富氮金属—有机骨架的合成与功能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机框架(1netal-organic framework, MOF)材料将无机组分和有机组分巧妙的结合,与其他多孔材料相比有着其得天独厚的优势,受到科学家们广泛关注。随着MOF领域研究的发展,化学工作者合成了大量具有新颖结构、超大比表面积的多孔材料。这使得靶向合成特定结构与性质的MOF材料成为可能,同时以应用为目标的功能化调控成为现今的研究热点。目前,科研工作者们通过设计合成在一定程度上可控MOF材料的框架结构,同时将光、电、磁等性质引入到MOF材料中,成功得到许多性能优良的MOF功能材料。然而,MOF领域中的重要问题仍需进一步研究探讨,如MOF材料最可能实现应用的分离领域、如何设计合成具有较高二氧化碳捕捉能力的MOF功能材料等等。实际应用中,MOF材料的稳定性至关重要,开发稳定性较好的MOF材料也非常值得探讨。
     目前,富氮活性炭材料、氨基功能化的介孔硅材料、聚乙烯亚胺材料及含氮纤维素材料等被用于工业中二氧化碳的捕捉,而其共性的一面是富含氮元素,这预示氮元素在二氧化碳捕捉方面有着独特的作用。MOF材料在提高二氧化碳捕捉方面主要是靠框架中开放金属位点、以及配体官能化等,连接体中芳香氮原子对二氧化碳的作用则存在研究的空白。签于此,本论文选取富电子的含能氮杂环配体构筑多孔材料,富氮配体丰富的配位方式和独特的富电子结构将得到特殊电子分布以及特殊结构的功能多孔材料。
     1.在溶剂热条件下,利用一个不含氨基基团的富氮芳香配体H3dttz(H3dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole)作为连接体来构筑具有大量N空位点的金属-有机框架材料来提高COz的吸附量。设计思想:ⅰ)它包含三氮唑和四氮唑基团,在构筑沸石型结构时可能采取类似咪唑的配位模式;ⅱ)它是刚性芳香配体,有利于获得具有永久性孔道的材料;ⅲ)它含有大量来自芳环的N原子,提供了评价来自富氮芳环的未配位N原子对于CO2吸附量影响的机会(在这个配体中,N原子相对于总原子数的比值为73.3%)。我们成功构筑了一个具有方纳石(sodalite)拓扑的新颖的类沸石型金属-有机框架材料。[Zn(Hdttz)]-DMA (IFMC-1)
     IFMC-1展示了高的CO2吸附和选择性的C02/N2吸附能力。我们首次研究了ZMOFs中来自芳环的大量未配位N原子对于CO:吸附的影响。结果表明,高含量的开放N位点能够提高CO:的吸附能力,即使是在不存在氨基基团和开放金属位点的情况下。我们通过GCMC模拟,在理论上探究了孔道中二氧化碳的吸附位点,结果也证明了开放N位点对二氧化碳分子有强的吸附作用。此外,我们研究了IFMC-1的药物传输能力。
     2.我们采用溶剂热合成方法,获得了一个具有pcu拓扑的阴离子骨架材料。
     [(CH3)2NH2]4[(Zn4dttz6)Zn3]·15DMF·4.5H2O (IFMC-2)
     在IFMC-2中存在一个新型的二级构筑单元,四核金属簇{Zn4dttz6}。该金属簇通过Zn(Ⅱ)离子相连,形成了一个3D的微孔阴离子骨架。通过离子交换实验,我们获得了负载Ln3+离子的MOF材料,Ln3+@IFMC-2(Ln3+=Sm3+,Eu3+,Tb3+或Dy3+),并研究了Ln3+@IFMC-2的荧光发射光谱。结果表明,IFMC-2可以作为一个潜在的荧光探针来检测不同的Ln3+离子。此外,我们研究了IFMC-2对于离子型染料的吸收能力。IFMC-2可以吸收阳离子型染料,不能吸收中性和阴离子型染料。这个结果表明,IFMC-2对阳离子型染料展示了选择性的吸收行为。在NaCl存在的情况下,阳离子染料可以缓慢的释放。
     3.我们采用溶剂热方法合成了一个具有六角形孔道的阴离子骨架材料。
     [Zn2(mtz)3(HPO3)2/3]·(H3O)1/3·H2O (IFMC-3)
     这里,Hmtz是5-methyl-1H-tetrazole的简写。
     IFMC-3不仅在空气中可以稳定存在,室温时在酸碱水溶液中也可以稳定存在。我们研究了负载Ln3+离子的IFMC-3荧光光谱。随后,我们对IFMC-3在不同有机溶剂中的荧光性质也进行了研究。此外,由于IFMC-3在硝基苯中表现出了荧光猝灭现象,可将其作为检测硝基苯的探针。
     4.在溶剂热条件下,以锌离子、三氮唑和噻吩二酸(及苯二酸及其衍生物)为原料,通过调控多元体系合成了一系列新颖的多孔金属-有机骨架材料。
     [Zn5(tz)6(DMF)4(tpdc)2](1)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·2.5DMF (2)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·DMA (3)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](BDC)1.5·2DMF (4)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](NH2BDC)1.5·2DMF (5)
     [NH2(CH3)2]2[Zn8(tz)6(tpdc)3](PhBDC)3·6DMF (6)
     通过气体吸附证明了材料中孔道的稳定性。此外,我们研究了化合物4和6对离子型染料的吸收与分离行为。
Metal-organic framework (MOF) materials that integrate the inorganiccomponent and the organic component, possessing unique advantage compared withother porous materials, are catching increasing attention of chemists worldwide. Withthe development of MOF science, a large number of porous mateirals with novelstructure and high specific surface area were synthesized. The previous works make itpossible to isolate target MOF materials with specific structure anddesired properties.Meanwhile, it becomesa hot topic tofine-tune function of MOF materials forapplication. Recently, researchers have designed and synthesized controllableframework of MOF materialsin a certain extent, and then introduced the luminescence,electricity, magnetism to the MOF materials. As a result, numerous MOF materialswith excellent performance have been successfully prepared. However, it needsfurther research to explore important issues in MOF area, such as the explorationofthe area that most likely to achieve separation with the MOF material; how to designand synthesis of MOF materials with high carbon dioxide capture ability.From theapplication point ofview, the stability of MOF materials is essential. In this context, itis an issue worthy of study indeveloping MOF materials with high stability.
     Currently, nitrogen-rich activated carbon, amino-functionalized mesoporoussilica materials, polyethyleneimine materials and nitrogen-containing cellulosematerials are widely used in industry to capture carbon dioxide.And the commonfeatureof them is the high content of nitrogen, which indicates that nitrogen plays aunique role in terms of carbon dioxide capture.In recent years, the way to improve theCO2capture of MOF materials is focused on open metal sites, functionalized ligandsand so on. So far, it is still a gap to explore the effect of nitrogen atom from aromaticlinkers on the capture of CO2.Based on the above consideration, thisthesisconcentrates on the selection ofelectron-richnitrogen-containingaromaticheterocyclic ligands to construct porous materials. The porous MOF materials withspecial structue and function will be expected based on the diverse coordinationfasion and unique electron-rich geometryof N-rich ligands.
     1. We designed and synthesized a N-rich aromatic ligand H3dttz(H3dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole)without a NH2group as the bridging linkerforthe fabrication of new zeolite-like framework under solvothermal condition forhigh CO2uptake, because i) it contains triazolate and tetrazolate groups,and canperform a similar coordination mode as imidazolate togenerate zeolite structures; ii) itis a rigid aromatic molecule andgood for the preparation of permanent porousmaterials; and iii)it contains a large number of N atoms from aromatic rings andoffersan opportunity to evaluate the influence of uncoordinatednitrogen atoms from N-richaromatic rings on CO2adsorbantamount (the percentage of N atoms is73.3%for allatoms in thisligand).A novel zeolite-like metal-organic framework (ZMOF) withsodalite topology, was successfully synthesized and stucturally characterized.
     [Zn(Hdttz)]·DMA (IFMC-1)
     IFMC-1exhibits high CO2uptake and selective CO2/N2adsorption capacity. Forthe first time, weinvestigated the influence of a large number of uncoordinatednitrogen atoms from aromatic rings forCO2adsorption in ZMOFs. This result revealsthat the high percentage of open N-donor sites leads tothe high uptake capacity forCO2, even in the absence of any NH2groups and open metal sites.The binding sites ofCO2weresimulated with grand canonical Monte Carlo (GCMC), indicating that thereisstronger binding interaction between the uncoordinated nitrogen sites fromtetrazolate ring and CO2molecule. Inaddition, it also exhibits efficient drug deliverycapacity
     2. A novel anionic framework with pcu topologywas solvothermally isolated.
     [(CH3)2NH2]4[(Zn4dttz6)Zn3]·15DMF·4.5H2O (IFMC-2)
     A new example of tetranuclear zinc cluster,{Zn4dttz6}, was served as asecondary building unit in IFMC-2. Furthermore, the metal cluster was connected byZn(II) ions to give rise to a3D open microporous structure. The lanthanide(III)-loadedMOF materials, Ln3+@IFMC-2, were successfully prepared via ion exchangeexperiments owing to the anionic framework of IFMC-2. Moreover, the emissionspectra of as-prepared Ln3+@IFMC-2were investigated, and the resultssuggestedthat IFMC-2could be utilized as a potential luminescent probe toward different Ln3+ions. Additionally, the absorption ability of IFMC-2toward ionic dyes was alsoperformed. The cationic dyes can be absorbed, but not neutral and anionic dyes,indicating IFMC-2exhibits selective absorption toward cationic dyes. Furthermore,the cationic dyes can be gradually released in the presence of NaCl.
