染色重组竹制备工艺研究与性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹基纤维复合材料是以纤维化竹单板为基本结构单元按不同纹理方向经热压或者冷压胶合而成的竹质人造板材,因其具有优良的物理力学性能,可控的密度,在户外地板、家居装修材料上已得到了广泛的应用。目前,随着国际市场上对于竹质材料环保性能的认可,以及我国在竹基纤维复合材料制备技术上的突破,室外用重组类竹质材料的需求量与日俱增。开展重组竹质材料染色性能以及耐候性能的系统研究,对于扩展竹基纤维复合材料的应用领域具有极大的促进作用,对提升我国竹基纤维复合材料在市场上的整体竞争力、推广户外用竹基重组类产品、提高其产品的附加值具有重要意义。
     本论文主要以毛竹(Phyflostachys pubescens)为研究对象,以水、醇为介质,采用不同工艺对纤维化竹单板进行染色处理后,以浸渍型酚醛树脂为胶黏剂制备重组竹板材,并分析染色处理对竹基纤维复合材料的表观颜色指标及物理力学性能的影响。通过对染色处理后纤维化竹单板制备的竹基纤维复合材料进行室外自然老化的研究,探讨了室外自然老化与材料表面颜色及尺寸稳定性的关系,揭示了在室外老化环境下竹基纤维复合材料性能随时间变化的规律。主要研究结论如下:
     (1)对采用90℃水染、漂白后75℃醇染与20℃水染三种工艺手段,利用酸性黑2染料染色制备竹基纤维复合材料的物理力学性能研究发现,染色处理工艺采用醇类作为环境介质时,黑色竹基纤维复合材料的静曲强度、弹性模量、水平剪切强度降低,采用升温染色处理工艺方法制备的竹基纤维复合材料的静曲强度、弹性模量小幅降低。剪切强度减小幅度较大。此外,将采用染色处理工艺与未染色工艺制备的竹基纤维复合材料相比较,材料的耐水性能得到了提高。从竹基纤维复合材料的表观颜色来看,随着染色处理采用升温染色与醇溶剂媒介染色,竹基纤维复合材料的表面黑色泽明显加深。与未染色处理材料相比较,材料的明度指数L*值明显减小,表面由亮变暗,总色差值ΔE*ab明显增加。
     (2)对采用90℃水染、漂白后75℃醇染与20℃水染三种工艺手段,利用碱性棕G染料染色制备竹基纤维复合材料的物理力学性能研究发现,染色处理工艺采用醇类作为环境介质时,黑色竹基纤维复合材料的静曲强度、弹性模量与水平剪切强度出现降低,不同处理工艺对它们的影响差异显著。采用升温染色处理工艺方法制备的竹基纤维复合材料的静曲强度有所降低。染色处理工艺方法的改变对弹性模量造成的影响与对静曲强度的影响规律基本一致。此外,将采用染色处理工艺与未染色工艺制备的竹基纤维复合材料相比较,材料的耐水性能减弱。从竹基纤维复合材料的表观颜色来看,随着染色处理采用升温染色与醇溶剂媒介染色,竹基纤维复合材料的表面红色泽都明显加深。与未染色处理材料相比较,材料的明度指数出现减小。总色差值ΔE*ab明显增加。
     (3)竹基纤维复合材料经过3个月的室外自然老化试验过程后,从材料表面的颜色指标变化情况可以看出,随着气候条件的变化,材料表面色泽出现缓慢衰减趋势,随着染色处理温度的增加与室外放置时间时间的延长,L*值与a*、b*值的变化趋势放缓。另外,醇染制备的竹基纤维复合材料表面颜色变化趋势与水染制备的竹基纤维复合材料变化趋势一致规律,变化幅度也与水染竹基纤维复合材料无明显差距。
     不同染色方法制备的竹基纤维复合材料的宽度损失率、厚度损失率、质量损失率随着气候变化而具有一致的增减趋势,染色处理温度的升高有利于改善竹基纤维复合材料稳定性与耐候性。醇染竹基纤维复合材料的宽度、厚度、质量损失率均高于水染竹基纤维复合材料。
     (4)根据物理力学及耐久性能的研究结果,染色处理后竹基纤维复合材料物理力学性能未发生严重损失,材料的室外耐老化性能增强,表观色泽明显改善,具有较高的室外应用潜力。其中采用有机溶剂醇类作为染色环境介质是形成良好的色泽,提高产品尺寸稳定性耐久性能的关键因素。
     (5)在使用酸性黑2与碱性棕G对竹材进行染色时,通过对染色试件的光学显微镜可以清楚的观察到染色竹材横切面与径切面的维管束与薄壁组织细胞的染料上色情况,可以看出,,当采用醇类作为染色环境介质时,由于有机溶剂醇类的染料选择吸着较弱,从光学显微镜拍摄照片中可以观察到染色色泽优于采用水作为染色环境介质时制得的样品色泽。这说明了醇染对于提高竹材细胞的染色强度有着促进作用。
     通过对染色试件的扫描电镜观察,可以清晰地观察到染料分子竹材组织上出现不同程度的聚集分布现象,并且均呈小球状颗粒状附着在细胞腔的内壁以及纤维壁上。用扫描电镜还直观的观察到细胞纹孔与附近染料颗粒的的尺寸及其分布情况,电镜图可以说明酸性染料酸性黑2与碱性染料碱性棕G的颗粒或分子团束通过细胞纹孔进入竹材细胞壁对细胞壁形成上染是可的。
As a bamboo-based panel made from bamboo fibrosis veneer, bamboo-based fiber composite is an economic wood-substitution and can utilize the small-diameter bamboo efficiently. Because of its controllable density and other excellent physical/mechanical properties, bamboo-based fiber composite products have been widely used as indoor flooring furniture and decoration materials. However, with the breakthrough of bamboo-based fiber composite manufacturing technology, the demand for outdoor reconstituted bamboo lumber wasalso increasing and thus the lumber’s durability has become a research focus. Systematic research on the dyeing properties, weather resistance properties of bamboo-based fiber composite will be important for satisfying the demand for product diversification and providing the reference for research and production of bamboo-based fiber composites, and promoting its outdoor application and increase its added value.
