
    65.陈丽杰,辛程勋,邓攀,等.丙酮丁醇梭菌发酵菊芋汁生产丁醇[J].生物工程学报,2010,26(7):991-996
    66. Thang V H, Kanda K, Kobayashi G. Production of Acetone-Butanol-Ethanol (ABE) in DirectFermentation of Cassava by Clostridium saccharoperbutylacetonicum N1-4[J]. Appl Biochem Biotechnol,2010,161(1-8):157-170
    67. Gu Y, Hu S, Chen J, et al. Ammonium acetate enhances solvent production by Clostridiumacetobutylicum EA2018using cassava as a fermentation medium[J]. J Ind Microbiol Biotechnol,2009,36(9):1225-1232
    68. Ezeji T C, Groberg M, Qureshi N, et al. Continuous production of butanol from starch-based packingpeanuts[J]. Appl Biochem Biotechnol,2003,105:375-382
    69. Madihah M S, Ariff A B, Sahaid K M, et al. Direct fermentation of gelatinized sago starch toacetone-butanol-ethanol by Clostridium acetobutylicum[J]. World J Microbiol Biotechnol,2001,17(6):567-576
    70. Liu Z, Ying Y, Li F, et al. Butanol production by Clostridium beijerinckii ATCC55025from wheatbran[J]. J Ind Microbiol Biotechnol,2010,37(5):495-501
    71. Al-Shorgani N K N, Kalil M S, Yusoff W M W. Biobutanol production from rice bran and de-oiled ricebran by Clostridium saccharoperbutylacetonicum N1-4[J]. Bioprocess Biosystems Eng,2012,35(5):817-826
    72. Ezeji T, Blaschek H P. Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates tosolvents and value-added products by solventogenic clostridia[J]. Bioresour Technol,2008,99(12):5232-5242
    73. Qureshi N, Saha B C, Dien B, et al. Production of butanol (a biofuel) from agricultural residues: PartI–Use of barley straw hydrolysate[J]. Biomass Bioenerg,2010,34(4):559-565
    74. Qureshi N, Saha B C, Cotta M A. Butanol production from wheat straw hydrolysate using Clostridiumbeijerinckii[J]. Bioprocess Biosystems Eng,2007,30(6):419-427
    75. Qureshi N, Saha B C, Hector R E, et al. Production of butanol (a biofuel) from agricultural residues:Part II–Use of corn stover and switchgrass hydrolysates[J]. Biomass Bioenergy,2010,34(4):566-571
    76. Qureshi N, Ezeji T C, Ebener J, et al. Butanol production by Clostridium beijerinckii. Part I: Use ofacid and enzyme hydrolyzed corn fiber[J]. Bioresour Technol,2008,99(13):5915-5922
    77.王风芹,原欢,楚乐然,等.玉米秸秆水解液燃料丁醇发酵条件优化研究[J].食品与发酵工业,2010,10(36):79-83
    78. Cho D H, Shin S J, Kim Y H. Effects of acetic and formic acid on ABE production by Clostridiumacetobutylicum and Clostridium beijerinckii[J]. Biotechnology and Bioprocess Engineering,2012,17(2):270-275
    79. Ho N W Y, Chen Z D, Brainard A P. Genetically engineered Sacccharomyces yeast capable of effectivecofermentation of glucose and xylose[J]. Appl Environ Microbiol,1998,64(5):1852-1859
    80. Ounine K, Petitdemange H, Raval G, et al. Acetone-butanol production from pentoses by Clostridiumacetobutylicum[J]. Biotechnol Lett,1983,5(9):605-610
    81. Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out ofnutrients[J]. Nat Rev Microbiol,2008,6(8):613-624
    82. Ren C, Gu Y, Hu S, et al. Identification and inactivation of pleiotropic regulator CcpA to eliminateglucose repression of xylose utilization in Clostridium acetobutylicum[J]. Metab Eng,2010,12(5):446-454
    83.何雷.厌氧-好氧生物处理正丁醇发酵废水的研究[D]:[硕士学位论文].天津:天津大学,2007
    84.李灵巧,唐波,余晓斌.酵母法处理丙酮-丁醇发酵废水研究[J].工业水处理,2008,28(11):56-58
    85.王宇新,刘学选.光合细菌法综合处理丙酮-丁醇发酵废水[J].水处理技术,1995,21(5):291-294
    86.张书敏.节水节能式丁醇萃取发酵联产改良型生物柴油和丁醇[D]:[硕士学位论文].无锡:江南大学,2010
    87.左文朴,裴建新,庞浩,等.利用丙酮丁醇发酵废水偶联乙醇发酵的研究[J].酿酒科技,2010,(3):103-106
    88.张雯.以木质纤维素为原料的燃料乙醇生产工艺及废水零排放技术研究[D]:[博士学位论文].北京:北京化工大学,2011
    89.朱振兴,颜涌捷,亓伟,等.铁炭微电解-Fenton试剂预处理纤维素发酵废水[J].工业用水与废水,2009,40(2):27-30
    90.朱振兴,颜涌捷,亓伟,等.铁炭曝气微电解预处理纤维素发酵废水[J].环境化学,2008,27(6):779-781