     3. A hexagonal channel-based porous anionic metal–organic frameworkwassuccessfully constructed and structurally characterized.
     [Zn2(mtz)3(HPO3)2/3]·(H3O)1/3·H2O (IFMC-3)
     where, Hmtz=5-methyl-1H-tetrazole.
     IFMC-3isstable in air and acidic/basic aqueous solutions at room temperature.Inaddition, the luminescence of Ln3+-loaded IFMC-3was investigated, as well as theluminescence behaviours towards a series of organic solvents. Furthermore, IFMC-3was employed as the sensor for the detection of nitrobenzene through fluorescencequenching.
     4. A series of novel porous MOF materials have been solvothermally isolated byemploying Zn2+ions,1H-1,2,3-triazole (Htz), thiophene-2,5-dicarboxylic acid(H2tpdc), and H2BDC (or NH2H2BDC, PhH2BDC) as precursors through adjustingmultiple systemand structurally characterized.
     [Zn5(tz)6(DMF)4(tpdc)2](1)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·2.5DMF (2)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·DMA (3)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](BDC)1.5·2DMF (4)
     [NH2(CH3)2][Zn4(tz)3(tpdc)1.5](NH2BDC)1.5·2DMF (5)
     [NH2(CH3)2]2[Zn8(tz)6(tpdc)3](PhBDC)3·6DMF (6)
     The porous stability of these materials were confirmed by gas adsorption. Inaddition, the absorption and separation ability of4and6toward ionic dyes were alsoinvestigated.
引文
[1] LI H, EDDAOUDI M, O'KEEFFEET M, et al. Design and synthesis of anexceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276–279.
    [2] EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size andFunctionality in Isoreticular MOFs and Their Application in Methane Storage[J].Science,2002,295:469–472.
    [3] MUELLER T, CEDERA G. Density Functional Theory Study of HydrogenAdsorption in MOF-5[J]. The Journal of Physical Chemistry B,2005,109:17974–17983.
    [4] CHOI K M, JEON H J, KANG J K, et al. Heterogeneity within Order in Crystalsof a Porous Metal–Organic Framework[J]. Journal of the American ChemicalSociety,2011,133:11920–11923.
    [5] DENG H, GRUNDER S, CORDOVA K E, et al. Large-Pore Apertures in aSeries of Metal-Organic Frameworks[J]. Science,2012,336:1018–1023.
    [6] a) ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen Storage inMicroporous Metal-Organic Frameworks[J]. Science,2003,300:1127–1129; b)ROWSELL J L C, SPENCER E C, ECKERT J, et al. Gas Adsorption Sites in aLarge-Pore Metal-Organic Framework[J]. Science,2005,309:1350–1354.
    [7] FROST H, DüREN T, SNURR R Q. Effects of Surface Area, Free Volume, andHeat of Adsorption on Hydrogen Uptake in Metal Organic Frameworks[J]. TheJournal of Physical Chemistry B,2006,110:9565–9570.
    [8] a) DARKRIM F, LEVESQUE D, Monte Carlo simulations of hydrogenadsorption in single-walled carbon nanotubes[J]. The Journal of ChemicalPhysics,1998,109:4981–4984; b) WANG Q, CHALLA S R, SHOLL D S, et al.Quantum Sieving in Carbon Nanotubes and Zeolites[J]. Physical Review Letters,1999,82:956–959; c) TANAKA H, KANOH H, YUDASAKA M, et al.Quantum Effects on Hydrogen Isotope Adsorption on Single-Wall CarbonNanohorns[J]. Journal of the American Chemical Society,2005,127:7511–7516;d) KOWALCZYK P, GAUDEN P A, TERZYK A P, et al. Thermodynamics ofHydrogen Adsorption in Slit-like Carbon Nanopores at77K. Classical versusPath-Integral Monte Carlo Simulations[J]. Langmuir,2007,23:3666–3672.
    [9] a) LIU J, CULP J T, NATESAKHAWAT S, et al. Experimental and TheoreticalStudies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure[J].Journal of Physical Chemistry C,2007,111:9305–9313; b) LIU J, LEE J Y,PAN L, et al. Adsorption and Diffusion of Hydrogen in a New Metal OrganicFramework Material:[Zn(bdc)(ted)0.5][J]. Journal of Physical Chemistry C,2008,112:2911–2917; c) GARBEROGLIO G, SKOULIDAS A I, JOHNSON J K.Adsorption of gases in metal organic materials: comparison of simulations andexperiments[J]. Journal of Physical Chemistry B,2005,109:13094–13103.
    [10]a) GARBEROGLIO G. Quantum sieving in organic frameworks[J]. ChemicalPhysics Letters,2009,467:270–275; b) NOGUCHI D, TANAKA H, KONDO A,et al. Quantum Sieving Effect of Three-Dimensional Cu-Based OrganicFramework for H2and D2[J]. Journal of the American Chemical Society,2008,130:6367–6372; c) CHEN B, ZHAO X, PUTKHAM A, et al. SurfaceInteractions and Quantum Kinetic Molecular Sieving for H2and D2Adsorptionon a Mixed Metal-Organic Framework Material[J]. Journal of the AmericanChemical Society,2008,130:6411–6423.
    [11]DENG H, DOONAN C J, FURUKAWA H, et al. Multiple Functional Groups ofVarying Ratios in Metal-Organic Frameworks[J]. Science,2010,327:846–850.
    [12]BLOCH E D, QUEEN W L, KRISHNA R, et al. Hydrocarbon Separations in aMetal-Organic Framework with Open Iron(II) Coordination Sites[J]. Science,2012,335:1606–1610.
    [13]CASKEY S R, WONG-FOY A G, MATZGER A J. Dramatic Tuning of CarbonDioxide Uptake via Metal Substitution in a Coordination Polymer withCylindrical Pores[J]. Journal of the American Chemical Society,2008,130:10870–10871.
    [14]KONG X, DENG H, YAN F, et al. Mapping of Functional Groups inMetal-Organic Frameworks[J]. Science,2013,341:882–885.
    [15]a) YANG S J, CHOI J Y, CHAE H K, et al. Preparation and EnhancedHydrostability and Hydrogen Storage Capacity of CNT@MOF-5HybridComposite[J]. Chemistry of Materials,2009,21:1893–1897; b) LEE S-Y, PARKS-J. Effect of platinum doping of activated carbon on hydrogen storage behaviorsof metal-organic frameworks-5[J]. International Journal of Hydrogen Energy,2011,36:8381–8387.
    [16]FALCARO P, HILL A J, NAIRN K M, et al. A new method to position andfunctionalize metal-organic framework crystals[J]. Nature Communications,2011,2:237.
    [17]a) SATO S, IIDA J, SUZUKI K, et al. Fluorous nanodroplets structurallyconfined in an organopalladium sphere[J]. Science,2006,313:1273–1276; b)SUN Q-F, IWASA J, OGAWA D, et al. Self-Assembled M24L48Polyhedra andTheir Sharp Structural Switch upon Subtle Ligand Variation[J]. Science,2010,328:1144–1147; c) FUJITA D, SUZUKI K, SATO S, et al. Protein encapsulationwithin synthetic molecular hosts[J]. Nature Communications,2012,3:1093.
    [18]a) BANERJEE R, PHAN A, WANG B, et al. High-Throughput Synthesis ofZeolitic Imidazolate Frameworks and Application to CO2Capture[J]. Science,2008,319:939–943; b) HAYASHI H, C TéA P, FURUKAWA H, et al. ZeoliteA imidazolate frameworks[J]. Nature Materials,2007,6:501–506; c) PARK K S,NI Z, C Té A P, et al. Exceptional chemical and thermal stability of zeoliticimidazolate frameworks[J]. Proceedings of the National Academy of SciencesU.S.A.,2006,103:10186–10191; d) WANG B, C Té A P, FURUKAWA H, etal. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxidereservoirs[J]. Nature,2008,453:207–211.
    [19]a) MORRIS W, LEUNG B, FURUKAWA H, et al. A CombinedExperimental Computational Investigation of Carbon Dioxide Capture in aSeries of Isoreticular Zeolitic Imidazolate Frameworks[J]. Journal of theAmerican Chemical Society,2010,132:11006–11008; b) BANERJEE R,FURUKAWA H, BRITT D, et al. Control of Pore Size and Functionality inIsoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide SelectiveCapture Properties[J]. Journal of the American Chemical Society,2009,131:3875–3877.
    [20]ZHANG J-P, ZHANG Y-B, LIN J-B, et al. Metal Azolate Frameworks: FromCrystal Engineering to Functional Materials[J]. Chemical Reviews,2012,112:1001–1033.
    [21]QIU S, ZHU G. Molecular engineering for synthesizing novel structures ofmetal–organic frameworks with multifunctional properties[J]. CoordinationChemistry Reviews,2009,253:2891–2911.
    [22]FARHA O K, YAZAYDIN O, ERYAZICI I, et al. De Novo Synthesis of aMetal-Organic Framework Material Featuring Ultra-High Surface Area andExtraordinary Gas Storage Capacities[J]. Nature Chemistry,2010,2:944–948.
