烯酮亚胺参与的含氮杂环化合物合成反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环化合物是最大的一类有机化合物,由于其独特的结构和性质,使得它们在许多领域中有着非常重要的用途。含氮杂环化合物作为杂环化合物家族中的重要成员,在生物、医药、材料等多个领域扮演着至关重要的角色。因此含氮杂环化合物的合成一直是有机合成化学领域研究的热点。发展简单的,安全的,高效的合成含氮杂环化合物的新方法,一直是有机合成化学家们努力的方向。本论文全面综述了烯酮亚胺的形成方法及其在杂环化合物合成中的重要应用。在此基础之上,发展了三类基于烯酮亚胺中间体合成含氮杂环化合的新反应和新方法。主要内容如下:
     1.发展了一种一价铜催化的磺酰叠氮,端基炔烃和氯代亚胺参与的四组分反应,高产率和高立体选择性地构筑了多功能化的2-亚胺氮杂环丁烷类化合物。原料易得,操作简便,反应条件温和,基团适应性广。我们成功地证明了该反应是按照一种新颖的平行催化的反应模式进行的,反应过程包含了两个相互平行的催化循环:CuAAC生成N-磺酰基烯酮亚胺的催化循环和铜催化的Csp2-Csp偶联反应循环。同时,所得到的产物只需经历一步简单的反应便可转化成一类结构更为新颖的四员环并七员环化合物,此种结构的化合物通过传统的合成方法是很难得到的。
     2.围绕4-取代丁二炔参与CuAAC反应生成的β-炔基烯酮亚胺中间体,我们发展了一种合成吡唑类和嘧啶磺酰亚胺类化合的新方法。在研究过程中,我们采取了由简入难,层层递进的研究策略。根据β-炔基烯酮亚胺与胺类化合物的亲核加成反应所得的实验结果,我们推测反应可能先后经历了两个具有高亲电反应活性位点的中间体:β-炔基烯酮亚胺中间体和联烯亚胺中间体。在此基础上,我们巧妙地选择了酰肼类化合物作为1,2-双亲核试剂来捕获β-炔基烯酮亚胺中间体及其后续产生的联烯亚胺中间体,成功地合成了一系列吡唑类化合物,这也证实了我们之前对反应机理的推测。接下来,我们进一步将此反应的应用范围扩展到了合成六员杂环化合物。应用具有1,3-双亲核反应位点的脒类化合物来捕获β-炔基烯酮亚胺中间体及其后续产生的联烯亚胺中间体,我们成功地合成了一系列嘧啶磺酰亚胺类化合物。
     3.发展了一类基于Staudinger反应和Wolff重排反应的串联反应,高效便捷地合成了一系列具有苯并[b]咔唑骨架的荧光化合物。该反应经历了关键的烯酮亚胺中间体及其参与的分子内双自由基环化的反应历程,操作简便,普适性好,为构筑苯并[b]咔唑类化合物提供了全新的思路。值得指出的是,通过该方法我们首次合成了具有全新骨架的线性杂并苯类化合物以及分子中同时具有苯并[b]咔唑结构和荧蒽结构的化合物。我们还进一步对所得化合物的光物理性质进行了测定,并结合理论计算,对其荧光性能进行了评估。实验结果表明我们合成的这一系列化合物具有比较宽的荧光发射波长,介于410-521nm之间,并且最高的荧光量子效率达到了62%。这就意味着我们合成的这一系列荧光分子将有可能在光电材料以及新型荧光传感器等研究领域得到比较好的应用。
     4.从分子内稳定三氮唑中间体的思路出发,发现并发展了一类基于CuAAC反应合成3-重氮吲哚亚胺类化合物的新方法。该方法原料易得,操作简便,反应条件温和,基团适应范围广。我们推测反应可能经历了吲哚并三氮唑中间体,由于磺酰基强的吸电子作用和并环结构环张力的存在,使得吲哚并三氮唑中间体中的三氮唑环容易发生环链异构化得到开环的3-重氮亚胺类化合物。我们进一步对3-重氮吲哚亚胺类化合物作为卡宾前体的化学进行了研究,合成了一系列结构新颖的吲哚衍生物。
The heterocyclic compounds is the largest class of organic compounds. Given its unique structure and properties, they play an important role in many areas. As one of the most important heterocyclic compounds, nitrogen-containing heterocyclic compounds are widely used in biology, pharmaceutical chemistry and material. Synthesis of nitrogen-containing heterocyclic compounds has been a hot research field of organic synthetic chemistry. Development of simple, safe and efficient methods for the synthesis of new nitrogen-containing heterocyclic compounds is the mission of synthetic organic chemists. Based on the summary of reported synthetic methods of ketenimines and their utilizations in building heterocyclic compounds, three new methods were developed for the synthesis of nitrogen-containing heterocyclic compounds on the basis of ketenimines. The details are summarized as following:
     1. A novel Cu-catalyzed fourcomponent reaction of imidoly chlorides, sulfonyl azides, and two terminal alkynes was developed, which afforded polyfunctionalized azetidin-2-imines in good to excellent yield with high diastereoselectivity. Startingmaterials are easily accessible. This one-pot reaction proceeded smoothly at room temperature with easy operation. It occurred in a parallel catalysis manner, including a copper catalyzed Csp-Csp2coupling, a copper-catalyzed alkyne azide cycloaddition, and a [2+2] cycloaddition. All of these separate reactions represent the frontier of modern organic chemistry and fit the basic requirements of green chemistry with high atom economy. Moreover, the synthesized azetidin-2-imines could be conveniently converted into the structurally interesting dihydroazeto[1,2-a]benzo[e]azepin-2(4H)-immes.
     2. A concise and efficient method for the synthesis of polyfunctionalized pyrazoles and pyrimidine-imides was developed based on the CuAAC with the participation of4-substituted-1,3-butadiyne. Two key intermediates, β-alkynylketenimine and allenyl-imine, were included in this transformation and both of them were high nucleophilicity. Using hydrazides as1,2-dinucleophile, the β-alkynylketenimine and allenyl-imine intermediates were captured successively and a series of polyfunctionalized pyrazoles was successfully synthesized in high yields with good regioselectivity. Furthermore, we extended the application of this method to the synthesis of six-membered rings. Using amidine as1,3-dinucleophile, a series of pyrimidine-imides was synthesis in high yields with good regioselectivity. This methodology is concise, general, efficient, and atom-economic and could have a bright future in organic synthesis.
