LRIG3基因在三种膀胱癌细胞系中的表达及对其细胞周期、侵袭性和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的
     近年来许多研究表明,LRIGs基因家族在垂体瘤、神经胶质瘤和皮肤鳞状细胞癌等多种肿瘤中具有抑癌作用,分析其机制可能是通过下调EGFR的表达抑制肿瘤细胞的增殖、侵袭等作用。但是对于其在膀胱癌方面的研究较少,尤其是对于多种膀胱癌细胞株生物学行为的检测分析还未见报道。
     本实验的目的在于,建立稳定表达LRIG3基因的多种膀胱癌细胞株,系统观察分析LRIG3对稳定表达LRIG3基因的膀胱癌细胞系EJ、T24和BIU-87在生长、侵袭及凋亡等方面的影响,全面评价LRIG3基因对膀胱癌的作用及可能机制。方法
     提取目的基因,通过琼脂糖凝胶电泳、限制性酶切、连接、转化入感受态大肠杆菌DH5a菌株并从中提取并大量制备pLVX-DsRed-LRIG3真核表达质粒,然后再进行限制性内切酶酶切、琼脂糖凝胶电泳法及DNA测序进行鉴定。鉴定正确无误后,转染入EJ、T24和BIU-87膀胱癌细胞中。通过RT-PCR和Western Blotting技术测定各组膀胱癌细胞LRIG3 mRNA和蛋白的表达。使用Transwell小体测定EJ、T24和BIU-87膀胱癌细胞株各组的体外侵袭能力。运用Annexin-V/7-aad双染法检测三种膀胱癌细胞的凋亡情况。采用流式细胞仪观察分析LRIG3对三种膀胱癌细胞的诱导效应。
     结果
     经过限制性酶切、PCR及DNA测序鉴定,pLVX-DsRed-Monomer-LRIG3构建成功,与对照组相比,三种膀胱癌细胞株EJ、T24和BIU-87实验组LRIG3 mRNA的表达水平分别上升79.2%、68.6%和60.3%,差异具有统计学意义(P<0.05); LRIG3蛋白的表达水平则分别上升90.5%、78.6%和68.2%,差异显著(P<0.05)。实验组作用24h后三种膀胱癌细胞株EJ、T24和BIU-87的增殖和侵袭能力显著减弱。过表达的LRIG3基因诱导EJ和T24细胞S+G2/M期阻滞:结果表明,实验组EJ和T24细胞中S期和G2/M期细胞数之和显著低于对照组(P<0.05)。BIU-87细胞变化未见明显统计学意义。凋亡检测结果显示在EJ、T24和BIU-87细胞中,实验组的凋亡细胞均显著多于对照组。
     结论
     使用慢病毒载体系统成功构建携带有LRIG3基因的重组质粒并将其成功转染膀胱癌细胞株;转染后的三种膀胱癌细胞株,LRIG3 mRNA和蛋白水平都明显提高,实验结果表明LRIG3可以明显降低膀胱癌细胞的侵袭能力,阻滞膀胱癌细胞生长和促进膀胱癌细胞的凋亡。
BACKGROUND AND OBJECTIVE
     Recently, many studies showed that the human LRIG gene family is tumor-suppressor gene in various types of human cancer. Further studies revealed that the function of LRIGs to inhibit proliferation and invasion of tumor is through down-regulate the expression of EGFR. The impact of LRIGS on the biological behaviors of bladder cancer cells in vitro is not very clear. The aim of our study was to analysis the impact of LRIG3 on the biological features of bladder cancer cell lines EJ, T24 and BIU-87 and the possible mechanisms of enhanced apoptosis induced by upregulation of LRIG1.
     MATERIALS AND METHODS
     Constructed plasmid and transfected into bladder cancer cells, and then stably transfected cell were individually selected and expanded for further experiments. The expression levels of the mRNA and protein of LRIG3 were measured by RT-PCR and Western blot, and the changes in the Cell cycle were arrested by flow cytometry(stained by propidium iodide). The invasiveness was measured by Transwell assay and the cell apoptosis were detected by flow cytometry with ANNEXIN V and 7-aad staining.