    [23]a) TRUNG T K, TRENS P, TANCHOUX N, et al. Hydrocarbon adsorption in theflexible metal organic frameworks MIL-53(Al, Cr)[J]. Journal of the AmericanChemical Society,2008,130:16926–16932; b) HORCAJADA P, SURBLE S,SéRRE C, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III)carboxylate with large pores[J]. Chemical Communications,2007,2820–2822; c)FéREY G, MELLOT-DRAZNIEKS C, SéRRE C, et al. A chromiumterephthalate-based solid with unusually large pore volumes and surface area[J].Science,2005,309:2040–2042; d) SéRRE C, MILLANGE F, SURBLE S, et al.A route to the synthesis of trivalent transition-metal porous carboxylates withtrimeric secondary building units[J]. Angewandte Chemie International Edition,2004,43:6285–6289.
    [24]a) SCHOEDEL A, CAIRNS A J, BELMABKHOUT Y, et al. The asc TrinodalPlatform: Two-Step Assembly of Triangular, Tetrahedral, and Trigonal-PrismaticMolecular Building Blocks[J]. Angewandte Chemie,2013,125:2974–2977; b)SCHOEDEL A, WOJTAS L, KELLEY S P, et al. Network Diversity throughDecoration of Trigonal-Prismatic Nodes: Two-Step Crystal Engineering ofCationic Metal-Organic Materials[J]. Angewandte Chemie International Edition,2011,50:11421–11424.
    [25]ZHANG Y-B, ZHOU H-L, LIN R B, et al. Geometry analysis and systematicsynthesis of highly porous isoreticular frameworks with a unique topology[J].Nature Communications,2012,3:642.
    [26]a) KOH K, WONG-FOY A G, MATZGER A J. A Crystalline MesoporousCoordination Copolymer with High Microporosity[J]. Angewandte ChemieInternational Edition,2008,47:677–680; b) KOH K, WONG-FOY A G,MATZGER A J. Coordination copolymerization mediated by Zn4O(CO2R)6metal clusters: a balancing act between statistics and geometry[J]. Journal of theAmerican Chemical Society,2010,132:15005–15010; c) LIAO Y, YANG S K,KOH K, et al. Water-Soluble Iron Oxide Nanocubes with High Values ofSpecific Absorption Rate for Cancer Cell Hyperthermia Treatment[J]. NanoLetters,2012,12:3080–3091.
    [27]a) MU B, SCHOENECKER P M, WALTON K S. Gas Adsorption Study onMesoporous Metal-Organic Framework UMCM-1[J]. The Journal of PhysicalChemistry C,2010,114:6464–6471; b) XIANG Z, LAN J, CAO D, et al.Hydrogen Storage in Mesoporous Coordination Frameworks: Experiment andMolecular Simulation[J]. The Journal of Physical Chemistry C,2009,113:15106–15109; c) WANG Z, TANABE K K, COHEN S M, AccessingPostsynthetic Modification in a Series of Metal-Organic Frameworks and theInfluence of Framework Topology on Reactivity[J]. Inorganic Chemistry,2009,48:296–306.
    [28]a) CHEN C, ALLEN C A, COHEN S M, Tandem Postsynthetic Modification ofMetal-Organic Frameworks Using an Inverse-Electron-Demand Diels–AlderReaction[J]. Inorganic Chemistry,2011,50:10534–10536; b) DOONAN C J,MORRIS W, FURUKAWA H, et al. Isoreticular Metalation of Metal-OrganicFrameworks[J]. Journal of the American Chemical Society,2009,131:9492–9493; c) KOH K, WONG-FOY A G, MATZGER A J. A Porous CoordinationCopolymer with over5000m2/g BET Surface Area[J]. Journal of the AmericanChemical Society,2009,131:4184–4185; d) PADMANABAN M, MULLER P,LIEDER C, et al. Application of a chiral metal-organic framework inenantioselective separation[J]. Chemical Communications,2011,47:12089–12091.
    [29]a) LI J-R, YAKOVENKO A, LU W, et al. Ligand Bridging-Angle-DrivenAssembly of Molecular Architectures Based on Quadruply Bonded Mo MoDimers[J]. Journal of the American Chemical Society,2010,132:17599–17610;b) LI J-R, ZHOU H-C. Bridging-Ligand-Substitution Strategy for the Preparationof Metal–Organic Polyhedra[J]. Nature Chemistry,2010,2:893-898; c) ZHAO D,YUAN D, KRISHN R, et al. Thermosensitive gating effect and selective gasadsorption in a porous coordination nanocage[J]. Chemical Communications,2010,46:7352–7354; d) LI J-R, ZHOU H-C. Metal-Organic HendecahedraAssembled from Dimetal-Paddlewheel Nodes and Mixtures of Ditopic Linkerswith120and90°Bend-Angles[J]. Angewandte Chemie International Edition,2009,48:8465–8468.
    [30]WANG X L, QIN C, WU S-X, et al. Bottom-Up Synthesis of PorousCoordination Frameworks: Apical Substitution of a Pentanuclear TetrahedralPrecursor[J]. Angewandte Chemie International Edition,2009,48:5291–5295.
    [31]WANG H-N, MENG X, YANG G-S, et al. Stepwise assembly of metal-organicframework based on a metal-organic polyhedron precursor for drug delivery[J].Chemical Communications,2011,47:7128–7130.
    [32]LI Y-W, HE K-H, BU X-H. Bottom-up assembly of a porous MOF based onnanosized nonanuclear zinc precursors for highly selective gas adsorption[J].Journal of Materials Chemistry A,2013,1:4186–4189.
    [33]a) ZHAO Y, LIU L, ZHANG W, et al. Rigid-Strut-Containing Crown Ethers and
    [2]Catenanes for Incorporation into Metal-Organic Frameworks[J]. Chemistry-AEuropean Journal,2009,15:13356–13380; b) LI Q, ZHANGW, MILJANI O,et al. Docking in Metal-Organic Frameworks[J]. Science,2009,325:855–859; c)LI Q, ZHANG W, MILJANI O, et al. A metal-organic framework repletewith ordered donor–acceptor catenanes[J]. Chemical Communications,2010,46:380–382; d) DENG H, OLSON M A, STODDART J F, et al. Robust dynamics[J].Nature Chemistry,2010,2:439–443; e) LI Q, SUE C-H, BASU S, et al. ACatenated Strut in a Catenated Metal-Organic Framework[J]. AngewandteChemie International Edition,2010,49:6751–6755.
    [34]a) SMALDONE R A, FORGAN R S, FURUKAWA H, et al. Metal-OrganicFrameworks from Edible Nature Products[J]. Angewandte Chemie InternationalEdition,2010,49:8630–8634; b) GASSENSMITH J J, FURUKAWA H,SAMLDONE R A, et al. Strong and Reversible Binding of Carbon Dioxide in aGreen Metal-Organic Framework[J]. Journal of the American Chemical Society,2011,133:15312–15315.
    [35]a) ZOU C, ZHANG Z, XU X, et al. A Multifunctional Organic–Inorganic HybridStructure Based on MnIII–Porphyrin and Polyoxometalate as a Highly EffectiveDye Scavenger and Heterogenous Catalyst[J]. Journal of the American ChemicalSociety,2012,134:87–90; b) FENG D, JIANG H-L, CHEN Y-P, et al. Metal-Organic Frameworks Based on Previously Unknown Zr8/Hf8Cubic Clusters[J].Inorganic Chemistry,2013,52:1266112667.
    [36]a) FENG D, CHUNG W C, WEI Z, et al. Construction of ultrastable porphyrin Zrmetal-organic frameworks through linker elimination[J]. Journal of the AmericanChemical Society,2013,135:1710517110; b) JIANG H-L, FENG D, WANG K,et al. An Exceptionally Stable, Porphyrinic Zr Metal–Organic FrameworkExhibiting pH-Dependent Fluorescence[J]. Journal of the American ChemicalSociety,2013,135:1393413938.
    [37]MORRIS W, VOLOSSKIY B, DEMIR S, et al. Synthesis, Structure, andMetalation of Two New Highly Porous Zirconium Metal-Organic Frameworks[J].Inorganic Chemistry,2012,51:6443–6445.
    [38]FENG D, GU Z-Y, LI J-R, et al. Zirconium-Metalloporphyrin PCN-222:Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as ABiomimetic Catalyst[J]. Angewandte Chemie International Edition,2012,51:10307–10310.
    [39]AN J, FARHA O K, HUPP J T, et al. Metal-adeninate vertices for theconstruction of an exceptionally porous metal-organic framework[J]. NatureCommunications,2012,3:604; doi:10.1038/ncomms1618.
    [40]LI T, KOZLOWSKI M T, DOUD E A, et al. Stepwise Ligand Exchange for thePreparation of a Family of Mesoporous MOFs[J]. Journal of the AmericanChemical Society,2013,135:11688–11691.
    [41]YANG G S, LI M-N, LI S-L, et al. Controllable synthesis of microporous,nanotubular and mesocage-like metal-organic frameworks by adjusting thereactant ratio and modulated luminescence properties of Alq3@MOFcomposites[J]. Journal of Materials Chemistry,2012,22:17947–17953.
    [42]CUI P, MA Y-G, LI H-H, et al. Multipoint Interactions Enhanced CO2Uptake: AZeolite-like Zinc–Tetrazole Framework with24-Nuclear Zinc Cages[J]. Journalof the American Chemical Society,2012,134:18892–18895.
    [43]LI S, WANG Y, QI C, et al.3D Energetic Metal-Organic Frameworks: Synthesisand Properties of High Energy Materials[J]. Angewandte Chemie InternationalEdition,2013,52:14031–14035.
