广义凸性及其在最优化问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究广义凸性及其在极值问题、对偶问题、Hahn-Banach定理和向量拟平衡系统问题等最优化问题中的一些应用。主要工作如下:
     在第二章里,我们得到了严格预不变凸函数的两个性质,这些性质包括与中间点严格预不变凸性和预不变凸性有关的一个充分条件以及与半严格预不变凸性和中间点严格预不变凸性有关的一个充要条件。我们证明了两个预不变凸函数的比是不变凸函数,因此,我们对Yang、Yang和Teo在文献中提出的公开问题作出了肯定的回答。
     在第三章里,我们首先得到了严格B-预不变凸函数的一个充分条件,然后给出了严格B-预不变凸函数的一些性质,最后讨论了严格B-预不变凸函数在极值问题中的应用。
     在第四章里,我们纠正了文献的定理4.6或定理4.7中的错误,并用η关于第一变元是仿射的和η是斜对称的这两个条件代替η满足条件C,得到了(严格)伪不变单调性和拟不变单调性的新的必要条件。
     在第五章里,我们首先引入了向量值映射的D-预不变凸性、D-半严格预不变凸性和D-严格预不变凸性概念,其次我们在*-半连续和*-下半连续条件下给出了D-预不变凸映射的一些性质,最后讨论了D-预不变凸性、D-半严格预不变凸性和D-严格预不变凸性的相互关系。
     在第六章里,我们引入了向量值映射的D-预不变真拟凸性、D-严格预不变真拟凸性和D-半严格预不变真拟凸性概念,分别利用向量值映射的上D-半连续和下D-半连续概念,获得了D-预不变真拟凸向量值映射的等价结果。另外,我们还讨论了向量值映射的D-预不变真拟凸性、D-严格预不变真拟凸性和D-半严格预不变真拟凸性的关系,并证明了在一定条件下,向量优化问题的局部弱有效解一定是其全局弱有效解。
     在第七章里,我们构造了两类不可微多目标规划问题的广义对偶模型,并建立了这些模型的弱对偶定理。
     在第八章里,我们首先得到了几个新结果,它们将数量或向量情形的Hahn-Banach定理推广到集值情形。然后,我们证明了集值映射的Borwein-强次梯度和
In this thesis, the generalized convexity and their applications in optimization problems such as extremum problems, dual problems, Hahn-Banach theorems and system of vector quasi-equilibrium problems etc. are researched. The main research works are as follows:In Chapter 2, two properties of strictly preinvex functions are obtained. These properties include a sufficient condition in terms of intermediate-point strict prein-vexity and preinvexity and a necessary and sufficient condition in terms of the semistrict preinvexity and intermediate-point strict preinvexity. we also show that the ratio of preinvex functions is invex. Hence, we give a positive answer to the open question which was proposed by Yang, Yang and Teo in [1].In Chapter 3, a sufficient condition of the strictly B-preinvex function is firstly obtained. Then some properties of the strictly B-preinvex function are shown. Finally, some results for the extremum problem which the objective function is strictly B-preinvex are presented.In Chapter 4, the errors of Theorem 4.6 and Theorem 4.7 in [2] will be correted. And some necessary conditions of (strictly) pseudo-invex monotonicity and quasi-invex monotonicity are established with the condition that is affine in the first argument and skew instead of Condition C.In Chapter 5, the definitions of D-preinvexity, D-semistrict preinvexity and D-strict preinvexity for vector-valued maps are firstly introduced. Then, under the conditions of *-upper semi-continuity and *-lower semi-continuity, some properties of D-preinvexity are given and the interrelations among D-preinvexity, D-semistrict preinvexity and D-strict preinvexity are discussed.