     3. Tandem reactions for the synthesis of benzo[b]carbazoles, benzo[b]benzo[5,6]indolo[3,2-h]carbazoles, fluoreno[9,1-ab]carbazoles, and fluoreno[9,1-ab]fluoreno[1',9':5,6,7]indolo[3,2-h]carbazoles have been developed. The one-pot reaction involved a tandem Wolff rearrangement/aza-Wittig reaction/biradical cyclization/1,5-H shift process. A variety of substrates were suitable for this reaction. The products have been demonstrated to emit lights at a range of410-521nm with quantum yields up to62%in dichloromethane solution. It is believed that the synthesized compounds might be fabricated in optoelectronics devices for material science study or applied as new fluorophores in the development of new fluorescent chemosensors in life science.
     4. From the thought of stabilizing1-copper-1,2,3-triazole intermediates through intramolecular coordination, a concise and efficient method for the synthesis of3-diazoindolinimines was developed from o-alkynylanilines and sulfonyl azides based on CuAAC. The reaction proceeded smoothly at room temperature with easy operation. Although the expected triazoloindoles were not obtained, we speculated that the final products3-diazoindolinimines were transformed from triazoloindoles through ring-chain isomerizations. Furthermore, the obtained3-diazoindolinimines could be utilized as a-imino carbene precursors for the constraction of a range of valuable indole molecules including pyrrolo[2,3-b]indoles, spirocyclopropyl iminoindoles,2,3-dihydropyrrolo[2,3-b]indoles,3,3'-biindoles, and2,3'-biindoles.
引文
[1]Staudinger, H.; Hauser, E. Uber Ketene, ⅩⅩⅩⅦ. Mitteilung. Ketenimin derivate. Helv. Chim. Acta.1921,4,887-896.
    [2]Yang, Y.-Y; Shou, W.-G.; Hong, D.; Wang, Y.-G. Selective Synthesis of 4-Alkylidene-β-lactams and N,N'-Diaryl-amidines from Azides and Aryloxyacetyl Chlorides via a Ketenimine-Participating One-Pot Cascade Process. J. Org. Chem.2008, 73,3574-3577.
    [3]a) Bae, I.; Han, H.; Chang, S. Highly Efficient One-Pot Synthesis of N-Sulfonyl-amidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide, Alkyne, and Amine. J. Am. Chem. Soc.2005,127,2038-2039. b) Cassidy, M. P.; Raushel, J.; Fokin, V. V. Practical Synthesis of Amides from In Situ Generated Copper(I) Acetylides and Sulfonyl Azides. Angew. Chem. Int. Ed. 2006,45,3154-3157.
    [4]Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. A Facile Access to N-Sulfonyl-imidates and Their Synthetic Utility for the Transformation to Amidines and Amides. Org. Lett.2006,8,1347-1350.
    [5]Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water. J. Am. Chem. Soc.2005, 127,16046-16047.
    [6]Stevens, C. L.; French, J. C. Nitrogen Analogs of Ketenes. Ⅱ. Dehydro-chlorination of Imino Chlorides. J. Am. Chem. Soc.1954,76,4398-4402.
    [7]Steven, C. L.; Singhal, G. H. Nitrogen Analogs of Ketenes. Ⅵ. Dehydration of Amides. J. Org. Chem.1964,29,34-37.
    [8]a) Shi, C.; Wang, K. K. Generation of Biradicals and Subsequent Formation of Quinolines and 5H-Benzo[b]carbazoles from N-[2-(1-Alkyl)phenyl]keyenimines. J. Org. Chem.1998,63,3517-3520. b) Schmittel, M.; Steffen, J.-P.; Wencesla Angel, M. A.; Engels, B.; Lennartz, C.; Hanrath, M. Two Novel Thermal Biradical Cyclizations of Enyne-Ketenimines:Theory, Experiment, and Synthetic Potential. Angew. Chem. Int. Ed 1998,37,1562-1564
    [9]a) Zhang, Y; DeKorver, K. A.; Lohse, A. G.; Zhang, Y.-S.; Huang, J.; Hsung, R. P. Synthesis of Amidines Using N-Allyl Ynamides. A Palladium-Catalyzed Allyl Transfer through an Ynamido-π-Allyl Complex. Org. Lett.,2009,11,899-902. b) DeKorver, K. A.; Hsung, R. P.; Lohse, A. G.; Zhang, Y. Org. Lett,2010,12,1840-1843. c)DeKorver, K. A.; North, T. D.; Hsung, R. P. Synlett,2010,16,2397-2402. d) DeKorver, K. A.; Johnson, W. L.; Zhang, Y; Hsung, R. P.; Dai, H; Deng, J.; Lohse, A. G.; Zhang, Y. J. Org. Chem,2011,76,5092-5103.
    [10]Gomowicz, G. A.; West, R. Polylithium Compounds. IV. Polylithiation of Nitriles and the Preparations of Trisilyl Ynamines. J. Am. Chem. Soc,1971,93,1714-1720.
    [11]Mermerian, A. H.; Fu, G. C. Nucleophile-Catalyzed Asymmetric Acylations of Silyl Ketene Imines:Application to the Enantioselective Synthesis of Verapamil. Angew. Chem. Int. Ed,2005,44,949-952.
    [12]a) Denmark, S. E.; Wilson, T. W; Burk, M. T.; Heemstra, Jr. J. R. Enantioselective Construction of Quaternary Stereogenic Carbons by the Lewis Base Catalyzed Additions of Silyl Ketene Imines to Aldehydes. J. Am. Chem. Soc,2007,129,14864-14865. b) Denmark, S. E.; Wilson, T. W. Construction of Quaternary Stereogenic Carbon Centers by the Lewis Base Catalyzed Conjugate Addition of Silyl Ketene Imines to a,b-Unsaturated Aldehydes and Ketones. Synlett,2010,11,1723-1728.
    [13]a) Denmark, S. E.; Wilson, T. W. N-silyl oxyketene imines are underused yet highly versatile reagents for catalytic asymmetric synthesis. Nature Chemistry,2010,2, 937-943. b) Denmark, S. E.; Wilson, T. W. Lewis Base Catalyzed Enantioselective Additions of an N-Silyl Vinylketene Imine. Angew. Chem. Int. Ed.,2012,51,3236-3239.