    [44]ZHANG Q, SHREEVE J M. Metal-Organic Frameworks as High Explosives: ANew Concept for Energetic Materials[J]. Angewandte Chemie InternationalEdition,2014,53:2540–2542.
    [1] a) EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size andFunctionality in Isoreticular MOFs and Their Application in Methane Storage[J].Science,2002,295:469–472; b) KITAGAWA S, KITAURA R, NORO S,Functional Porous Coordination Polymers[J]. Angewandte Chemie InternationalEdition,2004,43:2334–2375; c) FéREY G, MELLOT-DRAZNIEKS C, SERREC, et al. Crystallized frameworks with giant pores: are there limits to thepossible?[J]. Accounts of Chemical Research,2005,38:217–225; d) LI J-R, JKUPPLER R, ZHOU H-C, Selective gas adsorption and separation in metal–organic frameworks[J]. Chemical Society Reviews,2009,38:1477–1504; e)JEONG K S, GO Y B, SHIN S M, et al. Asymmetric catalytic reactions byNbO-type chiral metal-organic frameworks[J]. Chemical Science,2011,2:877–882; f) WU T, KHAZHAKYAN R, WANG L, et al. Three-Dimensional CovalentCo-Assembly between Inorganic Supertetrahedral Clusters and Imidazolates[J].Angewandte Chemie International Edition,2011,50:2536–2539; g) LIU Q-K,MA J-P, DONG Y-B, Highly efficient iodine species enriching and guest-driventunable luminescent properties based on a cadmium(II)-triazole MOF[J].Chemical Communications,2011,47:7185–7187; h) OTSUBO K,WAKABAYASHI Y, OHARA J, et al. Bottom-up Realization of A PorousMetal-organic Nanotubular Assembly[J]. Nature Materials,2011,10:291–295; i)JIANG H-L, LIU B, AKITA T, et al. Au@ZIF-8: CO oxidation over goldnanoparticles deposited to metal-organic framework[J]. Journal of the AmericanChemical Society,2009,131:11302–11303; j) LI J R, ZHOU H-C,Bridging-ligand-substitution strategy for the preparation of metal-organicpolyhedra[J]. Nature Chemistry,2010,2:893–898; k) LUN D J,WATERHOUSE G I N, TELFER S G, A General Thermolabile Protecting GroupStrategy for Organocatalytic Metal-Organic Frameworks[J]. Journal of theAmerican Chemical Society,2011,133:5806–5809; l) LIU S, XIANG Z H, HUZ, et al. Zeolitic imidazolate framework-8as a luminescent material for thesensing of metal ions and small molecules[J]. Journal of Materials Chemistry,2011,21:6649–6653.
    [2] a) SEO J S, WHANG D, LEE H, et al. A homochiral metal-organic porousmaterial for enantioselective separation and catalysis[J]. Nature,2000,404:982–986; b) PAN L, OLSON D H, CIEMNOLONSKI L R, et al. Separation ofHydrocarbons with a Microporous Metal-Organic Framework[J]. AngewandteChemie International Edition,2006,45:616–619; c) CASKEY S R,WONG-FOY A G, MATZGER A J, Dramatic Tuning of Carbon Dioxide Uptakevia Metal Substitution in a Coordination Polymer with Cylindrical Pores[J].Journal of the American Chemical Society,2008,130:10870–10871; d)SHULTZ A M, FARHA O K, HUPP J T, et al. A catalytically active,permanently microporous MOF with metalloporphyrin struts[J]. Journal of theAmerican Chemical Society,2009,131:4204–4205; e) CHEON Y E, SUH M P,Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in aRedox-Active Metal-Organic Framework[J]. Angewandte Chemie InternationalEdition,2009,48:2899–2903; f) JIANG H L, XU Q, Porous metal-organicframeworks as platforms for functional applications[J]. ChemicalCommunications,2011,47:3351–3370; g) WU H, REALI R S, SMITH D A, etal. Highly Selective CO2Capture by a Flexible Microporous Metal–OrganicFramework (MMOF) Material[J]. Chemistry-A European Journal,2010,16:13951–13954; h) JIANG H-L, TATSU Y, LU Z-H, et al. Non-, Micro-, andMesoporous Metal-Organic Framework Isomers: Reversible Transformation,Fluorescence Sensing, and Large Molecule Separation[J]. Journal of theAmerican Chemical Society,2010,132:55865587; i) CHEN B, XIANG S,QIAN G, Metal-Organic Frameworks with Functional Pores for Recognition ofSmall Molecules[J]. Accounts of Chemical Research,2010,43:1115–1124; j)LIU T-F, LüJ, LIN X, et al. Construction of a trigonal bipyramidal cage-basedmetal–organic framework with hydrophilic pore surface via flexible tetrapodalligands[J]. Chemical Communications,2010,46:8439–8441; k) MORRIS R E,BU X, Induction of chiral porous solids containing only achiral building blocks[J].Nature Chemistry,2010,2:353–361; l) JIANG H-L, LIU B, LAN Y-Q, et al.From metal-organic framework to nanoporous carbon: toward a very high surfacearea and hydrogen uptake[J]. Journal of the American Chemical Society,2011,133:11854–11857; m) XU G, ZHANG X, GUO P, et al. MnII-based MIL-53Analogues: Synthesis Using Neutral Bridging2-Ligands and Application inLiquid-Phase Adsorption and Separation of C6C8Aromatics[J]. Journal of theAmerican Chemical Society,2010,132:3656–3657; n) JIANG H-L, AKITA T,ISHIDA T, et al. Synergistic catalysis of Au@Ag core-shell nanoparticlesstabilized on metal-organic framework[J]. Journal of the American ChemicalSociety,2011,133:1304–1306.
    [3] BAERLOCHER C, MEIER W M, OLSON D H, in Atlas of Zeolite FrameworkTypes, Elsevier, Amsterdam,5th Ed.,2001.
    [4] a) LIU Y L, KRAVTSOV V C, LARSEN R, et al. Molecular building blocksapproach to the assembly of zeolite-like metal-organic frameworks (ZMOFs)with extra-large cavities[J]. Chemical Communications,2006,1488–1490; b)SAVA D F, KRAVTSOV V C, NOUAR F, et al. Quest for zeolite-likemetal-organic frameworks (ZMOFs): On pyrimidinecarboxylate bridgingligands[J]. Journal of the American Chemical Society,2008,130:3768–3770.
    [5] a) LI J-R, KUPPLER R J, ZHOU H-C, Selective gas adsorption and separation inmetal–organic frameworks[J]. Chemical Society Reviews,2009,38:1477–1504;b) PANDA T, PACHFULE P, CHEN Y F, et al. Amino functionalized zeolitictetrazolate framework (ZTF) with high capacity for storage of carbon dioxide[J].Chemical Communications,2011,47:2011–2013; c) HUANG A S, CARO J,Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90Membrane for Enhanced Hydrogen Selectivity[J]. Angewandte ChemieInternational Edition,2011,50:4979–4982.
    [6] a) PARK K S, NI Z, C TéA P, et al. Exceptional chemical and thermal stabilityof zeolitic imidazolate frameworks[J]. Proceedings of the National Academy ofSciences USA,2006,103:10186–10191; b) HUANG X-C, LIN Y-Y, ZHANGJ-P, et al. Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks:Zinc(II) Imidazolates with Unusual Zeolitic Topologies[J]. Angewandte ChemieInternational Edition,2006,45:1557–1559.
    [7] LASTOSKIE C, Caging Carbon Dioxide[J]. Science,2010,330:595–596.
    [8] a) DINC M, LONG J R, Hydrogen Storage in Microporous Metal-OrganicFrameworks with Exposed Metal Sites[J]. Angewandte Chemie InternationalEdition,2008,47:6766–6779; b) TAN Y-X, HE Y-P, ZHANG J, Pore partitioneffect on gas sorption properties of an anionic metal-organic framework withexposed Cu2+coordination sites[J]. Chemical Communications,2011,47:10647–10649.
    [9] a) HENKE S, SCHMID R, GRUNWALDT J-D, et al. Flexibility and SorptionSelectivity in Rigid Metal–Organic Frameworks: The Impact ofEther-Functionalised Linkers[J]. Chemistry-A European Journal,2010,16:14296–14306; b) HENKE S, FISCHER R A, Gated Channels in aHoneycomb-like Zinc-Dicarboxylate-Bipyridine Framework with Flexible AlkylEther Side Chains[J]. Journal of the American Chemical Society,2011,133:2064–2067; c) LAN Y-Q, JIANG H-L, LI S-L, et al. Mesoporous Metal-OrganicFrameworks with Size-tunable Cages: Selective CO2Uptake, Encapsulation ofLn3+Cations for Luminescence, and Column-Chromatographic Dye Separation[J].Advanced Materials,2011,23:5015–5020.
    [10]MCDONALD T M, D'ALESSANDRO D M, KRISHNA R, et al. Enhancedcarbon dioxide capture upon incorporation of N,N’-dimethylethylenediamine inthe metal–organic framework CuBTTri[J]. Chemical Science,2011,2:2022–2028.
    [11]a) QIN J S, LAN Y Q, WANG H N, et al. Synthesis, Characterization andLuminescence of a New Diamondoid MOF Based on Tetrazole Derivative[J].Chemical Journal of Chinese Universities,2011,32:683–687; b) WANG F, TANY-X, YANG H, et al. A new approach towards tetrahedral imidazolateframeworks for high and selective CO2uptake[J]. Chemical Communications,2011,47:5828–5830.