    In Chapter 6, the definitions such as D-proper prequasiinvexity, D-properly strict prequasiinvexity, D-properly semistrict prequasiinvexity for vector-valued maps are introduced, and under the lower D-Semi-continuous condition or the upper D-Semi-continuous condition, respectively, some equivalent propositions of D-proper prequasiinvexity for vector-valued maps are obtained, and the relationships of D-proper prequasiinvexity, D-properly semistrict prequasiinvexity and D-properly strict prequasiinvexity are discussed, under some conditions the local weak efficient solution of (VP) must be the global weak efficient solution of (VP) is proved.In Chapter 7, two new dual models of the nonsmooth multiobjective programming are constructed and two weak duality theorems for these models are derived.In Chapter 8, Some new results which generalize the Hahn-Banach theorems from scalar or vector-valued case to set-valued case are firstly obtained. Then, the existence of the Borwein-strong subgradient and the Yang-weak subgradient for set-valued maps are also proven. Finally, A new Lagrange multiplier theorem and a new Sandwich theorem for set-valued maps are also presented.In Chapter 9, the notion of affinelike set-valued maps is introduced and some properties of these maps are presented. Then a new Hahn-Banach extension theorem with a D-convex set-valued map dominated by an affinelike set-valued map whichcontains the main results in charter 8 as special cases is obtained.In Chapter 10, we introduce the definition of Di-0-partiaHy diagonal quasicon-vexity which is a generalization of D-quasiconvexity. We also introduce a new system of vector quasi-equilibrium problems and prove its existence of a solution. As applications, some existence results of weak pareto equilibrium for both constrained multicriteria games and multicriteria games without constrained correspondences are also shown.
引文
[1] X. M. Yang., X. Q. Yang and K. L. Teo, On properties of semipreinvex function, Bulletin of Australian Mathematical Society, 2003, 68(3), pp.449-459.
    [2] G. Ruiz-Garzon, R. Osuna-Gomez and A. Rufian-Lizana, Generalized invex monotonicity, European Journal of Operational Research, 2003, 144, pp.501-512.
    [3] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970.
    [4] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
    [5] 史树中,凸分析,上海科学技术出版社,上海,1990.
    [6] 刘光中,凸分析与极值问题,高等教育出版社,北京,1991。
    [7] 寇述舜,凸分析与二次凸规划,天津大学出版社,天津,1994。
    [8] 胡毓达,孟志青,凸分析与非光滑分析,上海科学技术出版社,上海,2000。
    [9] 冯德兴,凸分析基础,科学出版社,北京,1995。
    [10] A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications, Springer-Verlag, Berlin, 1990.
    [11] J. P. Crouzeix, J. E. Martinez-Legaz and M. Volle, Generalized Convexity, Generalized Monotonicity (proceedings of the Vth international Workshop on generalized convexity, Marseille, French, July 17-21, 1996), Springer-Verlag, Berlin, 1994.
    [12] S. Schaible and W. T. Ziemba, Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981.
    [13] R. N. Mukherjee and L. V. Reddy, Semicontinuity and quasiconvex functions, Journal of Optimization Theory and Applications, 1997, 94(3), pp.715-726.
    [14] X. M. Yang, Three kinds of generalized convexity, Journal of Optimization Theory and Applications, 1995, 86(3), pp.501-503.
    [15] 杨新民,上半连续函数的拟凸性,运筹学学报,1999,3(1),PP.48-54.
    [16] 杨益民,函数强伪凸性与映射强伪单调性,高等学校计算数学学报,2000,2(1),PP.141-146.
    [17] S. Karamardian and S. Schaible, Seven kinds of monotone maps, Journal of Optimization Theory and Applications, 1990, 66(1), pp.37-46.
    [18] N. Hadjisavvas and S. Schaible, On strong pseudomotonicity and (semi) strict quasimonotonicity, Journal of Optimization Theory and Applica- tions, 1993,79(1), pp.139-155.
    [19] T. Tanaka, Generlized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions, Journal of Optimization Theory and Applications, 1994,81(2), pp.355-377.
    [20] L. Yang and L. Y. Yu, Several cone generalized convex convex mappings in topological vector space, OR Transactions, 2000, 4(3), pp.67-77.