     In this paper, Phyflostachys pubescens bamboo fibrosis veneer were chosen as basic raw materials. They are dye-treated with different method, and then reconstituted with phenol-formaldehyde adhesive and hot pressing process. The effect of dye-treatment on the physical, mechanical properties and surface color of bamboo-based fiber composite were studied. The properties of dye-treated bamboo-based fiber composite after outdoor aging test were analysed, the relationship between of outdoor aging test time and surface color, dimensional stability, weight loss rate were also discussed. The main results were summarized asfollows:
     (1) The surface color turned from light to dark as the dye-treated temperature and time increase. After applying the dye-treated method, the MOR and shear strength (parallelloading) are slightly reduced compared with the untreated specimens. The thickness swelling rate and water absorption rate of bamboo-based fiber composites were also increased by the dye treatment. According to the study, we also found that the bamboo fibrosis venee r dyed in alcohol at75°C and those dyed in water at90°C had a higher exhaustion rate than those dyed in water at20°C.
     (2)After3months’ outdoor aging test, the change of color, ΔL*、Δa*、Δb*valuewas declined gradually with the increase of the outdoor aging test time. The changes in dimensional stability and weight loss rate have shown similar trends with the time under different climate conditions.
     (3) According to the study, the physical, mechanical, and color properties of bamboo-based fiber composites (Phyflostachys pubescens) are all influenced by the presence of dyeing treatment. Remarkable colour changes were observed after dye treatment when the bamboo was dyed in alcohol source at75°C, while the MOR, MOE and shear strength (parallel loading) didn’t change much after the dye treatment. Therefore, we think that it is the optimum selection when the bamboo was dyed in alcohol source at75°C.
     (4) According to the study, a remarkable increase in color was observed in the bamboo’s transverse section and radial sections. We can observe that the vascular bundleof bamboo in the transverse section was nearly completely red. From the radial section,
     We can also observed that the color of fibers was nearly completely redder than the color of bamboo parenchymatous cells. In addition, the color of treated in alcohol was slight redder than the color of bamboo treated in water. This result shows that the method of dyeing in alcohol was helpful for improving the color strength.
     (5)The images of dyed raw bamboo culm and untreated raw bamboo culm withbasic grown G and acid black2by SEM are depicted in chapter6. The untreated raw
     bamboo culm sample had a comparably smooth surface, and the image of the dyed raw bamboo culm sample indicate that dye accumulate on the surface of fiber cell as afine spherical particle. The result indicate that dye particle size not larger than1μm. We can also observe the pit diameters in cells of approximately3to10μm, These results can be regarded as indicating that there was a favorable factors for the water-solublebasic dye molecules removed into the cell wall bamboo from pit.