    [14]a) Oakes, T. R.; David, H. G.; Nagel, F. J. Small Ring Systems from Isocyanides. I. The Reaction of Isocyanides with Hexafluorobutyne-2. J. Am. Chem. Soc,1969,91, 4761-4765. b) Oakes, T. R.; Donovan, D. J. Reactions of Isocyanides with Activated Acetylenes in Protic Solvents. J. Org. Chem.,1973,38,1319-1325.
    [15]a) Anary-Abbasinejad, M.; Ghanea, F.; Anaraki-Ardakani, H. One-Pot Synthesis of Highly Functionalized Stable Ketenimines by Three-Component Reaction of Cyclohexyl Isocyanide, Dialkyl Acetylenedicarboxylates, and Benzoyl Hydrazones. Synth. Commun.,2009,39,544-551. b) Alizadeh, A.; Rostamnia, S. Facile Synthesis of Highly Functionalized Stable Ketenimines via a Three-Component Reaction. Synthesis,2008,57-60. c) Baharfar, R.; Jaafari, L.; Azimi, R. Three-component reaction of alkyl isocyanides with acetylenic esters and pyridine-2-carboxaldoxime or a-furildioxime:Synthesis and dynamic NMR study of ketenimines and bis(ketenimines). Chin. Chem. Lett.,2011,22,943-946. d) Anary-Abbasinejad, M.; Moslemine, M. H.; Anaraki-Ardakani, H. One-pot synthesis of highly functionalized stable ketenimines of 2,2,2-trifluoro-N-aryl-acetamides. J. Fluorine Chem.,2009,130, 368-371.
    [16]Cui, S.-L.; Lin, X-F.; Wang, Y. G. Novel and Efficient Synthesis of Imino-coumarins via Copper-Catalyzed Multicomponent Reaction. Org. Lett.2006,8,4517-4520.
    [17]Cui, S.-L.; Wang, I; Wang, Y. G. Efficient Synthesis of 2-Imino-1,2-Dihydro-quinolones and 2-Iminothiochromenes vis Copper-Catalyzed Domino Reaction. Tetrahedron 2008,64,487-492.
    [18]Shen, Y; Cui, S.-L.; Wang, J.; Chen, X. P.; Lu, P.; Wang, Y. G. Copper-Catalyzed Three-Component Synthesis of 2-Iminodihydrocoumariris and 2-Iminocoumarins. Adv. Synth. Catal,2010,352,1139-1144.
    [19]Cui, S.-L.; Wang, J.; Wang, Y. G. Copper-Catalyzed Multicomponent Reaction: Facile Access to Functionalized 5-Arylidene-2-imino-3-pyridines. Org. Lett.2007,9, 5023-5025.
    [20]Namitharan, K.; Pitchurnani, K.; Copper(I)-Catalyzed Three-Component Reaction of Sulfonyl Azide, Alkyne, and Nitrone Cycloaddition/Rearrangement Cascades:A Novel One-Step Synthesis of Imidazolidin-4-ones. Org. Lett.2011,13,5728-5731.
    [21]Li, S.-Y.; Luo, Y.; Wu, J. Three-Component Reaction of N'-(2-Alkylbenzyli- ene)hydrazide, Alkyne, with Sulfonyl Azide via a Multicatalytic Process:A Novel and Concise Approach to 2-Amino-H-pyrazolo[5,1-a]-iaoquinolines. Org. Lett.2011,13, 4312-4315.
    [22]Yoo, E. J.; Chang, S. A New Route to Indolines by the Cu-Catalyzed Cyclization Reaction of 2-Ethynylanilines with Sulfonyl Azides. Org. Lett.2008,10,1163-1166.
    [23]Chen, Z.-Y.; Zheng, D.-Q.; Wu, J. A Facile Route to Polysubstituted Indoles via Three-Component Reaction of 2-Ethynylaniline, Sulfonyl Azide, and Nitroolefin. Org. Lett.2011,13,848-851.
    [24]Cho, S. H.; Chang, S. Room Temperature Copper-Catalyzed 2-Functionali-zation of Pyrrole Rings by a Three-Component Coupling Reaction. Angew. Chem. Int. Ed. 2008,47,2836-2839.
    [25]Li, S.-Y.; Luo, Y.; Wu, J. An Efficient Approach to Fused Indolines via a Copper(I)-Catalyzed Reaction of Sulfonyl Azide with 2-Ethynylaryl Methylenecyclo-propane. Org. Lett.2011,13,3190-3193.
    [26]Whiting, M.; Fokin, V. V.; Copper-Catalyzed Reaction Cascade:Direct Conver-sion of Alkynes into N-Sulfonylazeidin-2-imine. Angew. Chem. Int. Ed.2006,45, 3157-3161.
    [27]Xu, X.-L.; Chen, D.-P.; Li, J.-H.; Guo, H.-Y; Yan, J. Copper-Catalyzed Highly Efficient Multicomponent Reaction:Synthesis of 2-(Sulfonylimino)-4-(alkyirnino) azetidine Derivatives. Org. Lett.2007,9,1585-1587.
    [28]Cui, S.-L.; Wang, J.; Wang, Y.-G. Copper-Catalyzed Multicomponent Reaction: Facile Access to Novel Phosphorus Amidines. Org. Lett.2008,10,1267-1269.
    [29]Lu, W; Song, W.-Z.; Hong, D.; Lu, P.; Wang, Y.-G. Copper-Catalyzed One-Pot Synthesis of 2-Alilcylidene-1,2,3,4-tetrahydropyrimidines.Adv. Synth. Catal.2009,351, 1768-1772.
    [30]a) Alajarin, M.; Molina, P.; Vidal, A. Intramolecular [2+2] Cycloaddition of Ketenimines with Imine. Tetrahedron Lett.1996,37,8945-8948. b) Alajarin, M.; Molina, P.; Vidal, A.; Tovar, F. Intramolecular [2+2] Cycloaddition of Ketenimines with Imine. Synthesis and Chemical Behavior of Azeto [2,1-b] quinazolines. Tetrahedron 1997,53,13449-13472. c) Alajarin, M.; Vidal, A.; Orenes, R.-A. New Applications of the Imine-Ketenimines Intramolecular [2+2] Cycloaddition Reaction:Highly Stereocontrolled Synthesis of Azeo [1,2-a]pyrimidines. Eur. J. Org. Chem.2002,4222-4227. d) Alajarin, M.; Vidal, A.; Tovar, F.; Arrieta, A.; Lecea, B.; Cossio, F. P. Surpassing Torquoelectronic Effects in Conrotatony Ring Closure:Origins of Stereocontrol in Intramolecular Ketenimine-Imine [2+2] Cycloadditions. Chem. Eur. J.1999,5,1106-1117.