    [21] J. P. Penot and P. H. Quang, Generalized convexity of functions and generalized monotonicity of set-valued maps, Journal of Optimization Theory and Applications, 1997,92(2), pp.343-356.
    [22] A. Danilidis and N. Hadjisavvas, Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex function, Journal of Optimization Theory and Applications, 1999, 102(3), pp.525-536.
    [23] D. Kuroiwa, convexity for set-valued maps, Applied Mathematics Letter, 1996, 9, pp.97-101.
    [24] L. Y. Fan, S. Y. Liu and S. P. Gao, Generalized monotonicity and convexity of non-differentible functions, Journal of Mathematical Analysis and Applications 2003, 279(1), pp.276-289.
    [25] Z. F. Li and S. Y. Wang, A type of minimax inequality for vector- valued mappings, Journal of Mathematical Analysis and Applications, 1998,227(1), pp.68-80.
    [26] M. A. Hanson, On sufficiency of the Kuhn-Tuker conditions, Journal of Mathematical Analysis and Applications, 1981, 80(2), pp.544-550.
    [27] B. D. Craven, Invex functions and constrained local minima, Bulletin of Australian Mathematical Society, 1981,24, pp.357-366.
    [28] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 1988,136(1), pp.29-38.
    [29] T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bulletin of Australian Mathematical Society, 1988, 38, pp.177-189.
    [30] R. Pini, Invexity and generalized convexity, Optimization, 1991,22, pp.513-525.
    [31] X. M. Yang and D. Li, Semistrictly preinvex functions., Journal of Mathematical ,Analysis and Applications, 2001, 258(1), pp.287-308.
    [32] X. Q. Yang and G. Y. Chen, A class of nonconvex functions and prevariational inequalities, Journal of Mathematical Analysis and Applications, 1992,169(2), pp. 359-373.
    [33] C. R. Bector and C. Singh, B-vex functions, Journal of Optimization
     Theory and Applications, 1991, 71(2), pp.237-253.
    [34] C. R. Bector, S. K. Suneja and C. S. Lalitha, generalized B-vex functions and generalized B-vex programming, Journal of Optimization Theory and Applications, 1993,76(3), pp. 561-576.
    [35] S. K. Suneja, C. Singh and C. R. Bector, generalization of preinvex and B-vex functions, Journal of Optimization Theory and Applications, 1993,76(3), pp.577-587.
    [36] X. M. Yang, X. Q. Yang, and and K. L. Teo, explicitly B-preinvex functions, J. Comp. Appl. Math., 2002,146, pp.25-36.
    [37] R. N. Kaul and S. Kaur, Optimality criteria in nonlinear programming invoving nonconvex functions, Journal of Mathematical Analysis and Applications, 1985,105(1), pp.104-112.
    [38] X. M.Yang, X. Q. Yang, and and K. L. Teo, Characterizations and applications of prequasiinvex functions,Journal of Optimization Theory and Applications, 2001,110(3), pp.645-668.
    [39] X. M. Yang and D. Li, On properties of preinvex functions., Journal of Mathematical Analysis and Applications, 2001,256(1), pp.229-241.
    [40] X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European Journal of Operational Research, 2005, 164, pp.115-119.
    [41] X. M. Yang, X. Q. Yang, and and K. L. Teo, Generalized invexity and invariant monotonicity, Journal of Optimization Theory and Applications, 2003, 117(3), pp.607-625.
    [42] M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information & Optimization Sciences, 1982, 3(1), pp.25-32.
    [43] V. Preda, On effic iency and duality for multiobjectve programs, Journal of Mathematical Analysis and Applications, 1992, 166(2), pp.365-377.
    [44] B. Aghezzaf and M. Hachimi, Sufficiency and duality in multiobjective programming involving generalized (F, p)-convexity, Journal of Mathematical Analysis and Applications, 2001, 258(2), pp.617-628.