引文
[1]中国森林资源报告第八次全国森林资源清查.北京:国家林业局,2013:1~8
    [2]于文吉.我国高性能竹基纤维复合材料的研究进展.木材工业,2011,25(1):6~8
    [3]徐克仁.染色.北京:中国纺织出版社,2007:1~30
    [4]段新芳.木材颜色调控技术.北京:中国建材工业出版社,2002:65~68
    [5]孙铠.染整工艺原理(第3分册).北京:中国纺织出版社,2010:43~45
    [6]科尔曼.木材学与木材工艺学原理(人造板卷).北京:中国林业出版社,1984:153~154
    [7]何天相.木材细胞壁超微结构.北京:中国林业出版社,1987:123~124
    [8] Abdul H P S, Bhat I U H, Jawaid. Bamboo fibre reinforced biocomposites: A review. Materials&Design,2012,42(0):353~368
    [9] Deng Q, Li S, Chen Y. Mechanical properties and failure mechanism of wood cell wall layers.Computational Materials Science,2012,62(0):221~226
    [10] Walker J F. Basic wood chemistry and cell wall ultrastructure. Primary Wood Processing,2006:23~67
    [11]汪辉雄.纤维染色学.大学图书公司,台中:1982:23~26
    [12] Stamm,A.J. Wood Science; Ronald:new York,1964:68~70
    [13]罗维尔.实木化学.北京:中国林业出版社,1988:29~36
    [14]程万里.染料化学.北京:中国纺织出版社,2010:98~101
    [15]黑木宣彦.染色理论化学.北京:纺织工业出版社,1981:78~79
    [16]何瑾馨.染料化学.北京:中国纺织出版社,2009:156~158
    [17]基太村洋子.木材的染色性(第1报)木材すよひ木材构成成分の染色性.木材学会誌,1971,7:292~297
    [18]基太村洋子.木材的染色性(第2报)木材すよひ木材构成要素の染色性.第23回日本木材学会讲演要旨,1973:178
    [19]基太村洋子.木材用着色剂の分析.木材工业(日),1971,26:24~26
    [20]基太村洋子.木材浸透性染料の选定~酸性染料.木材工业(日),1975,30:21~23
    [21]基太村洋子.酸性染料の木材内部への浸透性.第26回日本木材学会研究发表要旨,1976:234
    [22] Serlio S,Lorenza F,Italo L. Dyeing of sheet of wood by dyes belonging to the “vat” class.1996,EP0719621A1
    [23] Singh A P,Dunningham E A,Plackett D V. Accessing the Performance of a Commercial Wood Stain byTransmission Electron Microscopy. Holzforschung,1995,49(3):255~258
    [24]鲍甫成,胡荣.泡桐木材流体渗透性与扩散性的研究.林业科学,1990,26(3):240~243
    [25]刘一星,李坚.我国110个树种木材表面视觉物理量的综合统计分析.林业科学,1995,(4):353~359
    [26]路秀芝,邓丽艳.对木材单板内部完全染色影响因素分析.林产工业,1990,17(4):30~34
    [27]张翔,申宗圻.木材材色的定量表征.林业科学,1990(4):344~352
    [28]段新芳,李坚.壳聚糖前处理提高木材表面染色效果的研究.木材工业,1997,11(3):11~14
    [29]段新芳,阎昊鹏.毛白杨木材主要组分与酸性染料的相互作用.东北林业大学学报,2000,28(7):50~53
    [30]段新芳,鲍甫成.人工林毛白杨木材解剖构造与染色效果相关性的研究.林业科学,2001,1(37):112~117
    [31]李春生,王金林,王志同等.杨木单板染色染料上染率研究.中国人造板,2006,13(11):9~13
    [32]李春生,王金林.木材染色用计算机配色技术.木材工业,2006,20(6):5~7
    [33]周宇,王金林.抽提处理对杨木单板染色性能的影响.全国生物质材料暨环保型人造板新技术发展研讨会,387~391
    [34]周宇,王金林.杨木单板染色工艺与染料染着量的关系.木材工业,2006,20(4):7~9
    [35]赵广杰,王德洪,李学益等.木材中染料水溶液的渗透过程.东北林业大学学报,1993(5):54~59
    [36]胡淑宜,邓邵平.木材主要化学成分的染色及其对木材纹理的影响.福建林学院学报,1998,(3):242~245
    [37]林金国,邓邵平.福建5种重要木竹材细胞染色性能的研究.建林学院学报,1998,18(2):126~128
    [38]于志明.木材染色技术及染液渗透机理的研究.北京林业大学,1999:1~3
    [39]于志明,赵立.几种阔叶树木材单板的染色工艺研究.北京林业大学学报,2001,23(1):16~18
    [40]于志明,赵立.木材染色过程中染液渗透机理的研究.北京林业大学学报,2002,24(1):79~82
    [41]陈玉和,陆仁书.木材水溶性染料的染色技术.木材工业,1999,(3):27~30
    [42]陈玉和.泡桐单板染色因素对色差的影响.木材工业,2000,(3):2~10
    [43]陈玉和.泡桐木材染色技术及表面活性剂作用机理的研究.东北林业大学,2000:25~26,
    [44]陈玉和.仿黑胡桃薄木染色与贴面技术.林业科技开发,2003,17(1):40~42
    [45]陈桂华.杨木单板染色工艺试验.林业科技开发,2000,(6):38~39
    [46]李宁,罗建举.木材染色处理工艺参数对颜色坚牢度的影响.林产工业,2002,29(5):11~15
    [47]闵锁田,杨海涛,李志洲等.一种木材熏蒸染色方法.2003:CN1424186A
    [48]李勤.木材染色工艺染料补加量计算软件.木材工业,2005,19(4):36~38
    [49]曹龙,郭明辉.活性染料对杨木单板染色后胶合性能的影响.木材工业,2009,23(1):18~20
    [50]管雪梅.木材仿珍贵材染色计算机智能配色技术的研究.东北林业大学,2011:23~24
    [51]刘晓健.杨木和水曲柳单板仿珍染色的研究.东北林业大学,2011:67~68
    [52]吕晓慧.速生杨木材色改良及染色机理研究.中南林业科技大学,2012,45~48