    [31]a) Cossio, F. P.; Arrieta, A.; Lecea, B.; Alajarin, M.; Vidal, A. Tovar, F. Highly Efficient Induction of Chirality in Intramolecular [2+2] Cycloadditions between Ketenimines and Imines. J. Org. Chem.2000,65,3633-3643. b) Alajarin, M.; Vidal, A.; Tovar, F.; Ramirez de Arellano, M. C.; Cossio, F. P.; Arrieta, A.; Lecea, B. New Stereoselective Intramolecular [2+2] Cycloadditions between Ketenimines and Imine on an ortho-Benzylic Scaffold:1,4-Asymmetric Induction. J. Org. Chem.2000,65, 7512-7515. c) Alajarin, M.; Vidal, A.; Tovar, F.; Ramirez de Arellano, M. C. Stereocontrolled Synthesis of Azeto [2,1-b] Quinazolines Bearing Three Stereocenters via The Intramolecular [2+2] Cycloaddition between Ketenimines and Imines. Tetrahedron:Asymmetry 2004,15,489-494.
    [32]Alajarin, M; Sanchez-Andrada, P.; Vidal, A.; Tovar, F. Mode Selectivity in the Intramolecular Cyclization of Ketenimines Bearing N-Acylimino Units:A Computational and Experimental Study. J. Org. Chem.,2005,70,1340-1349.
    [33]Alajarin M.; Vidal, A.; Tovar, F.; Conesa, C. Formal [4+2] Intramolecular Cycloaddition Ketenimine-Imine. Synthesis of Benzimidazo [1,2-isoquinolines. Tetrahedron Lett.1999,40,6127-6130.
    [34]a) Alajarin M.; Vidal, A.; Tovar, F.; Sanchez-Andrada, P.; Bautista, D. Ketenimine and Imine Functions Linked by an Ethylene Group. Intramolecular [4+2] Cycloaddition Leading to Imidazo[1,2-b]isoquimolines. Tetrahedron2003,59,9913-9918. b) Alajarin M.; Sanchez-Andrada, P.; Vidal, A.; Tovar, F. A Mechanistic Rationale for the Mode Selectivity in the Intramolecular Cyclization of Ethylene-Tethered Imino Ketenimines: [2+2] versus [2+4] Stepwise Cycloaddition. Eur. J. Org. Chem.2004,2636-2643.
    [35]Alajarin, M.; Vidal, A.; Ortin, M.-M.; Tovar, F. Intramolecular [4+2] Cycloaddition Reaction of Ketenimines:A New Synthesis of Benz[b]acridines. Synthesis 2002,16,2393-2398.
    [36]Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Orenes, R.-A.; Vidal, A. Unprecedented Intramolecular [3+2] Cycloaddition of Azido-ketenimines and Azido-carbodimides. Synthesis of Indolo [1,2-a]quinazolines and Tetrazolo [5,1-b]quinazolines. Org. Biomol. Chem.2011,9,6741-6749.
    [37]Alajarin, M.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A.; Bautista, D. From Ketenimines to Ketenes to Quinolones:Two Consecutive Pseudopericyclic Events. Org. Lett.2005,7,5281-5284.
    [38]a) Alajarin, M.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A. Tandem Pseudopericyclic Reactions:[1,5]-X Sigmatropic Shift/6π-Electrocyclic Ring Closure Converting N-(2-X-Carbonyl)phenyl Ketenimines into 2-X-Quinolin-4(3H)-ones. J. Org. Chem.,2006,71,8126-8139. b) Alajarin, M.; Vidal, A.; Ortin, M.-M. Synthesis of 6H-Thieno[3,2-b]pyridin-7-ones from N-(2-X-Carbonyl)-3-thienyl Ketenimines (X = RS, ArO, R2N) via Consecutive [1,5]-X Sigmatropic Rearrangement and 6p-Electrocyclization. Synthesis,2007,4,590-596.
    [39]a) Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A. Hydricity-Promoted [1,5]-H shifts in Acetalic Ketenimines and Carbodiimides. Org. Lett.2006,8,5645-5648. b) Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A. Tandem 1,5-Hydride Shift/6 π-Electrocyclization of Ketenimines and Carbodiimides Substituted with Cyclic Acetal and Dithioacetal Functions:Experiments and Computations. Eur. J. Org. Chem.2011,1896-1913. c) Alajarin, M.; Bonillo, B.; Sanchez-Andrada, P.; Vidal, A.; Bautista, D. Unexpected Formation of 2,1-Benzisothiazol-3-ones from Oxathiolano Ketenimines:A Rare Tandem Process. Org. Lett.2009,11,1365-1368. d) Alajarin, M.; Bonillo, B.; Sanchez-Andrada, P.; Vidal, A. Tandem 1,5-Hydride Shift/1,5-S,N-Cyclization with Ethylene Extrusion of 1,3-Oxathiolane-Substituted Ketenimines and Carbodiimides. An Experimental and Computational Study. J. Org. Chem.2010,75,3737-3750.
    [40]Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A.; Orenes, R.-A. Domino Reactions Initiated by Intramolecular Hydride Transfer from Tri(di)aryl-methane Fragments to Ketenimine and Carbodimide Functions. Org. Biomol. Chem. 2010,8,4690-4700.
    [41]a) Alajarin, M.; Vidal, A.; Ortin, M.-M. Intramolecular Addition of benzylic Radicals onto Ketenimines. Synthesis of 2-Alkylindoles. Org. Biomol. Chem.2003,1, 4282-4292. b) Alajarin, M.; Vidal, A.; Ortin, M.-M. First Radical Addition onto Ketenimines:a Novel Synthesis of Indoles. Tetrahedron Lett.2003,44,3027-3030.
    [42]Alajarin, M.; Vidal, A.; Ortin, M.; Bautista, D. Persistent radical effect in the intramolecular addition of benzylic radicals onto ketenimines:selective cross-coupling of α-(indol-2-yl)benzyl radicals with the 1-cyano-l-methylethyl radical. New. J. Chem., 2004,28,570-577.