    91. Monot F, Engasser J M, Petitdemange H. Influence of pH and undissociated butyric acid on theproduction of acetone and butanol in batch cultures of Clostridium acetobutylicum[J]. Appl MicrobiolBiotechnol,1984,19(6):422-426
    92. Ennis B M, Maddox I S. The effect of pH and lactose concentration on solvent production from wheypermeate using Clostridium acetobutylicum[J]. Biotechnol Bioeng,1987,29(3):329-334
    93. Roos J W, McLaughlin J K, Papoutsakis E T. The effect of pH on nitrogen supply, cell lysis, and solventproduction in fermentations of Clostridium acetobutylicum[J]. Biotechnol Bioeng,1985,27(5):681-694
    94. Yerushalmi L, Volesky B, Szczesny T. Effect of increased hydrogen partial pressure on theacetone-butanol fermentation by Clostridium acetobutylicum[J]. Appl Microbiol Biotechnol,1985,22(2):103-107
    95. Bahl H, Andersch W, Gottschalk G. Continuous production of acetone and butanol by Clostridiumacetobutylicum in a two-stage phosphate limited chemostat[J]. Appl Microbiol Biotechnol,1982,15(4):201-205
    96. Hüsemann M H, Papoutsakis E T. Enzymes limiting butanol and acetone formation in continuous andbatch cultures of Clostridium acetobutylicum[J]. Appl Microbiol Biotechnol,1989,31(5-6):435-444
    97. Stephens G, Holt R, Gottschal J, et al. Studies on the stability of solvent production by Clostridiumacetobutylicum in continuous culture[J]. J Appl Microbiol,1985,58(6):597-605
    98. Soni B, Soucaille P, Goma G. Continuous acetone-butanol fermentation: influence of vitamins on themetabolic activity of Clostridium acetobutylicum[J]. Appl Microbiol Biotechnol,1987,27(1):1-5
    99. Reimann A, Biebl H, Deckwer W D. Influence of iron, phosphate and methyl viologen on glycerolfermentation of Clostridium butyricum[J]. Appl Microbiol Biotechnol,1996,45(1-2):47-50
    100. Meyer C L, Roos J W, Papoutsakis E T. Carbon monoxide gasing leads to alcohol production andbutyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum[J]. ApplMicrobiol Biotechnol,1986,24(2):159-167
    101. Survase S A, Jurgens G, van Heiningen A, et al. Continuous production of isopropanol and butanolusing Clostridium beijerinckii DSM6423[J]. Appl Microbiol Biotechnol,2011,91(5):1305-1313
    102. Mutschlechner O, Swoboda H, Gapes J R. Continuous two-stage ABE-fermentation using Clostridiumbeijerinckii NRRLB592operating with a growth rate in the first stage vessel close to its maximal value[J].J Mol Microbiol Biotechnol,2000,2(1):101-105
    103. Qureshi N, Schripsema J, Lienhardt J, et al. Continuous solvent production by Clostridium beijerinckiiBA101immobilized by adsorption onto brick[J]. World J Microbiol Biotechnol,2000,16(4):377-382
    104. Lienhardt J, Schripsema J, Qureshi N, et al. Butanol production by Clostridium beijerinckii BA101inan immobilized cell biofilm reactor-Increase in sugar utilization[J]. Appl Biochem Biotechnol,2002,98:591-598
    105. Tashiro Y, Takeda K, Kobayashi G, et al. High production of acetone-butanol-ethanol with high celldensity culture by cell-recycling and bleeding[J]. J Biotechnol,2005,120(2):197-206
    106. Qureshi N, Maddox I S. Reduction in butanol inhibition by perstraction: Utilization of concentratedlactose/whey permeate by Clostridium acetobutylicum to enhance butanol fermentation economics[J]. FoodBioprod Process,2005,83(1):43-52
    107. Kumar M, Gayen K. Developments in biobutanol production: New insights[J]. Applied Energy,2011,88(6):1999-2012
    108. Evans P J, Wang H Y. Enhancement of butanol formation by Clostridium acetobutylicum in thepresence of decanol-oleyl alcohol mixed extractants[J]. Appl Environ Microbiol,1988,54(7):1662-1667