    [12]a) VAIDHYANATHAN R, IREMONGER S S, DAWSON K W, et al. Anamine-functionalized metal organic framework for preferential CO2adsorption atlow pressures[J]. Chemical Communications,2009,5230–5232;(b) MORRIS W,LEUNG B, FURUKAWA H, et al. Gas Adsorption and Selectivity in ZeoliticImidazolate Frameworks from First Principles Calculations[J]. Journal of theAmerican Chemical Society,2010,132:11006–11008.
    [13]DINC M, DAILLY A, LIU Y, et al. Hydrogen storage in a microporousmetal-organic framework with exposed Mn2+coordination sites[J]. Journal of theAmerican Chemical Society,2006,128:16876–16883.
    [14]GUPTA A, CHEMPATH S, SANBORN M J, et al. Object-oriented programmingparadigms for molecular modeling[J]. Molecular Simulation,2003,29:29–46.
    [15]RAPPIé A K, CASEWIT C J, COLWELL K S, et al. UFF, a full periodic tableforce field for molecular mechanics and molecular dynamics simulations[J].Journal of the American Chemical Society,1992,114:10024–10035.
    [16]SPEK A L, Single-crystal structure validation with the program PLATON[J].Journal of Applied Crystallography,2003,36:7–13.
    [17]a) ZHANG S-M, CHANG Z, HU T-L, et al. New Three-Dimensional PorousMetal Organic Framework with Tetrazole Functionalized Aromatic CarboxylicAcid: Synthesis, Structure, and Gas Adsorption Properties[J]. InorganicChemistry,2010,49:11581–11586; b) JIA J T, SUN F X, FANG Q R, et al. Anovel low density metal–organic framework with pcu topology by dendriticligand[J]. Chemical Communications,2011,47:9167–9169.
    [18]a) BANERJEE R, PHAN A, WANG B, et al. High-Throughput Synthesis ofZeolitic Imidazolate Frameworks and Application to CO2Capture[J]. Science,2008,319:939–943; b) DEBATIN F, THOMAS A, KELLING A, et al. In SituSynthesis of an Imidazolate-4-amide-5-imidate Ligand and Formation of aMicroporous Zinc–Organic Framework with H2-and CO2-Storage Ability[J].Angewandte Chemie International Edition,2010,49:1258–1262; c)ALESSANDRO D M D, SMIT B, LONG J R,[J]. Angewandte ChemieInternational Edition,2010,49:6058–6082; d) ZHENG S T, BU J T, LI Y F, et al.Pore Space Partition and Charge Separation in Cage-within-Cage Indium-OrganicFrameworks with High CO2Uptake[J]. Journal of the American ChemicalSociety,2010,132:17062–17064; e) ZHANG J-P, ZHU A-X, LIN R-B, et al.Pore Surface Tailored SOD-Type Metal-Organic Zeolites[J]. Advanced Materials,2011,23:1268–1271; f) PHAN A, DOONAN C J, URIBE-ROMO F J, et al.Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolateframeworks[J]. Accounts of Chemical Research2010,43:58–67.
    [19]a) WALTON K S, SNURR R Q, Applicability of the BET Method forDetermining Surface Areas of Microporous Metal Organic Frameworks[J].Journal of the American Chemical Society,2007,129:8552–8556; b) BAE Y-S,YAZAYDIN A, SNURR R Q, Evaluation of the BET Method for DeterminingSurface Areas of MOFs and Zeolites that Contain Ultra-Micropores[J]. Langmuir,2010,26:5475–5483.
    [20]LIN J-B, ZHANG J-P, CHEN X-M, Nonclassical active site for enhanced gassorption in porous coordination polymer[J]. Journal of the American ChemicalSociety,2010,132:6654–6656.
    [21]KAYE S S, LONG J R, Hydrogen Storage in the Dehydrated Prussian BlueAnalogues M3[Co(CN)6]2(M=Mn, Fe, Co, Ni, Cu, Zn)[J]. Journal of theAmerican Chemical Society,2005,127:6506–6507.
    [22]a) DUNNE J A, RAO M, SIRCAR S, et al. Calorimetric Heats of Adsorption andAdsorption Isotherms.2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5,and Na-ZSM-5Zeolites[J]. Langmuir,1996,12:5896–5904; b) HIMENO S,KOMATSU T, FUJITA S, High-Pressure Adsorption Equilibria of Methane andCarbon Dioxide on Several Activated Carbons[J]. Journal of Chemical&Engineering Data,2005,50:369–376.
    [23]a) AN J, GEIB S J, ROSI N L, Cation-triggered drug release from a porouszinc-adeninate metal-organic framework[J]. Journal of the American ChemicalSociety,2009,131:8376–8377; b) GU Z Y, CHEN Y J, JIANG J Q, et al. Metal–organic frameworks for efficient enrichment of peptides with simultaneousexclusion of proteins from complex biological samples[J]. ChemicalCommunications,2011,47:4787–4789.
    [24]ZHAO D, TAN W S, YUAN D Q, et al. Surface Functionalization of PorousCoordination Nanocages Via Click Chemistry and Their Application in DrugDelivery[J]. Advanced Materials,2011,23:90–93.
    [25]WYATT M D, WILSON D M,3rd Participation of DNA repair in the response to5-fluorouracil[J]. Cellular and Molecular Life Sciences,2009,66:788–799.
    [26]HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organicframework nanoscale carriers as a potential platform for drug delivery andimaging[J]. Nature Materials,2010,9:172–178.
    
    [1] a) JEONG K S, GO Y B, SHIN S M, et al. Asymmetric catalytic reactions byNbO-type chiral metal-organic frameworks[J]. Chemical Science,2011,2:877–882; b) WU T, KHAZHAKYAN R, WANG L, et al. Three-DimensionalCovalent Co-Assembly between Inorganic Supertetrahedral Clusters andImidazolates[J]. Angewandte Chemie International Edition,2011,50:2536–2539; c) OTSUBO K, WAKABAYASHI Y, OHARA J, et al. Bottom-upRealization of A Porous Metal-organic Nanotubular Assembly[J]. NatureMaterials,2011,10:291–295; d) JIANG H-L, LIU B, AKITA T, et al.Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organicframework[J]. Journal of the American Chemical Society,2009,131:11302–11303; e) LI J R, ZHOU H-C, Bridging-ligand-substitution strategy for thepreparation of metal-organic polyhedra[J]. Nature Chemistry,2010,2:893–898; f)LI J-R, KUPPLER R J, ZHOU H-C, Selective gas adsorption and separation inmetal-organic frameworks[J]. Chemical Society Reviews,2009,38:1477–1504;g) CHEN Y-Q, LI G-R, CHANG Z, et al. A Cu(I) metal-organic framework with4-fold helical channels for sensing anions[J]. Chemical Science,2013,4:3678–3682.
    [2] a) PAN L, OLSON D H, CIEMNOLONSKI L R, et al. Separation ofHydrocarbons with a Microporous Metal-Organic Framework[J]. AngewandteChemie International Edition,2006,45:616–619; b) SHULTZ A M, FARHA OK, HUPP J T, et al. A catalytically active, permanently microporous MOF withmetalloporphyrin struts[J]. Journal of the American Chemical Society,2009,131:4204–4205; c) CHEON Y E, SUH M P, Enhanced Hydrogen Storage byPalladium Nanoparticles Fabricated in a Redox-Active Metal-OrganicFramework[J]. Angewandte Chemie International Edition,2009,48:2899–2903;d) CHEN B, XIANG S, QIAN G, Metal-Organic Frameworks with FunctionalPores for Recognition of Small Molecules[J]. Accounts of Chemical Research,2010,43:1115–1124; e) MORRIS R E, BU X, Induction of chiral porous solidscontaining only achiral building blocks[J]. Nature Chemistry,2010,2:353–361;f) JIANG H-L, LIU B, LAN Y-Q, et al. From metal-organic framework tonanoporous carbon: toward a very high surface area and hydrogen uptake[J].Journal of the American Chemical Society,2011,133:11854–11857.
    [3] a) EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size andFunctionality in Isoreticular MOFs and Their Application in Methane Storage[J].Science,2002,295:469–472; b) PERRY J J IV, PERMAN J A, ZAWOROTKOM J, Design and synthesis of metal-organic frameworks using metal-organicpolyhedra as supermolecular building blocks[J]. Chemical Society Reviews,2009,38:1400–1417; c) TRANCHEMONTAGNE D J, MENDOZA-CORTéS J L,O’KEEFFE M, et al. Secondary building units, nets and bonding in the chemistryof metal–organic frameworks[J]. Chemical Society Reviews,2009,38:1257–1283.
    [4] a) BAI Y-L, TAO J, HUANG R-B, et al. The Designed Assembly of AugmentedDiamond Networks From Predetermined Pentanuclear Tetrahedral Units[J].Angewandte Chemie International Edition,2008,47:5344–5347; b) WANG X-L,QIN C, WU S-X, et al. Bottom-Up Synthesis of Porous CoordinationFrameworks: Apical Substitution of a Pentanuclear Tetrahedral Precursor[J].Angewandte Chemie International Edition,2009,48:5291–5295; c) LAN Y-Q,LI S-L, JIANG H-L, et al. Tailor-Made Metal-Organic Frameworks fromFunctionalized Molecular Building Blocks and Length-Adjustable OrganicLinkers by Stepwise Synthesis[J]. Chemistry-A European Journal,2012,18:8076–8083; d) HE W-W, LI S-L, YANG G-S, et al. Controllable synthesis of anon-interpenetrating microporous metal–organic framework based on octahedralcage-like building units for highly efficient reversible adsorption of iodine[J].Chemical Communications,2012,48:10001–10003.