    [45] R. Y. Zeng, Some duality theorems in nonsmooth generalized convex programmong, Journal of Systems Science and Systems Engineering, 1998, 7(3), pp.320-328.
    [46] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
    [47] J. C. Lin and C. S. Wu, On Minimax Fractional Optimality Conditions with (F, p)-convex, Journal of Mathematical Analysis and Applications,
     1998, 219(1), pp.36-51.
    [48] Z. A. Liang, H. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, Journal of Optimization Theory and Applications, 2001, 110(3), pp.611-619.
    [49] B. D. Craven, Mathematical Programming and control theory, Chapman and Hull, London, 1978.
    [50] M. Hayashi and H. Komiya, Perfect duality for convexlike programs, Journal of Optimization Theory and Applications, 1982, 38(2), pp.269-275.
    [51] V. Jeyakumar, A generalization of minimax theorem of Fan via a theorem of the alternative, Journal of Optimization Theory and Applications, 1986, 48(3), pp.525-533.
    [52] X. M. Yang, Alterative theorems and optimality conditions with weakened convexity, Opsearch, 1992, 29(2), pp.125-135.
    [53] K. Fan, Minimax theorems, Proceedings of the National Academy of Sciences of the USA, 1953, 39(1), pp.42-47.
    [54] Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization. Academic Press INC, 1985.
    [55] H. W. Corley, Exisence and Lagrangian Duality for maximization of setvalued functions, Journal of Optimization Theory and Applications, 1987, 54(2): 489-500.
    [56] D. Bhatia and A. Mehra, lagrangian duality for preinvex set-valued functions, Journal of Mathematical Analysis and Applications, 1997, 214(2), pp.599-612.
    [57] Z. F. Li and G. Y. Chen, Lagrangian multipliers, saddle points, and duality in vector optomization of set-valued maps, Journal of Mathematical Analysis and Applications, 1997, 215(2), pp. 297-316.
    [58] W. Song, Lagrangian duality for minimization of nonconvex multifunctions, Journal of Optimization Theory and Applications, 1997, 93(1), pp.167-182
    [59] X. M. Yang, S. Y. Wang and F. M. Yang, Theorems of the alterative for multifunctions, Opsearch, 1999, 36(4), pp.335-342.
    [60] 杨新民,汪寿阳,关于集值映射向量优化的有效性,pp.12-16,多目标决策进展(主编:汪寿阳、陈光亚、傅万涛),广宇咨询服务有限公司,香港,1998。
    [61] X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions, Journal of Optimization Theory and Applications, 2001, 110(2), pp.413-427
    [62] X. Q. Yang, A Hahn-Banach theorem in ordered linear spaces and its applications, Optimization, 1992, 25, pp. 1-9.
    [63] X. M. Yang , X. Q. Yang and G. Y. Chen, Theorems of the alternative and optimization with set-valued maps, Journal of Optimization Theory and Applications, 2000, 107(3), pp.627-640
    [64] Z. M. Li, The optimality conditions for vector optimization of set-valued maps, Journal of Mathematical Analysis and Applications, 1999, 237(2), pp.413-424.
    [65] Z. M. Li, A theorem of the alternative and its application to The optimization of set-valued maps, Journal of Optimization Theory and Applications, 1999, 100(2), pp.365-375.
    [66] A. Mehra, super efficiency in vector optimization with nearly convexlike set-valued maps, Journal of Mathematical Analysis and Applications 2002, 276(2), pp.815-832.
    [67] G. Mastroeni and T. Rapcsak, On convex generalized systems, Journal of Optimization Theory and Applications, 2000, 104(3), pp. 605-627.
    [68] 彭建文,杨新民。集值映射向量优化问题的e-真有效解,高校应用数学学报,2001,16(4),pp.86-92.
    [69] G. Y. Chen and W. D. Rong, Characterizations of the Benson proper efficiency for nonconvex vector optimization, Journal of Optimization Theory and Applications, 1998, 98(2), pp.365-384.