    109.王鑫昕.原位萃取发酵耦合工艺高产丁醇的初步研究[J].河北农业大学学报,2009,31(6):62-64
    110. Jang Y S, Malaviya A, Cho C, et al. Butanol production from renewable biomass by clostridia[J].Bioresour Technol,2012,123:653-663
    111. Ezeji T C, Qureshi N, Blaschek H P. Bioproduction of butanol from biomass: from genes tobioreactors[J]. Curr Opin Biotechnol,2007,18(3):220-227
    112. Ezeji T C, Qureshi N, Blaschek H P. Production of acetone, butanol and ethanol by Clostridiumbeijerinckii BA101and in situ recovery by gas stripping[J]. World J Microbiol Biotechnol,2003,19(6):595-603
    113. Ezeji T C, Qureshi N, Blaschek H P. Acetone butanol ethanol (ABE) production from concentratedsubstrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping[J].Appl Microbiol Biotechnol,2004,63(6):653-658
    114. Matsumura M, Kataoka H, Sueki M, et al. Energy saving effect of pervaporation using oleyl alcoholliquid membrane in butanol purification[J]. Bioprocess Biosystems Eng,1988,3(2):93-100
    115. Qureshi N, Blaschek H P. Production of acetone butanol ethanol (ABE) by a hyper-producing mutantstrain of Clostridium beijierinckii BA101and recovery by pervaporation[J]. Biotechnol Prog,1999,15(4):594-602
    116. Husemann M H, Papoutsakis E T. Solventogenesis in Clostridium acetobutylicum fermentationsrelated to carboxylic acid and proton concentrations[J]. Biotechnol Bioeng,1988,32(7):843-852
    117. Ravagnani A, Jennert K C B, Steiner E, et al. Spo0A directly controls the switch from acid to solventproduction in solvent-forming clostridia[J]. Mol Microbiol,2000,37(5):1172-1185
    118. Papoutsakis E T. Equations and calculations for fermentations of butyric acid bacteria[J]. BiotechnolBioeng,1984,26(2):174-187
    119. Desai R P, Nielsen L K, Papoutsakis E T. Stoichiometric modeling of Clostridium acetobutylicumfermentations with non-linear constraints[J]. J Biotechnol,1999,71(1-3):191-205
    120. Li Z, Shi Z, Li X, et al. Evaluation of high butanol/acetone ratios in ABE fermentations with cassavaby graph theory and NADH regeneration analysis[J]. Biotechnol Bioprocess Eng,2013,18(4):759-769
    121. Senger R S, Papoutsakis E T. Genome-scale model for Clostridium acetobutylicum: Part I. Metabolicnetwork resolution and analysis[J]. Biotechnol Bioeng,2008,101(5):1036-1052
    122. Senger R S, Papoutsakis E T. Genome-scale model for Clostridium acetobutylicum: Part II.Development of specific proton flux states and numerically determined sub-systems[J]. Biotechnol Bioeng,2008,101(5):1053-1071
    123. Lee J, Yun H, Feist A M, et al. Genome-scale reconstruction and in silico analysis of the Clostridiumacetobutylicum ATCC824metabolic network[J]. Appl Microbiol Biotechnol,2008,80(5):849-862
    124. Shi Z, Blaschek H P. Transcriptional analysis of Clostridium beijerinckii NCIMB8052and thehyper-butanol-producing mutant BA101during the shift from acidogenesis to solventogenesis[J]. ApplEnviron Microbiol,2008,74(24):7709-7714
    125. Qureshi N, Saha B C, Hector R E, et al. Production of butanol (a biofuel) from agricultural residues:Part II-Use of corn stover and switchgrass hydrolysates[J]. Biomass Bioenerg,2010,34(4):566-571
    126.方佳,濮文辉,张慧坚.国内外木薯产业发展近况[J].中国农学通报,2010,26(16):353-361
    127. Pandey A, Soccol C R, Nigam P, et al. Biotechnological potential of agro-industrial residues. II:cassava bagasse[J]. Bioresour Technol,2000,74(1):81-87
    128. Lu C, Zhao J, Yang S T, et al. Fed-batch fermentation for n-butanol production from cassava bagassehydrolysate in a fibrous bed bioreactor with continuous gas stripping[J]. Bioresour Technol,2012,104:380-387