    [5] a) DINCA M, DAILLY A, LONG J R, Structure and Charge Control inMetal-Organic Frameworks Based on the Tetrahedral Ligand Tetrakis(4-tetrazolylphenyl)methane[J]. Chemistry-A European Journal,2008,14:10280–10285; b) WANG Z, COHEN S M, Postsynthetic modification ofmetal-organic frameworks[J]. Chemical Society Reviews,2009,38:1315–1329;c) Mulfort K L, Farha O K, Stern C, et al. Post-Synthesis Alkoxide FormationWithin Metal-Organic Framework Materials: A Strategy for Incorporating HighlyCoordinatively Unsaturated Metal Ions[J]. Journal of the American ChemicalSociety,2009,131:3866–3868; d) ZHANG Z, SHI W, NIU Z, et al. A new typeof polyhedron-based metal–organic frameworks with interpenetrating cationicand anionic nets demonstrating ion exchange, adsorption and luminescentproperties[J]. Chemical Communications,2011,47:6425–6427.
    [6] a) DENG H, GRUNDER S, CORDOVA K E, et al. Large-Pore Apertures in aSeries of Metal-Organic Frameworks[J]. Science,2012,336:1018–1023; b)YANG G-S, LANG Z-L, ZANG H-Y, et al. Control of interpenetration inS-containing metal-organic frameworks for selective separation of transitionmetal ions[J]. Chemical Communications,2013,49:1088–1090.
    [7] a) JIANG H-L, TATSU Y, LU Z-H, et al. Non-, Micro-, and MesoporousMetal-Organic Framework Isomers: Reversible Transformation, FluorescenceSensing, and Large Molecule Separation[J]. Journal of the American ChemicalSociety,2010,132:55865587; b) LAN Y-Q, JIANG H-L, LI S-L, et al.Mesoporous Metal-Organic Frameworks with Size-tunable Cages: Selective CO2Uptake, Encapsulation of Ln3+Cations for Luminescence, andColumn-Chromatographic Dye Separation[J]. Advanced Materials,2011,23:5015–5020; c) PU F, LIU X, XU B L, et al. Miniaturization ofMetal-Biomolecule Frameworks Based on Stereoselective Self-Assembly andPotential Application in Water Treatment and as Antibacterial Agents[J].Chemistry-A European Journal,2012,18:4322–4328.
    [8] SUN C-Y, WANG X-L, QIN C, et al. Solvatochromic Behavior of ChiralMesoporous Metal-Organic Frameworks and Their Applications for SensingSmall Molecules and Separating Cationic Dyes[J]. Chemistry-A EuropeanJournal,2013,19:3639–3645.
    [9] a) HE G, GUO D, HE C, et al. A Color-Tunable Europium Complex EmittingThree Primary Colors and White Light[J]. Angewandte Chemie InternationalEdition,2009,48:6132–6135; b) DANG S, ZHANG J H, SUN Z M, Tunableemission based on lanthanide(III) metal-organic frameworks: an alternativeapproach to white light[J]. Journal of Materials Chemistry,2012,22:8868–8873;c) ZHANG H B, SHAN X C, ZHOU L J, et al. Full-colour fluorescent materialsbased on mixed-lanthanide(iii) metal-organic complexes with high-efficiencywhite light emission[J]. Journal of Materials Chemistry C,2013,1:888–891; d)ZHANG S, DU D, TAN K, et al. A fluorescent sensor for highly selectivedetection of nitroaromatic explosives based on a2D extremely stablemetal-organic framework[J]. Chemistry-A European Journal,2013,19:11279–11286.
    [10]a) HARBUZARU B V, CORMA A, REY F, et al. A Miniaturized Linear pHSensor Based on a Highly Photoluminescent Self-Assembled Europium(III)Metal-Organic Framework[J]. Angewandte Chemie International Edition,2009,48:6476–6479; b) CUI Y J, XU H, YUE Y F, et al. A LuminescentMixed-Lanthanide Metal-Organic Framework Thermometer[J]. Journal of theAmerican Chemical Society,2012,134:3979–3982.
    [11]a) Kowalchuk C M, PAZ F A A, ANANIAS D, et al. Photoluminescentmicroporous lanthanide silicate AV-21frameworks[J]. Chemistry-A EuropeanJournal,2008,14:8157–8168; b) SAVA D F, ROHWER L E S, RODRIGUEZ MA, et al. Intrinsic Broad-Band White-Light Emission by a Tuned, CorrugatedMetal-Organic Framework[J]. Journal of the American Chemical Society,2012,134:3983–3986.
    [12]a) ALLENDORF M D, BAUER C A, BHAKTA R K, et al. Luminescent metal–organic frameworks[J]. Chemical Society Reviews,2009,38:1330–1352; b)YAN D P, LLOYD G O, DELORI A, et al. Tuning Fluorescent Molecules byInclusion in a Metal-Organic Framework: An Experimental and ComputationalStudy[J]. ChemPlusChem,2012,77:1112–1118.
    [13]QIN J-S, DU D-Y, LI W-L, et al. N-rich zeolite-like metal–organic frameworkwith sodalite topology: high CO2uptake, selective gas adsorption and efficientdrug delivery[J]. Chemical Science,2012,3:2114–2118.
    [14]a) YANG G S, LAN Y Q, ZANG H Y, et al. Two eight-connectedself-penetrating porous metal-organic frameworks: configurational isomerscaused by different linking modes between terephthalate and binuclear nickelbuilding units[J]. CrystEngComm,2009,11:274–277; b) NEOFOTISTOU E,MALLIAKAS C D, TRIKALITIS P N, Remarkable structural diversity andsingle-crystal-to-single-crystal transformations in sulfone functionalizedlanthanide MOFs[J]. CrystEngComm,2010,12:1034–1037.
    [15]SPEK A L, Single-crystal structure validation with the program PLATON[J].Journal of Applied Crystallography,2003,36:7–13.
    [16]a) LI H, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of anexceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276–279; b) JIA J T, SUN F X, FANG Q R, et al. A novel low densitymetal–organic framework with pcu topology by dendritic ligand[J]. ChemicalCommunications,2011,47:9167–9169.
    [17]STYLIANOU K C, HECK R, CHONG S Y, et al. A Guest-ResponsiveFluorescent3D Microporous Metal-Organic Framework Derived from aLong-Lifetime Pyrene Core[J]. Journal of the American Chemical Society,2010,132:4119–4130.
    [18]a) QIN J, DU D, CHEN L, et al. Syntheses, structures and luminescent propertiesof a series of3D lanthanide coordination polymers with tripodal semirigidligand[J]. Journal of Solid State Chemistry,2011,184:373–378; b) DU D-Y,QIN J-S, SUN C-X, et al. Functional heterometallic coordination polymers withmetalloligands as tunable luminescent crystalline materials[J]. Journal ofMaterials Chemistry,2012,22:19673–19678; c) SUN Y, ZHANG J, CHEN Y, etal. Porous Lanthanide–Organic Open Frameworks with Helical TubesConstructed from Interweaving Triple-Helical and Double-Helical Chains[J].Angewandte Chemie International Edition,2005,44:5814–5817.
    [19]ADHIKARI B, PALUI G, BANERJEE A, Self-assembling tripeptide basedhydrogels and their use in removal of dyes from waste-water[J]. Soft Matter,2009,5:3452–3452.
    [20]a) JIA J T, SUN F X, BORJIGIN T, et al. Highly Porous And Robust Ionic MofsWith Nia Topology Constructed By Connecting An Octahedral Ligand And ATrigonal Prismatic Metal Cluster[J]. Chemical Communications,2012,48:6010–6012; b) C. M. Doherty, Y. Gao, B. Marmiroli, et al. Microfabrication ofmesoporous silica encapsulated enzymes using deep X-ray lithography[J]. Journalof Materials Chemistry,2012,22:16191–16195.
    [1] a) CUI P, MA Y, LI H, et al. Multipoint Interactions Enhanced CO2Uptake: AZeolite-like Zinc-Tetrazole Framework with24-Nuclear Zinc Cages[J]. Journal ofthe American Chemical Society,2012,134:1889218895; b) FU H, QIN C, LUY, et al. An Ionothermal Synthetic Approach to Porous Polyoxometalate-BasedMetal-Organic Frameworks[J]. Angewandte Chemie International Edition,2012,51:7985–7989; c) DU L, LU Z, ZHENG K, et al. Fine-Tuning Pore Size byShifting Coordination Sites of Ligands and Surface Polarization of Metal-OrganicFrameworks To Sharply Enhance the Selectivity for CO2[J]. Journal of theAmerican Chemical Society,2013,135:562565.
    [2] a) LI J-R, KUPPLER R J, ZHOU H-C, Selective gas adsorption and separation inmetal-organic frameworks[J]. Chemical Society Reviews,2009,38:1477–1504;b) JEONG K S, GO Y B, SHIN S M, et al. Asymmetric catalytic reactions byNbO-type chiral metal-organic frameworks[J]. Chemical Science,2011,2:877–882; c) OTSUBO K, WAKABAYASHI Y, OHARA J, et al. Bottom-upRealization of A Porous Metal-organic Nanotubular Assembly[J]. NatureMaterials,2011,10:291–295; d) ZHANG Z, ZHAO Y, GONG Q, et al. MOFsfor CO2capture and separation from flue gas mixtures: the effect ofmultifunctional sites on their adsorption capacity and selectivity[J]. ChemicalCommunications,2013,49:653661.