    [70] W. D. Rong and Y. N. Wu, ε-weak minimal solutions of vector optimization problems with set-valued maps, Journal of Optimization Theory and Applications, 2000, 106(3), pp.569-579.
    [71] H. Hahn, Uber lineare Gleichungssysteme in linearen Raumen. J. reine und angew. Math., 1927, 157(1), pp.214-229.
    [72] S. Banach, Theorie des Operations Lineaires. Warszawa, 1932.
    [73] H. F. Bohnenblust and A. Sobczyk, Extensions of functionals on complex linear spaces, Bulletin of the American Mathematical Society, 1938, 44, pp.91-93.
    [74] J. D. Weston, A note on the extension of linear functionals, American Mathematical Monthly, 1960, 67(3), pp.444-445.
    [75] N. Hirano, H. Komiya and W. Takahashi, A generalization of the Hahn-Banach Theorem, Journal of Mathematical Analysis and Applications, 1982, 88(2), pp.333-340.
    [76] M. M. Day, Normed Linear Space. Springer-Verlag, Berlin, 1962.
    [77] J. Zowe, Konvexe Funktionen und konvexe Dualitatstheorie in geordneten Vektorraumen, Habilitation Thesis, University of Wurzburg, 1976.
    [78] J. Zowe, Linear maps majorized by a sublinear map. Archivum Mathematicum, 1975, 26, pp.637-645.
    [79] J. Zowe, Sandwich theorems for convex operators with values in an order vector space, Journal of Mathematical Analysis and Applications, 1978, 66, pp.282-296.
    [80] K. H. Elster and R. Nehse, Necessary and sufficient conditions for ordercompleteness of partially ordered vector spaces, Math. Nachr., 1978, 81, pp.301-311.
    [81] 王苏生,序空间上的凸锥分离定理及其应用,应用数学学报,1986,9(3),pp.309-318.
    [82] 史树中,完备向量格的凸集分离定理及其应用,数学年刊,1985,6A(4),pp.431-438.
    [83] G. Y. Chen and B. D. Craven, A vector variational inequality and Optimization over an efficient set. Methods and Models of Operations Research, 1990, 34(1), pp.1-12.
    [84] Z. Q. Meng, Hahn-Banach Theorems of Set-valued map, Applied Mathematics and Mechanics, 1998, 19(1), pp.59-66.
    [85] M. Eidelheit, Zur Theorie der konvexen Mengen in linearen normierten Raumen, Studia Mathematica, 1936, 6(1), pp.104-111.
    [86] R. Deumlich, K. H. Elster and R. Nehse, Resent results on the separation of convex sets, Math. Operationsforsch. Statist. ser. Optim., 1978, 9(2), pp.273-294.
    [87] A. E. Taylor and D. C. Lay, Introduction to functional analysis, John Wiley & Sons, 1980.
    [88] K. H. Elster and R. Nehse, Separation of two convex sets by operators, Math. Univ. Carolinae, 1978, 19(1), pp.191-201.
    [89] J. Jahn, Mathematical vector optimization in partially ordered linear spaces, Verlag Peter Lang, 1986.
    [90] J. Jahn, Introduction to the theory of nonlinear optimization, Springer-Verlag, Berlin, 1996.
    [91] L. Kantorvitch and G. Akilov, Functional analysis in normed spaces, Moscow, 1959.
    [92] Lassonde, Hahn-Banach theorems for convex function, in Ricceri/Simons, Minimax theorems and applications, Kluwer, 1998.
    [93] W. Rudin, Functional analysis, McGraw-Hill, Inc, 1973.
    [94] J. P. Aubin, Optima and equilibria-An introduction to nonlinear analysis, Springer-Verlag, 1993.
    [95] M. Schechter, Principles of functional analysis, Academic Press, Inc., 1971.
    [96] J. P. Aubin and I. Ekeland, Applied Nonlinear Analisis. John Wiley & Sons, 1984.
