节水节能式丁醇萃取发酵联产改良型生物柴油和丁醇
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油是一种清洁、可再生的液态燃料,然而生物柴油普遍存在点火性能差、燃烧功率低等缺点。以生物柴油为萃取剂开展丁醇萃取发酵,萃取有10g/L以上丁醇的生物柴油可作为“高品质改良型”的生物柴油而被直接使用,大幅降低了丁醇精馏回收过程的能耗。但是,萃取发酵会产生大量的萃余液(发酵废液),萃余液中仍含有8g/L左右的丁醇。废液直接排放既严重污染环境,又浪费了废液中宝贵的发酵产品和水资源。
     本论文旨在提高丁醇萃取发酵中萃余液的回用率,以最为节水、节能的方式生产“高品质改良型”生物柴油。与此同时,以最为经济和节能的方式回收萃余液中的大部残余丁醇,提高目标产物-丁醇的得率,实现以生物柴油为萃取剂的丁醇萃取发酵联产“高品质改良型”的生物柴油和纯丁醇溶剂,以及产品多样性的目标。研究的主要结果如下:
     (1)利用正辛醇(正辛醇/萃余液体积比0.2:1)萃取回收萃余液中的残余丁醇,萃余液中56%的丁醇可被浓缩回收,正辛醇中的丁醇浓度达到25.7g/L,有利于丁醇蒸馏精制的进行。此条件下,主目标产物-丁醇的得率提高了44%。
     (2)活性炭作为色素类物质的高效吸附剂,可将萃余液中绝大部分发酵抑制性物质-类黑精去除。采用3%(w/v)活性炭吸附处理萃余液,可将一次性萃余液回用率从50%提高至100%,丁醇发酵性能不受影响。
     (3)以生物柴油为萃取剂的丁醇萃取发酵中,利用活性炭吸附法处理萃余液,反复全回用14次,萃取发酵性能稳定,生物柴油中丁醇浓度稳定在10g/L以上,达到“高品质改良型”生物柴油的丁醇含量标准。(4)利用7L静态厌氧发酵罐,进一步验证了节水节能式丁醇萃取发酵联产“高品质改良型”生物柴油和丁醇溶剂的可行性。在此操作模式下,目标丁醇得率达到20%,每升发酵液产0.97L“改良型”生物柴油,产纯丁醇溶剂5g左右。
Biodiesel is a kind of clean and renewable liquid fuel. The existing biodiesels have a couple of disadvantages such as poor ignition performance and lower combustion power. Using biodiesels as extractant for acetone-butanol (AB) extractive fermentation, the biodiesels extracting more than 10g/L butanol could be used as "properties improved" biodiesel directly. This method would greatly reduce the energy consumed in distilling and recovering the fermentative solvents. However, AB extractive fermentation with biodiesels as the extractant also produces a large amount of waste supernatant which still contains about 8 g/L butanol. Direct disposal of the waste supernatant not only causes severe environmental pollution but also wastes valuable fermentation products and water resource.
     This study aimed at increasing waste supernatant utilization ratio in butanol extractive fermentation to simultaneously and stably produce "properties improved" biodiesel and pure butanol in an energy-saving operation mode, as well as realizing the target of products diversity. The main conclusion could be summarized as follows:
     (1) A small amount of n-octanol could be used to recover butanol remaining in the residual supernatant (octanol/supernatant:0.2:1). Under this condition, more than 56%of the remaining butanol could be recovered and butanol in n-octanol could be concentrated to a level of 25.7 g/L for easy and energy-saving purification, and the total butanol yield increased 44%.
     (2) The waste supernatant was pre-treated by 3%(w/v) activated carbon to adhere the fermentative inhibitor-melanoidin accumulated in the waste supernatant. After the pre-treatment, the maximal recycle ratio of waste supernatant could be increased from 50% to 100% and the fermentation performance did not deteriorate as compared with that of using fresh water for medium preparation.
     (3) With biodiesel as the extractant for butanol extractive fermentation, fully recycling fermentation waste supernatant could at least continued for 14 runs without any fermentation performance deterioration. In each fermentation run, butanol concentration in bio-diesel stabilized over 10g/L, which would potentially ensure the quality of "properties improved" bio-diesel.
     (4) The proposed water & energy-saving butanol extractive fermentation system to simultaneously produce "properties improved" biodiesel and pure butanol was testified in a 7L static and anaerobic bioreactor. In this case, the "aimed" butanol yield increased to a level of 20%,0.97L "properties improved" biodiesel and about 5g pure butanol could simultaneously produced per one liter fermentation broth.
引文
1.王鑫昕.发酵分离耦合系统高产丁醇的工艺优化研究[D]:[硕士学位论文].四川:四川师范大学,2009.
    2. Ezeji TC, Qureshi N, Blaschek HP. Acetone butanol ethanol (ABE) production from concentrated substrate:reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping[J]. Appl. Microbiol. Biotechnol.,2004,63(6):653-658.
    3.孙志浩.丙酮丁醇连续发酵的工艺设计[J].工业微生物,1981,11(6):31-37.
    4.孙志浩,王舒,吴燕,等.用固定化细胞连续生产丙酮丁醇的研究[J].工业微生物,1988,18(3):12-16.
    5. Ishii S, Taya M, Kobayashi T. Production of butanol by Clostridium acetobutylicum in extractive fermentation system[J]. Chem. Eng. Japan,1985,18(2):125-130.
    6. Zhu S, Wu C. Production of butanol in extractive fermentation system[J]. The Chemical Engineer, China,1992,30(6):12-14.
    7.日本能源学会编.生物质和生物能源手册[M].史仲平,华兆哲译.北京:化学工业出版社,2007.