    [1]a) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent Tandem Catalysis. Chem. Rev.2005,105,1001-1020. b) Fogg, D. E.; dos Santos, E. N. Tandem catalysis:a taxonomy and illustrative review. Coordination Chemistry Reviews 2004, 248,2365-2379.
    [2]Kim, J. Lee, S.Y.; Do, Y.; Chang, S. Synthetic Utility of Ammonium Salts in a Cu-Catalyzed Three-Component Reaction as a Facile Partner. J. Org. Chem.2008,73, 9454-9457.
    [3]Jin, H.-W.; Xu, X.-L.; Gao, J.-R.; Zhong, J.-H.; Wang, Y.-G. Copper-Catalyzed One-Pot Synthesis of Substituted Benzimidazoles. Adv. Synth. Catal.2010,352,347-350.
    [4]Li, Y.; Hong, D.; Zhu, Y.-X.; Lu, P.; Wang, Y.-G. One-Pot Synthesis of 5-Sulfonamidopyraole from Terminal Alkynes, Sulfonyl Azides and Hydrozones. Tetrahedron 2011,67,8086-8091.
    [5]Wang, J.; Wang, J. J.; Zhu, Y. X; Lu, P; Wang, Y. G. Copper-cascade catalysis: synthesis of 3-functionalized indoles. Chem. Commun.2011,47,3275-3277.
    [6]a) Li, S.; Zhu, J.; Xie, H.; Chen, Z.; Wu, Y. Cu(I)-catalyzed coupling reactions of fluorinated imidoyl halides with terminal alkynes:Convenient synthesis of fluorinated alkynyl imines. J. Fluor. Chem.2011,132,196-201. b) Amii, H.; Kishikawa, Y.; Uneyama, K. Rh(I)-Catalyzed Coupling Cyclization of N-Aryl Trifluoroacetimidoyl Chlorides with Alkynes:One-Pot Synthesis of Fluorinated Quinolines. Org. Lett.2001, 3,1109-1112. c) Isobe, A.; Takagi, J.; Katagiri, T.; Uneyama, K. Palladium-Catalyzed Chloroimination of Imidoyl Chlorides to a Triple Bond:An Intramolecular Reaction Leading to 4-Chloroquinolines. Org. Lett.2008,10,2657-2659.
    [7]a) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Bacterial Resistance to P-Lactam Antibiotics:Compelling Opportunism, Compelling Opportunity. Chem. Rev.2005, 105,395-424. b) Massovaand, I.; Mobashery, S. Molecular Bases for Interactions between β-Lactam Antibiotics and β-Lactamases. Acc. Chem. Res.1997,30,162-168. c) He, M.; Bode, J. W. Enantioselective, NHC-Catalyzed Bicyclo-β-Lactam Formation via Direct Annulations of Enals and Unsaturated N-Sulfonyl Ketimines. J. Am. Chem. Soc.2008,130,418-419. d) Palomo, C; Aizpurua, J. M.; Ganboaand, I.; Oiarbide, M. Asymmetric Synthesis of β-Lactams by Staudinger Ketene-Imine Cycloaddition Reaction. Eur. J. Org. Chem.1999,3223-3235. e) Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem. Soc. Rev.1997,26,377-386.
    [1]Potts, K. T.; Nye, S. A.; Smith, K. A. (Pyridinylmethylidene)dithioles:Synthesis, Structure, and Reactivity. J. Org. Chem.1992,57,3895-3901.
    [2]Freeman, F.; Lu, H. Y.; Zeng, Q. B. Reactions of Arylmethanethiols with 1,4-Disubstituted 1,3-Butadiynes. J. Org. Chem.1994,59,4350-4354.
    [3]Kramer, S.; Madsen, J. L. H.; Rottlander, M.; Skrydstrup, T. Access to 2,5-Diamidopyrroles and 2,5-Diamidofurans by Au(I)-Catalyzed Double Hydroamination or Hydration of 1,3-Diynes. Org. Lett.2010,12,2758-2761.
    [4]Matsuda, T.; Kadowaki, S.; Yamaguchi, Y; Murakami, M. Ruthenium-Catalyzed trans-Hydrogermylation of Alkynes:Formation of 2,5-Disubstituted Germoles through Double trans-Hydrogermylation of 1,3-Diynes. Org. Lett.2010,12,1056-1058.
    [5]Wang, L. G.; Yu, X. Q.; Feng, X. J.; Bao, M. Synthesis of 3,5-Disubstituted Isoxazoles via Cope-Type Hydroamination of 1,3-Dialkynes. Org. Lett.2012,14,2418-2421.
    [6]Wang, L. G.; Yu, X. Q.; Feng, X. J.; Bao, M. Synthesis of 3,5-Disubstituted Pyrazoles via Cope-Type Hydroamination of 1,3-Dialkynes. J. Org. Chem.2013,78, 1693-1698.
    [7]Sharp, P. P.; Banwell, M. G.; Renner, J.; Lohmann, K.; Willis, A. C. Consecutive Gold(I)-Catalyzed Cyclization Reactions of o-(Buta-1,3-diyn-1-yl-)-Substituted N-Aryl Ureas:A One-Pot Synthesis of Pyrimido[1,6-a]indol-1(2H)-ones and Related Systems. Org. Lett.2013,15,2616-2619.
    [8]Karmakar, R.; Mamidipalli, P.; Yun, S. Y; Lee, D. Alder-Ene Reactions of Arynes. Org. Lett.2013,15,1938-1941.
    [9]Karmakar, R.; Yun, S. Y.; Wang, K.-P.; Lee, D. Regioselectivity in the Nucleophile Trapping of Arynes:The Electronic and Steric Effects of Nucleophiles and Substituents. Org. Lett.2014,16,6-9.
    [10]Mandadapu, A. K.; Sharma, S. K.; Gupta, S.; Krishna, D. G. V.; Kundu, B. Unprecedented Cu-Catalyzed Coupling of Internal 1,3-Diynes with Azides:One-Pot Tandem Cyclizations Involving 1,3-Dipolar Cycloaddition and Carbocyclization Furnishing Naphthotriazoles. Org. Lett.2011,13,3162-3165.
    [11]a) Li, Z. X.; Ling, F.; Cheng, D.; Ma, C. Pd-Catalyzed Branching Cyclizations of Enediyne-Imides toward Furo[2,3-b]pyridines. Org. Lett.2014,16,1822-1825. b) Cheng, D.; Ling, F.; Li, Z. X.; Yao, W. J.; Ma, C. Three-Component Assembly of Conjugated Enyne Scaffolds via E-Selective Olefination of Ynals. Org. Lett.2012,14, 3146-3149.