    [53]俞福惠,李兆龙.日本的竹材着色处理技术.今日科技,1986(7):10~11
    [54]吴顺昭.台湾产竹材解剖特性及其与渗透性的关系.国际竹类工业利用研讨会,1992:139~143
    [55]张乐彝.毛竹结构特点与渗透性能探讨.国际造纸,1996,15(1):29~33
    [56]邓邵平.竹材防霉染色处理的初步研究.木材工业,2005,19(5):38~40
    [57]孙照斌,顾炼百.龙竹的常压液体渗透性研究.林产工业,2005,32(1):17~19
    [58]陈玉和,陈章敏.工艺参数对刨切薄竹染色上染率影响的研究.竹子研究汇刊,2008,2(3):49~52
    [59]袁少飞,汪奎宏.染色竹基纤维复合材料材的工艺及性能研究.第五届中国竹业学术大会论文集.2009
    [60]袁少飞,李琴.竹材仿黑檀加压染色工艺研究.竹子研究汇刊,2010,29(4):36~40
    [61]陈勇平,王金林.竹片染色工艺初探.竹子研究汇刊,2011,30(1):36~40
    [62]杜春贵,舒甜甜.毛竹竹片上染率影响因子研究.林业科技,2012,37(3):31~34
    [63]于文吉.我国重组竹产业发展现状与趋势分析.木材工业,2012,26(1):11~13
    [64] Yu Y L, Huang X N, Yu W J. A novel process to improve yield and mechanical performance of bamboofiber reinforced composite via mechanical treatments. Composites Part B.2014,56(1):48~53
    [65]祝荣先,于文吉.风电叶片用竹基纤维复合材料力学性能的评价.木材工业,2012,26(3):7~10
    [66]祝荣先,周月,任丁华,等.制造工艺对竹基纤维复合材料性能的影响.木材工业,2011,25(3):1~3
    [67]于文吉,余养伦,张亚梅.热处理对毛竹竹材颜色变化的影响.木材工业,2009,23(5):5~7
    [68]张亚慧,孟凡丹,于文吉.疏解次数对竹基纤维复合材料性能的影响.木材工业,2011,25(5):1~4
    [69]张亚慧,祝荣先,于文吉等.浸胶竹纤维化单板干燥温度对竹基纤维复合材料性能的影响.木材工业,2011,25(6):1~4
    [70]张春伍.皮革应用化学(皮革工艺及制品专业).高等教育出版社,2002,1:120~128
    [71] Kim Y H, Sun G. Functional finishing of acrylic and cationic dyeable fabrics: intermolecularinteractions. Textile Research Journal,2002,72(12):1052~1056
    [72] Miklecic J, Ka a A, Rajkovi V J. Colour changes of modified oak wood in indoor environment.Journalof Wood and Wood Product,2012,70(1):385~387
    [73] Park Y M, Koo K, Kim S, et al. Improving the colorfastness of poly (ethylene terephthalate) fabricswith the natural dye of Caesalpinia sappan L. Wood extract and the effect of chitosan andlow-temperature plasma. Journal of Applied Polymer Science,2008,109(1):60~166
    [74] Liu H, Yang S, Ni Y. Comparison of dye behavior from aspen hyp: dyes added in the hip manufacturingprocess versus dyes added at the papermaking wet end. Journal of Wood Chemistry and Technology,2010(30):118~128
    [75] Romagnoli M, Segoloni E, Luna M. Wood colour in Lapacho (Tabebuia serratifolia): chemicalcomposition and industrial implications. Wood Science and Technology,2013,47(4):701~716
    [76] Risti N, Jovan i P, Canal C, et al. Influence of corona discharge and chitosan surface treatment ondyeing properties of wool. Journal of Applied Polymer Science,2010,117(5):2487~2496
    [77] Martina B S, Fischer T C, Nguyen A, et al. Effects of thermal modification on the properties of twovietnamese bamboo species. Part II: Effects on chemical composition. BioResources,2012,8(1):981~993
    [78] Nguyen T C, Wagenführ A, Phuong L X, et al. Effects of thermal modification on the properties of twoVietnamese bamboo species. Part I: Effects on physical properties, BioResources,2012,7(4):5355~5365
    [79] Yildiz S, Yildiz U C, Tomak E D. The effects of natural weathering on the properties of heat treatedalder wood. BioResources,2011,6(3):2504~2521
    [80] Qin L, Yu W J. Research on surface color, properties of thermo treated reconstituted bamboo lumberafter artificial weathering test. Advanced Materials Research,2009,1395~1398