    [97] K. Yosida, Functional analysis, Springer-Verlag, 1965.
    [98] H. W. Corley, Duality theorem for maximizations with respect to cones, Journal of Mathematical Analysis and Applications, 1981, 84(3), pp.560-568.
    [99] H. C. Lai and L. S. Yang, Strong duality for infinite-dimensional vector-valued programming problems, Journal of Optimization Theory and Applications, 1989, 62(3), pp.449-466.
    [100] X. M. Yang, Semistrictly convex functions., Opsearch, 1994, 31(1), pp.15-27.
    [101] X. M. Yang, K. L. Teo and and X. Q. Yang, Duality for a class of Nondifferentiable Multiobjective Programming Problems, Journal of Mathematical Analysis and Applications, 2000, 252(3), pp. 999-1005.
    [102] J. W. Peng and X. M. Yang. Two properties of strictly preinvex Functions, OR Transactions, 2005. 9(1), pp.1-6
    [103] J. W. Peng and X. J. Long. A remark on preinvex functions, Bulletin of Australian Mathematical Society, 2004, 70(3), pp.397-400.
    [104] S. R. Mohan and S. K. Neogy, On invex set and preinvex functions, Journal of Mathematical Analysis and Applications, 1995, 189(3), pp.901-908.
    [105] Z. A. Khan and M. A. Hanson, On retio of invexity in mathematical programming, Journal of Mathematical Analysis and Applications, 1997, 205(2), pp. 330-336.
    [106] B. D. Craven and B. Mond, Fractional programming with invexity, in Progress in optimization, Appl. Optim. 30(Kluwer Acad. Publ., Dordrecht, 1999), pp. 79-89.
    [107] 彭建文,严格B-预不凸函数,数学物理学报,即将发表.
    [108] J. W. Peng, Criteria for generalized invex monotonicities without Condition C, European Journal of Operations Research. Preprint.
    [109] V. Jeyakumar, W. Oettli and M. Natividad, A solvability theorem for a class of quasiconvex mappings with applications to optimization, Journal of Mathematical Analysis and Applications, 1993, 179(2), pp.537-546.
    [110] D. T. Luc, Theory of Vector Optimization, Springer-Verlag, Berlin, 1989.
    [111] T. Tanaka, Generalized Semicontinuity and Existence Theorems for Cone Saddle Points, Applied Mathematics and Optimization, 1997, 36(3), pp.313-322.
    [112] F. Ferro, A minimax theorems for vector-valued functions, Journal of Optimization Theory and Applications, 1989, 60(1), pp.19-31.
    [113] H. W. Corley, An existence result for maximizations with respect to cones, Journal of Optimization Theory and Applications, 1980, 31(2), pp.277-281.
    [114] 胡毓达,多目标规划有效性理论,上海科学技术出版社,上海,1994。
    [115] 于辉,关于向量集值优化问题的一些注释,重庆师范学院学报,1999,16(2),pp.49-52.
    [116] 彭建文,向量值映射D-η-预不真拟凸的性质,系统科学与数学,2003,23(3),PP.306-314.
    [117] J. W. Peng and X. M. Yang. Duality for a class of Nonsmooth Multiobjective programming problems, Journal of systems science and complexity, 2005, 18(1), pp.1-11.
    [118] J. W. Peng, H. W. J. Lee, W. D. Rong and X. M. Yang. A Generalization of Hahn-Banach Extension Theorem, Journal of Mathematical Analysis and Applications, 2005, 302(2), pp. 441-449.
    [119] G. Jameson, Ordered linear space. Lecture Notes in Mathematics 141. Springer-Verlag, 1970.
    [120] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Boston: Birkhauser, 1990.
    [121] G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems. Mathematical Metheds of Operations Research, 1998, 48(2), pp.187-200.
    [122] J. M. Borwein, A lagrange multiplier theorem and a sandwich theorem for convex relations, Mathematica Scandinavica, 1981, 48, pp.189-204.