     RESULTS
     Compared with the control group, the mRNA levels of LRIG3 in the three cells with over expressed LRIG3 were raised 79.2%,68.6% and 60.3% respectively(P<0.05), and the protein levels were raised 90.5%,78.6% and 68.2%(p<0.05). The three bladder cancer cells in experiment groups showed low proliferation and invasion potential. The over-expression LRIG3 in EJ and T24 cells showed an arrest in S+G2/M phase by flow cytometry, but not in BIU-87. The apoptosis rates of the three bladder cancer cells in the experiment groups were significantly higher than the control groups.
     CONCLUSION
     Taken together, the over expression of LRIG3 could influence the cell cycle and invasion, and induce apoptosis in bladder cancer cell lines.
引文
1. Eisenstat DD, Gibson SB. RIGging functional outcomes in glioma cells:new insights into LRIG proteins in malignant gliomas. Cancer Biol Ther.2009 Jun;8(11):1024-6. Epub 2009 Jun 16.
    2. Guo D, Han L, Shu K, Chen J, Lei T. Down-regulation of leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line. J Huazhong Univ Sci Technolog Med Sci.2007 Feb;27(1):91-4.
    3. Tanemura A, Nagasawa T, Inui S, et al. LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin:immunohistochemical analysis for 38 cases. Dermatol Surg 2005;31:423-30.
    4. Jemal A, Murray T, Samuels A, et al.Cancer statistics,2008[J]. CA Cancer J Clin 2008;58:71-96.
    5.顾方六,刘玉立.50年泌尿男生殖系肿瘤发病和构成情况的变迁[J].中华泌尿外科杂志,2002,23(2):88-90.
    6. Guo DS, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics,2004,84:157-165.
    7. Guo D, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues, and a homolog in Ascidiacea. Genomics 2004; 84:157-65.
    8. Guo D, Han L, Shu K, et al. Down-regulation of leucinerich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line[J]. J Huazhong Univ Sci Technolog Med Sci,2007,27(1):91-94.
    9.杨洪宽,毛峰,王宝峰,et al. LRIG3基因过表达对神经胶质瘤细胞株U251与U87增殖及增殖细胞核抗原和Ki-67表达的影响。中华实验外科杂志,2011,28:1019-21.
    10. Guo D, Nilsson J, Haapasalo H et al. Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins(LRIGl-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol (B erl),2006,111:238-246.
    11. Andersson U, Guo D, Malmer B, et al.Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas[J]. Acta Neuropathol,2004,108 (2):135-142.
    12. Mukohara T, Guo D, Yamauchi S, et al. Expression of epidermal growth factor receptor (EGFR) and downstream activated peptides in surgically excised non-small-cell lung cancer (NSCLC) [J]. Lung Cancer,2003,41 (2):123-130.
    13. Mimeault M, Pommery N, Henichartj P. New advances on prostate carcinogenesis and therapies:involvement of EGF-EGFR transduction system [J]. Growth Factors,2003,21 (1):1-14.
    14. Tsutsuis, Ohnos, Murakamis, et al.Comparison of the immunohistochemical expression of EGFR, c-erbB2 and p53 protein between primary and recurrent breast cancer [J]. Breast Cancer,2002,9 (2):111-117.
    15. Shinojiman, Tadak, Shiraishis, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastomamultiforme [J]. Cancer Res,2003, 63(20):6962-6970.
    16. Wu GY, Wu CH. Delivery systems for gene therapy. Biother 1991,3:87-95
    17. Hunt KK, Vo rburger SA. GEN E THERA PY:Hurdles and Hopes for Cancer T reatment. Science,2002,297(5580):415
    18. Ali M, Lemoine NR, Ring CJA. The use of DNA viruses as vectors for gene therapy. Gene Ther 1994,1:367-384.
    19.顾健人,曹雪涛主编.基因治疗.北京:科学出版社,2001,20
    20. Kotsopoulou E, Kim VN, Kingsman AJ. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. Journal of Virology,2000 May; 74(10):4839-52.
    21. Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature biotechnology,1997 sep,15(9):871-5.
    22. Mazarakis ND, Azzouz M, Rohll JB, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet.2001 Sep 15;10(19):2109-21.
    23. Reuber TL, Ausubel FM. Differential mRNA display.Methods Cell Biol. 1995;49:431-40.
    24. Coffin JM. Retrovirus restriction revealed.Nature.1996 Aug 29;382(6594):762-3.
    25. Pandya S, Boris-Lawrie K, Leung NJ, et al. Development of an Rev-independent, minimal simian immunodeficiency virus-derived vector system. Hum Gene Ther. 2001 May 1;12(7):847-57.