    [12]a) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W; Zhang, Y. Y; Isakson, P. C. Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors:Identification of 4-[5-(4-Methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J. Med Chem.1997,40,1347-1365. b) Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med Chem. Lett.1996,6,1819-1824. c) Deng, X. H.; Mani, N. S. Base-Mediated Reaction of Hydrazones and Nitroolefins with a Reversed Regioselectivity:A Novel Synthesis of 1,3,4-Trisubstituted Pyrazoles. Org. Lett.2008,10,1307-1310. d) Willy, B.; Muller, T. J. J. Rapid One-Pot, Four-Step Synthesis of Highly Fluorescent 1,3,4,5-Tetrasubstituted Pyrazoles. Org. Lett.2011,13,2082-2085.
    [13]a) Chandrasekhar, S.; Rajaiah, G.; Srihari, P. New and practical synthesis of 1,4-dihydrobenzopyrano-pyrazoles. Tetrahedron Lett.2001,42,6599-6601. b) Katritzky, A. R.; Wang, M. Y.; Zhang, S. M.; Voronkov, M. V. Regioselective Synthesis of Polysubstituted Pyrazoles and Isoxazoles. J. Org. Chem.2001,66,6787-6791. c) Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. A Novel One-Pot Method for the Preparation of Pyrazoles by 1,3-Dipolar Cycloadditions of Diazo Compounds Generated in Situ. J. Org. Chem.2003,68,5381-5383. d) Shen, D. M.; Shu, M.; Chapman, K. T. Versatile and Efficient Solid-Phase Syntheses of Pyrazoles and Isoxazoles. Org. Lett.2000,2,2789-2792. e) Deng, X. H.; Mani, N. S. Reaction of N-Monosubstituted Hydrazones with Nitroolefins:A Novel Regioselective Pyrazole Synthesis. Org. Lett.2006,8,3505-3508.
    [1]a) Sonntag, M.; Kreger, K.; Hantt, D.; Strohriegl, P. Novel star-shaped triphenylaminebased molecular glasses and their use in OFETs. Chem. Mater.2005,17, 3031-3039. b) Weiss, D. S.; Abkowitz, M. Advances in organic photoconductor technology. Chem. Rev.2010,110,479-526. c) Chang, P. H.; Tsai, H. C.; Chen, Y. R.; Chen, J. Y.; Hsiue, G. H. Thermal stability and structural characterization of organic/inorganic hybrid nonlinear optical material containing a two-dimensional chromophore. Langmuir 2008,24,11921-11927. d) Zhang, Q.; Chen, J.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices. J. Mater. Chem.2004,14, 895-900. e) Hudson, Z. M.; Wang, Z.; Helander, M. G.; Lu,Z. H.; Wang, S. N-heterocyclic carbazole-based hosts for simplified single-layer phosphorescent OLEDs with high efficiencies. Adv. Mater.2012,24,2922-2928. f) Xia, G.; Advincula, R. C. Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer units. Macromolecules 2001,34,5854-5859. g) Vezzu, D. A.; Deaton, J. C.; Shayeghi, M.; Li, Y.; Huo, S. Acridinone/amine(carbazole)-based bipolar molecules:efficient hosts for fluorescent and phosphorescent emitters. Org. Lett.2009, 11,4310-4313.
    [2]a) Du, C.; Chen, J.; Guo, Y.; Lu, K.; Ye, S.; Zheng, J.; Liu, Y.; Shuai, Z.; Yu, G. Dicyanovinyl Heterotetracenes:Synthesis, Solid-State Structures, and Photophysical Properties. J. Org. Chem.2009,74,7322-7327. b) Curiel, D.; Mas-Montoya, M.; Uruvakili, A.; Orenes, R. A.; Pallamreddy, H.; Molina, P. Synthesis and Characterization of New Carbazolocarbazoles:Toward π-Extended N-Fused Heteroacenes. Org. Lett.2010,12,3164-3167. c) Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. Indolo[3,2-b]carbazole-Based Thin-Film Transistors with High Mobility and Stability. J. Am. Chem. Soc.2005,127,614-618. d) Bouchard, J.; Wakim, S.; Leclerc, M. Synthesis of Diindolocarbazoles by Cadogan Reaction:Route to Ladder Oligo(p-aniline)s. J. Org. Chem.2004,69,5705-5711. e) Balandier, J.-Y.; Henry, N.; Arlin, J. B.; Sanguinet, L.; Lemaur, V.; Niebel, C.; Chattopadhyay, B.; Kennedy, A. R.; Leriche, P.; Blanchard, P.; Cornil, J.; Geerts, Y H. Synthesis and Characterization of Isomerically Pure anti-and syn-Anthradiindole Derivatives. Org. Lett.2013,15,302-305.
    [3]a) Sha, C.-K.; Chuang, K.-S.; Wey, S.-J. Intramolecular 1.3-Dipolar Cycloaddition of Alky Azidoalkylidenemalonate and 1.3-Dipolar Cycloreversion of the Triazoline Intermediate:Synthesis and Reactions of an N-Sulphonyl-2.4-dihydropyrrolo[3,4-b]indole. J. Chem. Soc. Perkin Trans.1.1987,977-980. b) Gribble, G. W.; Keavy, D. J.; Davis, D. A.; Saulnier, M. G.; Pelcman, B.; Barden, T. C,; Sibi, M. P.; Olson, E. R.; BelBruno, J. J. Syntheses and Diels-Alder cycloaddition reactions of 4H-furo[3,4-b]indoles. A regiospecific Diels-Alder synthesis of ellipticine. J. Org. Chem.1992,57, 5878-5891. c) Tang, R.-Y.; Li, J.-H. PdCl2-Catalyzed Domino Reactions of 2-Alkynylbenzaldehydes with Indoles:Synthesis of Fluorescent 5H-Benzo[b]carbazol-6-yl Ketones. Chem. Eur. J.2010,16,4733-4738. d) Huisgen, V. R; Sorge, G. Orientierungsphanomene bei der Substitution aromatischer Bicyclen I. Justus Liebigs Annalen der Chemie.1950,566,162-184. e) Buden, M. E.; Vaillard, V. A.; Martin, S. E.; Rossi, R. A. Synthesis of Carbazoles by Intramolecular Arylation of Diarylamide Anions. J. Org. Chem.2009,74,4490-4498. f) Appukkuttan, P.; der Eycken, E. V.; Dehaen, W. Synlett 2005,127-133.