    [3] FARRUSSENG D, AGUADO S, PINEL C, Metal-Organic Frameworks:Opportunities for Catalysis[J]. Angewandte Chemie International Edition,2009,48:75027513.
    [4] a) ZHAO D, YUAN D, SUN D, et al. Stabilization of Metal-Organic Frameworkswith High Surface Areas by the Incorporation of Mesocavities withMicrowindows[J]. Journal of the American Chemical Society,2009,131:91869188; b) KLEIN N, SENKOVSKA I, GEDRICH K, et al. A MesoporousMetal-Organic Framework[J]. Angewandte Chemie International Edition,2009,48:99549957; c) FURUKAWA H, KO N, GO Y B, et al. Ultrahigh Porosity inMetal-Organic Frameworks[J]. Science,2010,329:424428; d) JIANG H-L,TATSU Y, LU Z-H, et al. Non-, Micro-, and Mesoporous Metal-OrganicFramework Isomers: Reversible Transformation, Fluorescence Sensing, andLarge Molecule Separation[J]. Journal of the American Chemical Society,2010,132:55865587.
    [5] a) QIN J-S, DU D-Y, LI W-L, et al. N-rich zeolite-like metal-organic frameworkwith sodalite topology: high CO2uptake, selective gas adsorption and efficientdrug delivery[J]. Chemical Science,2012,3:2114–2118; b) LIAO P, ZHOU D,ZHU A, et al. Strong and dynamic CO2sorption in a flexible porous frameworkpossessing guest chelating claws[J]. Journal of the American Chemical Society,2012,134:1738017383; c) SMALDONE R A, FORGAN R S, FURUKAWA H,et al. Metal-Organic Frameworks from Edible Natural Products[J]. AngewandteChemie International Edition,2010,49:8630–8634.
    [6] a) CUI Y, YUE Y, QIAN G, et al. Luminescent Functional Metal OrganicFrameworks[J]. Chemical Reviews,2012,112:1126–1162; b) SHAN X, JIANGF, YUAN D, et al. A multi-metal-cluster MOF with Cu4I4and Cu6S6as functionalgroups exhibiting dual emission with both thermochromic and near-IRcharacter[J]. Chemical Science,2013,4:1484–1489; c) ABLET A, LI S-M, CAOW, et al. Luminescence Tuning and White-Light Emission of Co-doped Ln–Cd–Organic Frameworks[J]. Chemistry–An Asian Journal,2013,8:95–100; d)RYBAK J-C, HAILMANN M, MATTHES P R, et al. Metal-Organic FrameworkLuminescence in the Yellow Gap by Codoping of the Homoleptic Imidazolate[Ba(Im)2] with Divalent Europium[J]. Journal of the American Chemical Society,2013,135:68966902; e) WANG J, LI M, LI D, A dynamic, luminescent andentangled MOF as a qualitative sensor for volatile organic solvents and aquantitative monitor for acetonitrile vapour[J]. Chemical Science,2013,4:1793–1801.
    [7] a) HE G, GUO D, HE C, et al. A Color-Tunable Europium Complex EmittingThree Primary Colors and White Light[J]. Angewandte Chemie InternationalEdition,2009,48:6132–6135; b) WHITE K A, CHENGELIS D A, GOGICK KA, et al. Near-infrared luminescent lanthanide MOF barcodes[J]. Journal of theAmerican Chemical Society,2009,131:18069–18071; c) WHITE K A,CHENGELIS D A, ZELLER M, et al. Near-infrared emitting ytterbiummetal-organic frameworks with tunable excitation properties[J]. ChemicalCommunications,2009,4506–4508; d) DANG S, ZHANG J H, SUN Z M,Tunable emission based on lanthanide(III) metal–organic frameworks: analternative approach to white light[J]. Journal of Materials Chemistry,2012,22:8868–8873; e) ZHANG S, DU D, TAN K, et al. A fluorescent sensor for highlyselective detection of nitroaromatic explosives based on a2D extremely stablemetal-organic framework[J]. Chemistry-A European Journal,2013,19:11279–11286.
    [8] a) HARBUZARU B V, CORMA A, REY F, et al. A Miniaturized Linear pHSensor Based on a Highly Photoluminescent Self-Assembled Europium(III)Metal–Organic Framework[J]. Angewandte Chemie International Edition,2009,48:6476–6479; b) CUI Y J, XU H, YUE Y F, et al. A LuminescentMixed-Lanthanide Metal–Organic Framework Thermometer[J]. Journal of theAmerican Chemical Society,2012,134:3979–3982.
    [9] a) Kowalchuk C M, PAZ F A A, ANANIAS D, et al. Photoluminescentmicroporous lanthanide silicate AV-21frameworks[J]. Chemistry-A EuropeanJournal,2008,14:8157–8168; b) AN J, SHADE C M, CHENGELIS-CZEGAND A, et al. Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulationand Sensitization of Near-infrared and Visible Emitting Lanthanide Cations[J].Journal of the American Chemical Society,2011,133:1220–1223; c) SAVA D F,ROHWER L E S, RODRIGUEZ M A, et al. Intrinsic Broad-Band White-LightEmission by a Tuned, Corrugated Metal-Organic Framework[J]. Journal of theAmerican Chemical Society,2012,134:3983–3986.
    [10]a) CHEN Y-Q, LI G-R, CHANG Z, et al. A Cu(I) metal-organic framework with4-fold helical channels for sensing anions[J]. Chemical Science,2013,4:3678–3682; b) LIAO J-H, CHEN W-T, TSAI C-S, et al. Characterization, adsorptionproperties, metal ion-exchange and crystal-to-crystal transformation ofCd3[(Cd4Cl)3(BTT)8(H2O)12]2framework, where BTT3=1,3,5-benzenetristetrazolate[J]. CrystEngComm,2013,15:3377–3384.
    [11]a) TAKASHIMA Y, MARTíNEZ V M, FURUKAWA S, et al. Moleculardecoding using luminescence from an entangled porous framework[J]. NatureCommunications,2011,2:168; b) PRAMANIK S, ZHENG C, ZHANG X, et al.New Microporous Metal-Organic Framework Demonstrating Unique Selectivityfor Detection of High Explosives and Aromatic Compounds[J]. Journal of theAmerican Chemical Society,2011,133:4153–4155; c) YANG H, WANG F,TAN Y-X, et al. Charge Matching on Designing NeutralCadmium-Lanthanide-Organic Open Frameworks for Luminescence Sensing[J].Chemistry–An Asian Journal,2012,7:1069–1073; d) SUN C-Y, WANG X-L,QIN C, et al. Solvatochromic Behavior of Chiral Mesoporous Metal-OrganicFrameworks and Their Applications for Sensing Small Molecules and SeparatingCationic Dyes[J]. Chemistry-A European Journal,2013,19:3639–3645.
    [12]a) CHEETHAM A K, FéREY G, LOISEAU T, Open-Framework InorganicMaterials[J]. Angewandte Chemie International Edition,1999,38:3268–3292; b)LAN A, LI K, WU H, et al. A Luminescent Microporous Metal-OrganicFramework for the Fast and Reversible Detection of High Explosives[J].Angewandte Chemie International Edition,2009,48:2334–2338.
    [13]a) DU D-Y, QIN J-S, SUN C-X, et al. Functional heterometallic coordinationpolymers with metalloligands as tunable luminescent crystalline materials[J].Journal of Materials Chemistry,2012,22:19673–19678; b) DU D, QIN J, LI Y,et al. An unprecedented3D8-connected pure inorganic framework based onnanosized {[Na112PO16H24]C[P4Mo6O31H6]4}5clusters and zinc cations[J].Chemical Communications,2011,47:2832–2834.
    [14]SPEK A L, Single-crystal structure validation with the program PLATON[J].Journal of Applied Crystallography,2003,36:7–13.
    [15]a) EL-KADERI H M, HUNT J R, MENDOZA-CORTéS J L, et al. DesignedSynthesis of3D Covalent Organic Frameworks[J]. Science,2007,316:268272;b) NOHRA B, MOLL H E, ALBELO L M R, et al. Polyoxometalate-Based MetalOrganic Frameworks (POMOFs): Structural Trends, Energetics, and HighElectrocatalytic Efficiency for Hydrogen Evolution Reaction[J]. Journal of theAmerican Chemical Society,2011,133:13363–13374.
    [16]a) COLOMBO V, GALLI S, CHOI H J, et al. High thermal and chemicalstability in pyrazolate-bridged metal–organic frameworks with exposed metalsites[J]. Chemical Science,2011,2:1311–1319; b) DU D, QIN J, SUN Z, et al.An unprecedented (3,4,24)-connected heteropolyoxozincate organic frameworkas heterogeneous crystalline Lewis acid catalyst for biodiesel production[J].Scientific Reports,2013,3:2616; c) JIANG H, FENG D, WANG K, et al. AnExceptionally Stable, Porphyrinic Zr Metal-Organic Framework ExhibitingpH-Dependent Fluorescence[J]. Journal of the American Chemical Society,2013,135:13934–13938.
    [17]a) QIN J, DU D, CHEN L, et al. Syntheses, structures and luminescent propertiesof a series of3D lanthanide coordination polymers with tripodal semirigidligand[J]. Journal of Solid State Chemistry,2011,184:373–378; b) SUN Y,ZHANG J, CHEN Y, et al. Porous Lanthanide-Organic Open Frameworks withHelical Tubes Constructed from Interweaving Triple-Helical and Double-HelicalChains[J]. Angewandte Chemie International Edition,2005,44:5814–5817.