    26. Ausubel, F. M., Brent, R., Kingdom, R. E., et al. (1995) Current Protocols in Molecular Biology (John Wiley & Sons, NY).
    27. Byun, J., Kim, J. M., Kim, S. et al. A simple and rapid method for the determination of recombinant retrovirus titer by G418 selection. Gene Ther.1996, 3:1018-1020.
    28. Kwon, Y. J., Hung, G, Anderson, W. F., et al. Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J. Virol.2003, 77:5712-5720.
    29. Higashikawa, F.& Chang L. Kinetic Analysis of stability of simple and complex retro viral vectors. Virology,2001,280:124-131.
    30. Miyao, Y, Shimizu, K., Tamura, M., Yamada, M., Tamura, K., Nakahira, K. Kuriyama, S., Hayakawa, T.& Ikenaka, K. A simplified general method for determination of recombinant retrovirus titers. Cell Struct. Funct.1995, 20:177-183.
    31. Higashimoto, T., Urbinati, F., Perumbeti, A., et al. The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther.2007,14(17):1298-1304.
    32. Zufferey, R., Donello, Trono, D. et al. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol.1999,73:2886-2892.
    33. Zennou, V., Petit, C., Guetard, D., et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell,2000,101:173-185.
    34. Wu, X., Wakefield, J. K., et al. Development of a Novel Trans-Lentiviral Vector That Affords Predictable Safety Mol. Ther.,2000,2:47-55.
    35. Gossen, M.& Bujard, H. Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proc. Natl. Acad. Sci. USA 1992,89:5547-5551.
    36. Jach G, Binot E, Frings S, et al. Use of red florescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J,2001,28:483-491.
    37. Androulakis I P, Yang E, Almon R R. Analysis of time-series gene expression data: methods, challenges, and opportunities [J]. Annu Rev Biomed Eng,2007, 9:205-228.
    38. Zeng Z Y, Zhou Y H, Zhang W L, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway [J]. Hum Pathol,2007,38(1):120-133.
    39. Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116(2):281-297.
    40. Barabasi A L, Oltvai Z N. Network biology:understanding the cell's functional organization [J]. Nat Rev Genet,2004,5(2):101-113.
    41. Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J]. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    42. Abraira VE, Satoh T, Fekete DM, et al. Vertebrate Lrig3-ErbB interactions occur in vitro but are unlikely to play a role in Lrig3-dependent inner ear morphogenesis. PLoS One.2010 Feb 1;5(2):e8981.
    43. Guo D, Nilsson J, Haapasalo H, Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol.2006 Mar;111(3):238-46. Epub 2006 Mar 11.
    44. Victoria E. Abraira, Takunori Satoh, Donna M. Fekete, et al. Vertebrate Lrig3-ErbB Interactions Occur In Vitro but Are Unlikely to Play a Role in Lrig3-Dependent Inner Ear Morphogenesis. PLoS ONE,10 February 2010, Volume 5, Issue 2, e8981.
    45. Jemal A, Murray T, Samuels A, et al. Cancer statistics,2008[J]. CA Cancer J Clin 2008;58:71-96.
    46. Nishida S, Matsuura S, Kawagoe K. Gan To Kagaku Ryoho. Home hospice care for the urological cancer patients.[Article in Japanese] 2011 Dec;38 Suppl 1:73-5. Japanese.
    47. Xiong Z, Cao Y, Guo D, Expression of EGFR and LRIG-1 in human trigeminal neurinoma. J Huazhong Univ Sci Technolog Med Sci.2006;26(1):86-8.
    48. Hedman H, Henriksson R. LRIG inhibitors of growth factor signalling double-edged swords in human cancer? Eur J Cancer.2007 Mar;43(4):676-82. Epub 2007 Jan 18.
    49. Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 2004;23:3270-81.
    50. Nilsson J, Vallbo C, Guo D, et al. Cloning, characterization, and expression of human LIG1. Biochem Biophys Res Commun 2001;284:1155-61.
    51. Suzuki Y, Sato N, Tohyama M, et al. cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. LIG-1, a protein with leucine-rich repeats and immunoglobulin-like domains. J Biol Chem 1996;271:22522-7.