    [81] Zhang H Y, Liu J, Wang Z Q, et al. Mechanical and thermal properties of small diameter originalbamboo reinforced extruded particleboard. Materials Letters,2013,100(1):204~206
    [82] Tenorio C, Moya R, Quesada-Pineda, H J. Kiln drying of Acacia mangium wood: colour shrinkage,warp, split and check in dried lumber. Journal of Tropical Forest Science,2012,24(1):125~139
    [83] Qin L, Yu Y L, Yu W J. Research on properties of reconstituted bamboo lumber made by thermo-treatedbamboo bundle curtains. Forest Products Journal,2012(62):545~550
    [84] Zhang H Y, Liu J, Wang Z Q, et al. Mechanical and thermal properties of small diameter originalbamboo reinforced extruded particleboard. Materials Letters,2013,100(1):204~206
    [85] Zhang Y M, Yu Y L, Yu W J. Effect of thermal treatment on the physical and mechanical properties ofPhyllostachys pubescen bamboo. European Journal of Wood and Wood Products,2013,71(1):61~67
    [86] Zhang Y M, Yu W J, Zhang Y H. Effect of steam heating on the color and chemical properties ofneosinocalamus affinis bambooJournal of Wood Chemistry and Technology,2013,33(4):235~246
    [87] Arai K, Nakajima K. Ribbon-like variegation of pinus radiata using the adsorption of basic dyes in thecapillary penetration process III. Creating radial and/or tangential variations of color. MokuzaiGakkaishi,2010,56(5):347~354
    [88] Dogu A D, Grabner M. A staining method for determining severity of tension wood. TurkishJournal ofAgriculture and Forestry,2010,34(5):381~392
    [89] Du H, Wang W H, Wang Q W. Effects of pigments on the UV degradation of wood-flour/HDPEcomposites. Journal of Applied Polymer Science,2010,118(2):1068~1076
    [90] Guan X M, Guo M H. Study of the influence of anatomical characteristics on dyeing effects ofplantation pinus sylvestnis var. mongolica litv.veneer. Advanced Materials Research,2010:1270~1274
    [91] Tudor D, Robinson S C, Cooper P A. The influence of pH on pigment formation by lignicolous fungi.International Biodeterioration and Biodegradation,2013,80(1):22~28
    [92] Chang S T. Effect of light wavelength on the degradation of wood. Forest Products Journal.1985,4(2):118~123
    [93] Barta E, Tolvaj L, Papp G. Wood degradation caused by UV~laser of248nm wavelength. Holz als RohWerkstoff,1998,56(5):318
    [94] Pandey K K, Vuorinen T. UV resonance Raman spectroscopic study of photodegradation of hardwoodand softwood lignins by UV laser. Holzforschung,2008,62(6):183~188
    [95] Hon D N. Weathering reactions and protection of wood surfaces. Journal of Applied Polymer Science,1983,37(1):845~864
    [96] Horn B A, Qiu J, Owen N L, et al. FT-IR Studies of weathering effects in western red cedar andsouthern pine. Society for Applied Spectroscopy,1994,48(6):649~768
    [97] Anderson E L, Pawlak Z, Owen N L, et al. Infrared studies of wood weathering. Part I: Softwoods.Applied Spectroscopy,1991,45(4):641~647
    [98] Anderson E L, Pawlak Z, Owen N L, et al. Infrared studies of wood weathering. Part II: Hardwoods.Applied Spectroscopy.1991,45(4):648~652
    [99] Krishna K.Pandey.Study of the effect of photo-irradiation on the surface chemistry of wood. PolymerDegradation and Stability.2005,90(1):9~20