    [18]SUN L, LI Y, LIANG Z, et al. Structures and properties of lanthanide metal–organic frameworks based on a1,2,3-triazole-containing tetracarboxylateligand[J]. Dalton Transactions,2012,41:12790–12796.
    [19]a) ZHANG Z, XIANG S, RAO X, et al. A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensingof nitrobenzene[J]. Chemical Communications,2010,46:7205–7207; b) WANGG, YANG L, LI Y, et al. A luminescent2D coordination polymer for selectivesensing of nitrobenzene[J]. Dalton Transactions,2013,42:12865–12868.
    [20]a) XU H, LIU F, CUI Y, et al. A luminescent nanoscale metal-organic frameworkfor sensing of nitroaromatic explosives[J]. Chemical Communications,2011,47:3153–3155; b) GUO M, SUN Z-M, Solvents control over the degree ofinterpenetration in metal-organic frameworks and their high sensitivities fordetecting nitrobenzene at ppm level[J]. Journal of Materials Chemistry,2012,22:15939–15946;(c) GOLE B, BAR A K, MUKHERJEE P S, Fluorescent metal–organic framework for selective sensing of nitroaromatic explosives[J]. ChemicalCommunications,2011,47:12137–12139.
    [1] a) LI J-R, KUPPLER R J, ZHOU H-C, Selective gas adsorption and separation inmetal-organic frameworks[J]. Chemical Society Reviews,2009,38:1477–1504;b) CUI P, MA Y, LI H, et al. Multipoint Interactions Enhanced CO2Uptake: AZeolite-like Zinc-Tetrazole Framework with24-Nuclear Zinc Cages[J]. Journal ofthe American Chemical Society,2012,134:1889218895; c) DU L, LU Z,ZHENG K, et al. Fine-Tuning Pore Size by Shifting Coordination Sites ofLigands and Surface Polarization of Metal-Organic Frameworks To SharplyEnhance the Selectivity for CO2[J]. Journal of the American Chemical Society,2013,135:562565.
    [2] a) JEONG K S, GO Y B, SHIN S M, et al. Asymmetric catalytic reactions byNbO-type chiral metal-organic frameworks[J]. Chemical Science,2011,2:877–882; b) SUN C-Y, QIN C, WANG C-G, et al. Chiral Nanoporous Metal-OrganicFrameworks with High Porosity as Materials for Drug Delivery[J]. AdvancedMaterials,2011,23:5629–5632; c) ZHANG Z, ZHAO Y, GONG Q, et al. MOFsfor CO2capture and separation from flue gas mixtures: the effect ofmultifunctional sites on their adsorption capacity and selectivity[J]. ChemicalCommunications,2013,49:653661.
    [3] FARRUSSENG D, AGUADO S, PINEL C, Metal-Organic Frameworks:Opportunities for Catalysis[J]. Angewandte Chemie International Edition,2009,48:75027513.
    [4] a) Li T, KOZLOWSKI M T, DOUD E A, et al. Stepwise Ligand Exchange forthe Preparation of a Family of Mesoporous MOFs[J]. Journal of the AmericanChemical Society,2013,135:11688–11691; b) HE W-W, LI S-L, YANG G-S, etal. Controllable synthesis of a non-interpenetrating microporous metal–organicframework based on octahedral cage-like building units for highly efficientreversible adsorption of iodine[J]. Chemical Communications,2012,48:10001–10003; c) SCHOEDEL A, WOJTAS L, KELLEY S P, et al. Network Diversitythrough Decoration of Trigonal-Prismatic Nodes: Two-Step Crystal Engineeringof Cationic Metal–Organic Materials[J]. Angewandte Chemie InternationalEdition,2011,50:11421–11424.
    [5] a) SMALDONE R A, FORGAN R S, FURUKAWA H, et al. Metal-OrganicFrameworks from Edible Natural Products[J]. Angewandte Chemie InternationalEdition,2010,49:8630–8634; b) LIAO P, ZHOU D, ZHU A, et al. Strong anddynamic CO2sorption in a flexible porous framework possessing guest chelatingclaws[J]. Journal of the American Chemical Society,2012,134:1738017383; c)QIN J-S, DU D-Y, LI W-L, et al. N-rich zeolite-like metal-organic frameworkwith sodalite topology: high CO2uptake, selective gas adsorption and efficientdrug delivery[J]. Chemical Science,2012,3:2114–2118.
    [6] a) DENG H, GRUNDER S, CORDOVA K E, et al. Large-Pore Apertures in aSeries of Metal-Organic Frameworks[J]. Science,2012,336:1018–1023; b)YANG G-S, LANG Z-L, ZANG H-Y, et al. Control of interpenetration inS-containing metal-organic frameworks for selective separation of transitionmetal ions[J]. Chemical Communications,2013,49:1088–1090.
    [7] a) JIANG H-L, TATSU Y, LU Z-H, et al. Non-, Micro-, and MesoporousMetal-Organic Framework Isomers: Reversible Transformation, FluorescenceSensing, and Large Molecule Separation[J]. Journal of the American ChemicalSociety,2010,132:55865587; b) LAN Y-Q, JIANG H-L, LI S-L, et al.Mesoporous Metal-Organic Frameworks with Size-tunable Cages: Selective CO2Uptake, Encapsulation of Ln3+Cations for Luminescence, andColumn-Chromatographic Dye Separation[J]. Advanced Materials,2011,23:5015–5020; c) PU F, LIU X, XU B L, et al. Miniaturization ofMetal-Biomolecule Frameworks Based on Stereoselective Self-Assembly andPotential Application in Water Treatment and as Antibacterial Agents[J].Chemistry-A European Journal,2012,18:4322–4328.
    [8] SUN C-Y, WANG X-L, QIN C, et al. Solvatochromic Behavior of ChiralMesoporous Metal-Organic Frameworks and Their Applications for SensingSmall Molecules and Separating Cationic Dyes[J]. Chemistry-A EuropeanJournal,2013,19:3639–3645.
    [9] a) BAI Y-L, TAO J, HUANG R-B, et al. The Designed Assembly of AugmentedDiamond Networks From Predetermined Pentanuclear Tetrahedral Units[J].Angewandte Chemie International Edition,2008,47:5344–5347; b) WANG X-L,QIN C, WU S-X, et al. Bottom-Up Synthesis of Porous CoordinationFrameworks: Apical Substitution of a Pentanuclear Tetrahedral Precursor[J].Angewandte Chemie International Edition,2009,48:5291–5295; c) LAN Y-Q,LI S-L, JIANG H-L, et al. Tailor-Made Metal-Organic Frameworks fromFunctionalized Molecular Building Blocks and Length-Adjustable OrganicLinkers by Stepwise Synthesis[J]. Chemistry-A European Journal,2012,18:8076–8083.
    [10]LU W, WEI Z, GU Z, et al. Tuning the structure and function of metal–organicframeworks via linker design[J]. Chemical Society Reviews,2014, DOI:10.1039/c4cs00003j.
    [11]Qin J-S, Bao S-J, Li P, et al. A Stable Porous Anionic Metal–Organic Frameworkfor Luminescence Sensing of Ln3+Ions and Detection of Nitrobenzene[J].Chemistry–An Asian Journal,2014,9:749–753.
    [12]a) DU D-Y, QIN J-S, SUN C-X, et al. Functional heterometallic coordinationpolymers with metalloligands as tunable luminescent crystalline materials[J].Journal of Materials Chemistry,2012,22:19673–19678; b) LAN Y-Q, LI S-L,FU Y-M, et al. Syntheses, Structures, and Luminescent Properties of Zinc(II) andCadmium(II) Coordination Complexes Based on Different (Pyridyl)imidazoleDerivatives and1,4-Benzenedicarboxylate[J]. Crystal Growth&Design,2009,9:1353–1360; c) DU D-Y, QIN J-S, LI Y-G, et al. An unprecedented3D8-connected pure inorganic framework based on nanosized{[Na15–12PO16H24]C[P4Mo6O31H6]4}clusters and zinc cations[J]. ChemicalCommunications,2011,47:2832–2834.
    [13]DU D-Y, QIN J-S, WANG T-T, et al. Polyoxometalate-based crystalline tubularmicroreactor: redox-active inorganic–organic hybrid materials producing goldnanoparticles and catalytic properties[J]. Chemical Science,2012,3:705–710.
    [14]HE Y-P, TAN Y-X, ZHANG J. Deliberate design of a neutral heterometallicorganic framework containing a record25-fold interpenetrating diamondoidnetwork[J]. CrystEngComm,2012,14:6359–6361.
    [15]a) GUO S-Q, TIAN D, ZHENG X, et al. A rare4-connected neb topologicalmetal–organic framework with ferromagnetic characteristics[J]. CrystEngComm,2012,14:3177–3182; b) ZOU Y, YU C, LI Y, et al. A3-dimensionalcoordination polymer with a rare lonsdaleite topology constructed from atetrahedral ligand[J]. CrystEngComm,2012,14:7174–7177.
    [16]SPEK A L, Single-crystal structure validation with the program PLATON[J].Journal of Applied Crystallography,2003,36:7–13.
    [17]JIANG H-L, MAKAL T A, ZHOU H-C, Interpenetration control in metal–organic frameworks for functional applications[J]. Coordination ChemistryReviews,2013,257:2232–2249.