    52. Laederich MB, Funes-Duran M, Yen L, et al. The leucinerich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 2004;279:47050-6.
    53. Xi GF, Wu Q, Wang BF. LRIG3 gene regulates biological activity of GL15 cell line. Zhejiang Da Xue Xue Bao Yi Xue Ban.2008 Sep;37(5):444-50.
    54. Cai MJ, Xie RF, Han L, et al. Effect of RNAi-mediated LRIG3 gene silencing on proliferation of glioma GL15 cells and expression of PCNA and Ki-67. Ai Zheng. 2009 Jan;28(1):1-4. Epub 2009 Jan 28.
    55. Lu L, Zhang L, Wai MS, et al. Exocytosis of MTT formazan could exacerbate cell injury. Toxicol In Vitro.2012 Jun;26(4):636-44. Epub 2012 Feb 28.
    56. Stockert JC, Blazquez-Castro A, Canete M, et al. Acta Histochem. MTT assay for cell viability:Intracellular localization of the formazan product is in lipid droplets.2012 Feb 14. [Epub ahead of print]
    57. Wang S, Yu H, Wickliffe JK. Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2.Toxicol In Vitro.2011 Dec;25(8):2147-51. Epub 2011 Jul 21.
    58. Zetler G. Analgesia and ptosis caused by caerulein and cholecystokinin octapeptide (CCK-8).Neuropharmacology.1980 May;19(5):415-22.
    59. van der Zee R, Welling GW. The effect of exogenous CCK-8 on the transit time and colonization resistance of decontaminated mice.Antonie Van Leeuwenhoek. 1981 Mar;47(1):82-4. No abstract available.
    60. Han JS. Cholecystokinin octapeptide (CCK-8):a negative feedback control mechanism for opioid analgesia.Prog Brain Res.1995; 105:263-71.
    61. Zhou Y, Han JS. Cholecystokinin octopeptide (CCk-8):opioid or antiopioid activity. Sheng Li Ke Xue Jin Zhan.1989 Jul;20(3):255-7.
    62.李夏雨.不同阶段结直肠癌动态转录组与表达调控网络构建的生物信息学分析[D].长沙:中南大学,2010.
    63.1 Parkin DM, Chen VW, Ferlay, et al. Comparability and quality control in cancer registration. IARC Tech Rep No 19. Lyon:IARC,1994.45-49.
    64.4Berrino F, Sant A, Verdecchia A, et al. Survival of cancer patients in Europe:the EUROCARE Study. IARC Sci Pub No 132. Lyon:IARC,1995,1-463.
    65. Bentzen SM,Poulsen HS,Kaae S. et al. Prognostic factors in osteosar-comas[J]. Cancer,1988,62:194-202.
    66. Gray.J.W. Cell cycle analysis using flow cytometry. Int.J.Radiat.Biol.1986;49(2): 237.
    67. Chang L et al.Rapid flow cytometric assay for assessment of natural killer activity. Immun Methods 1993;166:45.
    68. C.Darreli Jennings and Kenneth A.Foon:Recent Advance in Flow Cytometry: Application to the Diagnosis of Hematologic Malignancy Blood 1997;90(8):2863-2892.
    69. Holmlund C, Nilsson J, Guo D, et al. Characterization and tissue-specific expression of human LRIG2. Gene 2004;332:35-43.
    70. Guo D, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues, and a homolog in Ascidiacea. Genomics 2004;84:157-65.
    71. Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 2004;23:3270-81.
    72. Laederich MB, Funes-Duran M, Yen L, et al. The leucinerich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 2004;279:47050-6.
    73. Victoria E. Abraira, Takunori Satoh, Donna M. Fekete, et al. Vertebrate Lrig3-ErbB Interactions Occur In Vitro but Are Unlikely to Play a Role in Lrig3-Dependent Inner Ear Morphogenesis. PLoS ONE,10 February 2010, Volume 5, Issue 2, e8981.
    74. Guo D, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics.2004 Jul; 84(1):157-65.
    75. Cai MJ, Xie RF, Han L, Chen RD, et al. Effect of RNAi-mediated LRIG3 gene silencing on proliferation of glioma GL15 cells and expression of PCNA and Ki-67. Ai Zheng.2009 Jan;28(1):1-4. Epub 2009 Jan 28.