    [100] Wang X Q, Ren H Q. Comparative study of the photo-discoloration of moso bamboo(Phyllostachyspubescens Mazel) and two wood species. Applied Surface Science,2008,254(21):7029~7034
    [101] Sandermann W, Schlumbom F. On the effect of filtered ultraviolet light on wood. Part II: Kind andmagnitude of color difference on wood surfaces. Holz Roh Werkstoff,1962,20(8):285~291
    [102] Yoshimoto T, Samejima M. Rengas wood extractives relating to light induced reddening. MokuzaiGakkaishi,1977,23(11):601~604
    [103] Agarwal U P, McSweeny J D. Photoyellowing of thermomechanical pulps: Looking beyond a carbonyland ethylenic groups as the initiating structures. Journal of Wood Chemistry and Technology,1997,17(1&2):1~26
    [104] Masanori K, Takato N. Artificial weathering of tropical woods. Part1: Changes in wettability.Holzforschung,2004,58:552~557
    [105] Morgan J W, Orsler R J. The chemistry of color changes in wood.Ⅰ.The significance of stilbenes.Holzforschung,1968,22(1):11~16
    [106] Suchsland O. The swelling and shrinking of wood: a practical technological primer. madison, ForestProducts Society,2004:234~239
    [107] Yutaka K, Makoto K, Sam W. Violet light causes photodegradation of wood beyond the zone affectedby ultraviolet radiation. Holzforschung,2007,61:23~27
    [108] Alexpoulos J. Accelerated aging and outdoor weathering of aspen waferboard. Forest Products Jounal,1992,42(2):15~22
    [109] Cha M Y, Lee K H, Kim Y S. Micromorphological and chemical aspects of archaeological bamboosunder long-term waterlogged condition. International Biodeterioration&Biodegradation,2014,86(0):115~121
    [110] Phong N T, Gabr M H, Okubo K. Enhancement of mechanical properties of carbon fabric/epoxycomposites using micro/nano-sized bamboo fibrils. Materials&Design,2013,47(0):624~632
    [111] Yu Y, Jiang Z H, Fei B H. An improved microtensile technique for mechanical characterization of shortplant fibers: a case study on bamboo fibers. Journal of Materials Science,2011,46(3):739-746
    [112] Bond J, Donaldson L, Hill S. Safranine fluorescent staining of wood cell walls.Biotech Histochem,2008,83(3):161~171
    [113] Kim J S, Lee K H, Cho C H, et al. Micromorphological characteristics and lignin distribution inbamboo (Phyllostachys pubescens) degraded by the white rot fungus Lentinus edodes. Holzforschung,2008,62(4):481~487
    [114] Pouzoulet J, Jacques A, Besson X, et al. Histopathological study of response of Vitis vinifera cv.Cabernet Sauvignon to bark and wood injury with and without inoculation by Phaeomoniellachlamydospora. Phytopathologia Mediterranea,2013,52(2):313~323
    [115] Sint K M, Adamopoulos S, Koch G, et al. Wood anatomy and topochemistry of Bombax ceiba L. andBombax insigne Wall. BioResources,2013,8(1):530~544
    [116] Wahab R, Mustafa M T, Salam M A, et al. Potential and structural variation of some selected cultivatedbamboo species in peninsular Malaysia. International Journal of Biology,2012,4(3):102~116
    [117]韦双颖,顾继友,孟黎鹏等.桦木单板芯表层染色工艺参数的遴选.东北林业大学学报,2007,35(4):34~37