    129.金虎,高敏杰,徐俊,等.多变量在线测量条件下的猪α干扰素高效表达[J].过程工程学报,2009,9(3):563-567
    130. Maddox I S, Steiner E, Hirsch S, et al. The cause of "acid crash" and "acidogenic fermentations"duping the batch acetone-butanol-ethanol (ABE-) fermentation process[J]. J Mol Microbiol Biotechnol,2000,2(1):95-100
    131.沈兆兵,杜风光,史吉平,等.薯类发酵生产丙酮丁醇及其工艺优化[J].化工进展,2008,27(z1):134-136
    132.李乐.木薯原料发酵生产丁醇过程中高丁醇/丙酮比特征的研究[D]:无锡:江南大学,2013
    133.张龙云,杨影,史仲平.丁醇萃取发酵耦联生产改良型生物柴油过程的性能优化[J].生物工程学报,2008,24(11):1943-1948
    134. Demuez M, Cournac L, Guerrini O, et al. Complete activity profile of Clostridium acetobutylicumFeFe-hydrogenase and kinetic parameters for endogenous redox partners[J]. FEMS Microbiol Lett,2007,275(1):113-121
    135. Wiesenborn D P, Rudolph F B, Papoutsakis E T. Coenzyme A transferase from Clostridiumacetobutylicum ATCC824and its role in the uptake of acids[J]. Appl Environ Microbiol,1989,55(2):323-329
    136. Heluane H, Evans M R, Dagher S F, et al. Meta-analysis and functional validation of nutritionalrequirements of solventogenic clostridia growing under butanol stress conditions and coutilization ofD-glucose and D-xylose[J]. Appl Environ Microbiol,2011,77(13):4473-4485
    137. Masion E, Amine J, Marczak R. Influence of amino acid supplements on the metabolism ofClostridium acetobutylicum[J]. FEMS Microbiol Lett,1987,43(3):269-274
    138. Bahl H, Gottwald M, Kuhn A, et al. Nutritional factors affecting the ratio of solvents produced byClostridium acetobutylicum[J]. Appl Environ Microbiol,1986,52(1):169-172
    139. Schwarz K M, Kuit W, Grimmler C, et al. A transcriptional study of acidogenic chemostat cells ofClostridium acetobutylicum-Cellular behavior in adaptation to n-butanol[J]. J Biotechnol,2012,161(3):366-377
    140. Janssen H, Grimmler C, Ehrenreich A, et al. A transcriptional study of acidogenic chemostat cells ofClostridium acetobutylicum-Solvent stress caused by a transient n-butanol pulse[J]. J Biotechnol,2012,161(3):354-365
    141. Yadvika, Santosh, Sreekrishnan T R, et al. Enhancement of biogas production from solid substratesusing different techniques-a review[J]. Bioresour Technol,2004,95(1):1-10
    142. Li X, Li Z, Zheng J, et al. Yeast extract promotes phase shift of bio-butanol fermentation byClostridium acetobutylicum ATCC824using cassava as substrate[J]. Bioresour Technol,2012,125:43-51
    143. Zheng Y N, Li L Z, Xian M, et al. Problems with the microbial production of butanol[J]. J IndMicrobiol Biotechnol,2009,36(9):1127-1138
    144. Tashiro Y, Takeda K, Kobayashi G, et al. High butanol production by Clostridiumsaccharoperbutylacetonicum N1-4in fed-batch culture with pH-stat continuous butyric acid and glucosefeeding method[J]. J Biosci Bioeng,2004,98(4):263-268
    145. Tashiro Y, Shinto H, Hayashi M, et al. Novel high-efficient butanol production from butyrate bynon-growing Clostridium saccharoperbutylacetonicum N1-4(ATCC13564) with methyl viologen[J]. JBiosci Bioeng,2007,104(3):238-240
    146. Chen C K, Blaschek H P. Acetate enhances solvent production and prevents degeneration inClostridium beijerinckii BA101.[J]. Appl Microbiol Biotechnol,1999,52(2):170-173
    147. Chen C K, Blaschek H P. Effect of acetate on molecular and physiological aspects of Clostridiumbeijerinckii NCIMB8052solvent production and strain degeneration[J]. Appl Environ Microbiol,1999,65(2):499-505
    148. Qureshi N, Karcher P, Cotta M, et al. High-productivity continuous biofilm reactor for butanolproduction-Effect of acetate, butyrate, and corn steep liquor on bioreactor performance[J]. Appl BiochemBiotechnol,2004,113:713-721