    [4]a) Shi, C; Wang, K. K. Generation of Biradicals and Subsequent Formation of Quinolines and 5H-Benzo[b]carbazoles from N-[2-(1-Alkyl)phenyl]keyenimines. J. Org. Chem.1998,63,3517-3520. b) Schmittel, M.; Steffen, J.-P.; Wencesla Angel, M. A.; Engels, B.; Lennartz, C.; Hanrath, M. Two Novel Thermal Biradical Cyclizations of Enyne-Ketenimines:Theory, Experiment, and Synthetic Potential. Angew. Chem. Int. Ed.1998,37,1562-1564.
    [5]a) Yang, Y.-Y.; Shou, W.-G.; Chen, Z.-B.; Hong, D.; Wang, Y.-G. A Tandem Approach to Isoquinolines from 2-Azido-3-arylacrylates and a-Diazocarbonyl Compounds. J. Org. Chem.2008,73,3928-3930. b) Chen, Z.-B.; Hong, D.; Wang, Y-G. A Cascade Approach to Pyridines from 2-Azido-2,4-dienoates and a-Diazocarbonyl Compounds. J. Org. Chem.2009,74,903-905.
    [1]a) Crich, D.; Banerjee, A. Chemistry of the Hexahydropyrrolo[2,3-b]indoles: Configuration, Conformation, Reactivity, and Applications in Synthesis. Ace. Chem. Res.2007,40,151-161 and references cited, b) Awata, A.; Arai, T. Catalytic Asymmetric Cyclopropanation with Diazooxindole. Synlett 2013,24,29-32. c) Cao, Z.; Wang, X.; Tan, C; Zhao, X.; Zhou, J.; Ding, K. Highly Stereoselective Olefin Cyclopropanation of Diazooxindoles Catalyzed by a C2-Symmetric Spiroketal Bisphosphine/Au(I) Complex. J. Am. Chem. Soc.2013,135,8197-8200. d) Alford, P. E.; Fu, L.; Kubert, J. K.; Wang, L.; Gribble, G. W. A convenient Fischer indole synthesis of 2,3'-biindoles. Tetrahedron Lett.2011,52,2642-2644. e) Li, Y.-X.; Ji, K.-G.; Wang, H.-X.; Ali, S.; Liang, Y. M. Iodine-Induced Regioselective C-C and C-N Bonds Formation of N-Protected Indoles. J. Org. Chem.2011,76,744-747. f) Mavassaghi, M.; Schmidt, M. A. Concise Total Synthesis of (-)-Calycanthine, (+)-Chimonanthine, and (+)-Folicanthine. Angew. Chem. Int. Ed.2007,46,3725-3728. g) Li, Y.; Wang, W.; Yang, S.; Li, B.; Feng, C; Shi, Z. Oxidative dimerization of N-protected and free indole derivatives toward 3,3'-biindoles via Pd-catalyzed direct C-H transformations. Chem. Commun.2010,46,4553-4555.
    [2]a) Indole ring synthesis:Gribble, G. W. Recent developments in indole ring synthesis-methodology and applications. J. Chem. Soc., Perkin Trans.12000,1045-1075 and references cited, b) Cacchi, S.; Fabrizi, G. Update 1 of:Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions. Chem. Rev. 2011,111, PR215-PR283. c) Houlihan, W. J.; Parrino, V. A.; Uike, Y. Lithiation of N-(2-alkylphenyl)alkanamides and related compounds. A modified Madelung indole synthesis. J. Org. Chem.1981,46,4511-4515. d) Moody, C. J.; Swann, E. N-H Insertion Reactions of Rhodium Carbenoids:A Modified Bischler Indole Synthesis. Synlett 1998,135-136. e) Castro, C. E.; Stephens, R. D. Substitutions by Ligands of Low Valent Transi-Heterocyclics from Aryl Iodides and Cuprous Acetylides. J. Org. Chem.1963,28,2163-2164. f) Larock, R. C; Yum, E. K. Synthesis of Indoles via Palladium-Catalyzed Heteroannulation of Internal Alkynes. J. Am. Chem. Soc.1991, 113,6689-6690. g) Brown, D. S.; Elliott, M. C; Moody, C. J.; Mowlem, T. J.; Marino, J. P.; Padwa, Jr., A. Ligand Effects in the Rhodium(Ⅱ)-Catalyzed Reactions of α-Diazoamides. Oxindole Formation is Promoted by the Use of Rhodium(Ⅱ) Perfluorocarboxamide Catalysts. J. Org. Chem.1994,59,2447-2455.
    [3]Cava, M. P.; Litle, R. L.; Napier, D. R. Condensed Cyclobutane Aromatic Systems. V. The Synthesis of Some a-Diazo-indanones:Ring Contraction in the Indane Series. J. Am. Chem. Soc.1958,80,2257-2260.
    [4]a) Moriconi, E. J.; Murray, J. J. Pyrolysis and Photolysis of 1-Methyl-3-diazooxindole. Base Decomposition of Isatin 2-Tosylhydrazone. J. Org. Chem.1964, 29,3577-3584. b) Song, H.; Yang, J.; Chen, W.; Qin, Y. Synthesis of Chiral 3-Substituted Hexahydropyrroloindoline via Intermolecular Cyclopropanation. Org. Lett. 2006,8,6011-6014. c) Mei, L.-Y.; Tang, X.-Y.; Shi, M. Rhodium-catalyzed three-component reaction of 3-diazooxindoles with indoles and isatin-derived ketimines:a facile and versatile approach to functionalized 3,3',3"-trisindoles. Org. Biomol. Chem. 2013,12,1149-1156.
    [5]Muthusamy, S.; Srinivasan, P. Double O-H insertion reactions of cyclic rhodium carbenoids:diastereoselective synthesis of macrocyclic oxindoles. Tetrahedron Lett. 2009,50,3794-3797.
    [6]Muthusamy, S.; Gunanathan, C; Babu, S. A.; Suresh, E.; Dastidar, P. First example of regiospecific intermolecular C-H insertion reactions of cyclic rhodium carbenoids: novel synthesis of 3-indol-3'-yloxindoles. Chem. Commun.2002,824-825.