    8. Qureshi N, Blaschek HP. ABE production from corn:a recent economic evaluation[J]. Ind. Microbiol. Biotechnol.,2001,27(5):292-297.
    9. Jesse TW, Ezeji TC, Qureshi N. Production of butanol from starch-based waste packing peanuts and agricultural waste[J]. Ind. Microbiol. Biotechnol.,2002,29(3):117-123.
    10. Durre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation[J]. Appl. Microbiol. Biotechnol.,1998,49(6):639-648.
    11. Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass:from genes to bioreactors[J]. Current Opinion in Biotechnology,2007(3),18:220-227.
    12. Peguin S, Goma G, Delorme P, et al. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition[J]. Appl. Microbial. Biotechnol.,1994,42(4): 611-616.
    13. Girbal L, Vasconcelos I, Saint-Amans S, et al. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neural pH[J]. FEMS Microbiology Reviews,1995,16:151-162,
    14. Tashiro Y, Shinto H, Hayashi M, et al. Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum Nl-4 (ATCC 13564) with methyl viologen[J]. Biosci. Bioeng.,2007,104(3):238-240.
    15. Carbbe E, Hipolito CN, Kobayashi G, et al. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties[J]. Process Biochem.,2001,37(1): 65-71.
    16. Ishizaki A, Michiwaki S, Crabbe E, et al. Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4[J]. Biosci. Bioeng.,1999,87(3):352-356.
    17. Areerat C, Apanee L, Samai JI. Utilization of palm oil alkyl esters as an additive in ethanol-diesel and butanol-diesel blends[J]. Fuel,2009,9(88):1618-1624.
    18. Sharp CA. Emission and lubricity evaluation of rapeseed derived biodiesel fuels. Prepared by Montana Department of Environmental Quality, Southwest Research Institute, USA,1996,1-57.
    19. Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods:a survey[J]. Energy Conversion & Management,2003,44(13):2093-2109.
    20.张龙云,杨影,史仲平.丁醇萃取发酵偶联生产改良型生物柴油过程的性能模拟[J].生物工程学报,2008,24(11):1943-1948.
    21.齐江,戴猷元.醇类稀溶液萃取的盐效应[J].清华大学学报(自然科学版).2000,40(6):6-8.
    22.何雷.厌氧-好氧生物处理正丁醇发酵废水的研究[D]:[硕士学位论文].天津:天津大学化工学院,2007.
    23.王宇新,刘学选,钱新民.光合细菌法综合处理丙酮-丁醇发酵废水[J].水处理,1995,21(5):291-294.
    24.李灵巧,唐波,余晓斌.酵母法处理丙酮-丁醇发酵废水研究[J].工业水处理,2008,28(11):56-58.
    25. Converti A, Perego P, Lodi A, et al. In-situ ethanol recovery and substrate recycling during continuous alcohol fermentation[J]. Bioprocess Eng.,1991,7:3-10.
    26. Xin L, Yongfei L, Zuoying D, et al. A novel, repeated fed-batch, ethanol production system with extremely long term stability achieved by fully recycling fermented supernatants[J]. Biotechnology Letters,2003,25(21):1819-1826.
    27. Chengming Z, Zhonggui M, Xin W, et al. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations[J]. Bioprocess and Biosystems Eng.,2010, 33(9):1067-1075.
    28.李法社,包桂蓉,王华.生物柴油氧化稳定性的研究进展[J].中国油脂,2009,34(2):1-5.
    29.陈驹声,陆祖祺.发酵法丙酮和丁醇生产技术[M],北京:化学工业出版社,1991,20-21.118-119.261-266.
    30.张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2001.132-133.
    31.高健,李沛,邵荣等.菊芋菊糖活性炭脱色的工艺条件[J].过程工程学报,2009,9(1):143-147.
    32.兰云贤,陈代文,林鹏.美拉德反应对养分消化代谢影响的研究现状[J].饲料工业,2005,26(9):12-13.
    33.洛戈特金.丙酮-丁醇生产工艺学[M].何荣基等译.北京:中国工业出版社,1963,90-91.
    34. Linda K, William L. Effects of butanol on Costridium acetobutylicum[J]. Appl. Environmental Microbiol.[J].1985,50(5):1165-1169.
    35.龚平,阚建全.美拉德反应产物性质的研究进展[J].食品与发酵工业,2009.35(4):141-146.
    36.张世润.活性炭工艺学[M].哈尔滨:东北林业大学出版社,2002,5-6.
    37.炭素材料学会.活性炭基础与应用[M].北京:中国林业出版社,1984,3-4.
    38.吴振强,梁世中,姚汝华.甘蔗糖蜜酒精废液色素特性及脱除的研究[J].环境污染与防治.1997,19(1):5-8.
    39. David JS, Fred JE, Debra EP. Improved methods for decolorizing corn zein[J]. Ind. Crops and Products,2003,18(1):55-65.
    40. Arunee S, Paitip T. Decolorization of melanoidin by activated carbon obtained from bagasse bottom ash[J]. Journal of Food Engineering.2010,96(1):14-17.
    41.阐建全,陈宗道,石轶松.豆豉非透析类黑精抗氧化和抑制亚硝胺合成的研究[J].营养学报,1999,21(3):349-351.
    42. Taya M, Ishii S, Kobayashi T. Monitoring and control for extractive fermentation of Clostridium acetobutylicum[J]. Journal of fermentation technology,1985,63(2):181-187.
    43.张延平.1,3-丙二醇生物合成过程中的辅因子代谢调控[D]:[博士学位论文].北京:清华大学化学工程系,2006.
    44.张婷,李望良,唐煌.生物再生—吸附剂再生新方法[J].化工学报,2009,60(9):2145-2152.