    [123] J. Jahn, Vector optimization-theory, applications, and extensions, Springer-Verlag, 2004.
    [124] J. W. Peng, H. W. J. Lee, W. D. Rong and X. M. Yang. Hahn-Banach theorems and subgradients of set-valued maps, Mathematical Methods of Operations Research, Preprint.
    [125] G. Y. Chen, Y. Y. Wang, Generalized Hahn-Banach Theorems and Subdifferential of Set-valued mapping, Journal of Systems Science Mathematical Sciences, 1985, 5(3), pp. 223-230.
    [126] J. W. Peng and X. M. Yang. On System of Vector Quasi-Equilibrium Problems and Its Applications, Applied Mathematics and Mechanics, Preprint.
    [127] C. Ionescu Tulcea, On the approximation of upper semi-continuous correspondences and the equilibriums of Generalized games, Journal of Mathematical Analysis and Applications 1988, 136(1), pp.267-289.
    [128] G. X.-Z. Yuan, G. Isac, K. K. Lai and J. Yu, The study of minimax inequlities, abstract economics and applications to variational inequalities and Nash equilibria, Acta Applicandae Mathematicae, 1998, 54(2), pp.135-166.
    [129] Q. H. Ansari, S. Schaible and J. C. Yao, Systems of Vector Equilibrium problems and its applications, Journal of Optimization Theory and Applications, 2000, 107(3), pp.547-557.
    [130] 陈光亚,于辉.随机平衡系统解的存在性,系统科学与数学,2002,22(3),pp.278-284.
    [131] J. X. Zhou and G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. Journal of Mathematical Analysis and Applications, 1988, 132(1), pp.213-225.
    [132] 张石生,变分不等式和相补问题理论及应用,上海科学技术文献出版社,上海,1991。
    [133] W. Shafer, Sonnenschein H. Equilibrium in abstract economies without ordered preferences, Journal of Mathematical Economics, 1975, 2, pp.345-348.
    [134] 潘吉勋,张顺明.经济均衡的数学原理,吉林大学出版社,吉林,1997。
    [135] G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciences of the USA, 1952, 38(2), pp.386-393.
    [136] X. P. Ding, Quasi-equilibrium problems with applications to infinite optimization and constrained games in general topological spaces. Applied Mathematics Letters, 2000, 13, pp.21-26.
    [137] J. F. Nash, Noncooperative games, Annals of Mathematics 1951, 54, pp.286-295.
    [138] S. Y. Wang, Existence of a pareto equilibrium. Journal of Optimization Theory and Applications, 1993, 79(2), pp.373-384.
    [139] S. Y. Wang, An existence theorem of a pareto equilibrium. Applied Mathematics Letters, 1991, 4, pp.61-63.
    [140] J. Yu and G. X.-Z. Yuan, The study of pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods. Computers and Mathematics with Applications, 1998, 35(9), pp.17-24.
    [141] X. Z. Yuan and E. Tarafdar, Non-compact Pareto equilibria for multiobjective games. Journal of Mathematical Analysis and Applications, 1996, 204(1), pp. 156-163.
    [142] D. T. Luc and C. A., Vargas, A saddle-point theorem for set-valued maps, Nonlinear Analysis: Theory, Methods, and Applications, 1992, 18, pp.1-7.
    [143] G. Q. Tian and J. X. Zhou, quasi-variational inequalities without the concavity assumption. Journal of Mathematical Analysis and Applications, 1993, 172(1), pp.289-299.
    [144] J. Kelley, I. Namioka Linear topological space. Springer, New York/Heidelberg/Berlin, 1963.
    [145] E. Michael, A note on paracompact spaces, Proceedings of the American Mathematical Society, 1953, 4(5), pp. 831-838.
    [146] K. Fan, Fixed -point and minimax theorems in locally convex topological linear spaces, Proceedings of the National Academy of Sciences of the U.S.A., 1952, 38, pp.121-126.