    [7]Muthusamy, S.; Gunanathan, C. Rh2(OAc)4-Catalyzed Regioselective Intermolecular C-H Insertion Reactions:Novel Synthesis of 2-Pyrrol-3'-yloxindoles. Synlett 2002,11,1783-1786.
    [8]a) Meyers, C; Carreira, E. M. Total Synthesis of (-)-Spirotryprostatin B. Angew. Chem. Int. Ed 2003,42,694-696. b) Marti, C; Carreira, E. M. Total Synthesis of (-)-Spirotryprostatin B:Synthesis and Related Studies. J. Am. Chem. Soc.2005,127, 11505-11515.
    [9]Muthusamy, S.; Gunanathan, C. Reactions of Cyclic Diazoamides:Convenient Synthesis of Dispirocyclic Cyclopropane Systems. Synlett 2003,11,1599-1602.
    [10]Kumari, G.; Nutan, Modi, M.; Gupta, S. K.; Singh, R. K. Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur. J. Med. Chem.2011,46,1181-1188.
    [11]Chen, S.-F.; Ma, J.; Wang, J.-B. Palladium-catalyzed cyclopropanation of electron-deficient olefins with aryldiazocarbonyl compounds. Tetrahedron Lett.2008, 49,6781-6783.
    [12]Muthusamy, S.; Gunanathan, C; Nethaji, M. Stereoselective Epoxide Generation with Cyclic Rhodium Carbenoids:A New Access to Spiro-indolooxiranes. Synletts 2004,4,639-642.
    [13]Muthusamy, S.; Karikalan, T.; Suresh, E. Demonstration of 14-20-membered intramolecular carbonyl ylides:diastereoselective synthesis of macrocycles incorporating spiro-indolooxiranes. Tetrahedron Lett.2011,52,1934-1937.
    [14]For transannulations, see:a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. J. Am. Chem. Soc.2008,130,14972-14974. b) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. Transannulation of 1-Sulfonyl-1,2,3-triazoles with Heterocumulenes. J. Am. Chem. Soc.2013,135,4652-4655. c) Schultz, E. F.; Sarpong, R. Application of In Situ-Generated Rh-Bound Trimethylenemethane Variants to the Synthesis of 3,4-Fused Pyrroles. J. Am. Chem. Soc.2013,135,4696-4699. d) Chattopadhyay, B; Gevorgyan, V. Rh-Catalyzed Transannulation of N-Tosyl-1,2,3-Triazoles with Terminal Alkynes. Org. Lett.2011,13,3746-3749. e) Shi, Y.; Gevorgyan, V. Intramolecular Transannulation of Alkynyl Tnazoles via Alkyne-Carbene Metathesis Step:Access to Fused Pyrroles. Org. Lett.2013,15,5394-5396.
    [15]For ring expansion/rearrangement reactions, see:a) Selander, N.; Worrell, B. T.; Fokin, V. V. Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes. Angew. Chem. Int. Ed.2012,51,13054-13057. b) Miura, T.; Funakoshi, Y.; Morimoto, M.; Biyajima, T.; Murakami, M. Synthesis of Enaminones by Rhodium-Catalyzed Denitrogenative Rearrangement of 1-(N-Sulfonyl-1,2,3-triazol-4-yl)alkanols. J. Am. Chem. Soc.2012,134,17440-17443. c) Gulevich, A. V.; Gevorgyan, V. Versatile Reactivity of Rhodium-Iminocarbenes Derived from N-Sulfonyl Triazoles. Angew. Chem. Int. Ed 2013,52,1371-1373. d) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. Conversion of Cyclic Ketones to 2,3-Fused Pyrroles and Substituted Indoles. J. Am. Chem. Soc.2013,135,11712-11715. e) Parr, B. T.; Davies, H. M. L. Rhodium-Catalyzed Tandem Cyclopropanation/Cope Rearrangement of 4-Alkenyl-l-sulfonyl-1,2,3-triazoles with Dienes. Angew. Chem. Int. Ed 2013,52,10044-10047. f) Parr, B. T.; Green, S. A.; Davies, H. M. L. Rhodium-Catalyzed Conversion of Furans to Highly Functionalized Pyrroles. J. Am. Chem. Soc.2013,135,4716-4718.
    [16]For cyclopropanations, see:Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles. J. Am. Chem. Soc.2009,131,18034-18035.
    [17]For C-H insertions, see:Chuprakov, S.; Malik, J. A.; Zibinsky, M.; Fokin, V. V. Catalytic Asymmetric C-H Insertions of Rhodium(II) Azavinyl Carbenes. J. Am. Chem. Soc.2011,133,10352-10355.
    [18]For arylations, see:Selander, N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids. J. Am. Chem. Soc.2012,134,14670-14673.
    [19]a) Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Copper-Catalyzed Synthesis of N-Sulfonyl-1,2,3-triazoles:Controlling Selectivity. Angew. Chem. Int. Ed 2007,46,1730-1733. b) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Efficient Synthesis of 1-Sulfonyl-1,2,3-triazoles. Org. Lett.2010,12,4952-4955. c) Wang, F.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Cycloaddition of Sulfonyl Azides with Alkynes to Synthesize N-Sulfonyltriazoles'on Water'at Room Temperature. Adv. Synth. Catal 2008,350,1830-1834. d) Cano, I.; Nicasio, M. C; Perez, P. Copper(I) complexes as catalysts for the synthesis of N-sulfonyl-1,2,3-triazoles from N-sulfonylazides and alkynes. Org. Biomol. Chem.2010, 8,536-538. e) Liu, Y.; Wang, X.; Xu, J.; Zhang, Q.; Zhao, Y.; Hu, Y. Highly controlling selectivity of copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) between sulfonyl azids and normal alkynes or propynoates. Tetrahedron 2011,67,6294-6299.
    [20]Cai, Q.; Yan, J. J.; Ding, K. A CuAAC/Ullmann C-C Coupling Tandem Reaction: Copper-Catalyzed Reactions of Organic Azides with N-(2-Iodoaryl)-propiolamides or 2-Iodo-N-(prop-2-ynyl)-benzenamines. Org. Lett.2012,14,3332-3335.
    [21]Yoo, E. J.; Chang, S. A New Route to Indolines by the Cu-Catalyzed Cyclization Reaction of 2-Ethynylanilines with Sulfonyl Azides. Org. Lett.2008,10,1163-1166.