    76. Eisenstat DD, Gibson SB. RIGging functional outcomes in glioma cells:new insights into LRIG proteins in malignant gliomas. Cancer Biol Ther.2009 Jun;8(11):1024-6. Epub 2009 Jun 16.
    77. Xi GF, Wu Q, Wang BF. LRIG3 gene regulates biological activity of GL15 cell line. Zhejiang Da Xue Xue Bao Yi Xue Ban.2008 Sep;37(5):444-50.
    78. Guo D, Han L, Shu K, Chen J, Lei T. Down-regulation of leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line. J Huazhong Univ Sci Technolog Med Sci.2007 Feb;27(1):91-4.
    79. Hedman H, Henriksson R. LRIG inhibitors of growth factor signalling-double-edged swords in human cancer? Eur J Cancer.2007 Mar;43(4):676-82. Epub 2007 Jan 18.
    80. Xiong Z, Cao Y, Guo D, Expression of EGFR and LRIG-1 in human trigeminal neurinoma(三叉神经鞘瘤).J Huazhong Univ Sci Technolog Med Sci. 2006;26(1):86-8.
    81. Thomasson M, Hedman H, Guo D, et al. LRIG1 and epidermal growth factor receptor in renal cell carcinoma:a quantitative RT-PCR and immunohistochemical analysis. Br J Cancer 2003;89:1285-9.
    82. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101:811-6.
    83. Rhodes DR, Yu J, Shanker K, et al. ONCOMINE:a cancer microarray database and integrated data-mining platform. Neoplasia 2004;6:1-6.
    84. Abraira VE, Satoh T, Fekete DM, et al. Vertebrate Lrig3-ErbB interactions occur in vitro but are unlikely to play a role in Lrig3-dependent inner ear morphogenesis. PLoS One.2010 Feb 1;5(2):e8981.
    85. Cai MJ, Xie RF, Han L, et al. Effect of RNAi-mediated LRIG3 gene silencing on proliferation of glioma GL15 cells and expression of PCNA and Ki-67. Ai Zheng. 2009 Jan;28(1):1-4. Epub 2009 Jan 28.
    86. Wang B, Han L, Chen R, et al. Downregulation of LRIG2 expression by RNA interference inhibits glioblastoma cell(GL15) growth, causes cell cycle redistribution, increases cell apoptosis and enhances cell adhesion and invasion in vitro. Cancer Biol Ther.2009 Jun;8(11):1018-23. Epub 2009 Jun 10.
    87. Hedman H, Lindstrom AK, Tot T, et al. LRIG2 in contrast to LRIG1 predicts poor survival in early-stage squamous cell carcinoma of the uterine cervix. Acta Oncol. 2010 Aug;49(6):812-5.
    88. Wu X, Hedman H, Bergqvist M, et al. Expression of EGFR and LRIG proteins in oesophageal carcinoma with emphasis on patient survival and cellular chemosensitivity. Acta Oncol.2012 Jan;51(1):69-76. Epub 2011 Mar 18.
    89. Krig SR, Frietze S, Simion C, et al. Lrigl is an estrogen-regulated growth suppressor and correlates with longer relapse-free survival in ERa-positive breast cancer. Mol Cancer Res.2011 Oct;9(10):1406-17. Epub 2011 Aug 5.
    90. Holmlund C, Haapasalo H, Yi W, et al. Cytoplasmic LRIG2 expression is associated with poor oligodendroglioma patient survival. Neuropathology.2009 Jun;29(3):242-7. Epub 2009 Oct 20.
    91. Yi W, Haapasalo H, Holmlund C, et al. Expression of leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins in human ependymoma relates to tumor location, WHO grade, and patient age. Clin Neuropathol.2009 Jan-Feb;28(1):21-7.
    92. Cai M, Han L, Chen R, Ye F, Inhibition of LRIG3 gene expression via RNA interference modulates the proliferation, cell cycle, cell apoptosis, adhesion and invasion of glioblastoma cell (GL15). Cancer Lett.2009 Jun 8;278(1):104-12. Epub 2009 Feb 5.
    93. David D. Eisenstat, Spencer B. Gibson. RIGging functional outcomes in glioma cells. Cancer Biology & Therapy 8:11,1024-1026; 1 June 2009.