轻、中、重度视神经挫伤的动物模型制作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     外伤性视神经病变(Traumatic optic neuropathy,TON)是颅脑、眼眶和面部外伤严重的并发症,伤后视力损害严重,常遗留永久性视力障碍。长期以来,关于TON的治疗一直存在着争议。研究发现,损伤程度的差异是决定治疗效果的重要因素。而建立规范可靠、方便易行、可重复的不同程度量化损伤模型,可为深入研究TON的治疗机制提供重要前提。
     以往的外伤性视神经损伤模型仅是定性损伤或是半定量损伤,而缺乏统一标准的量化模型。本实验应用三种压力恒定的血管夹拟造成兔轻、中、重度视神经损伤模型,作为视神经损伤治疗效果评价的动物模型。
     材料和方法
     1动物与分组
     成年健康白兔48只,雌雄兼用,体重2.0-2.5kg,眼部检查正常。随机抽取12只,左右眼随机分为正常对照组和假伤对照组,剩余36只随机分为损伤Ⅰ组、损伤Ⅱ组、损伤Ⅲ组。
     2夹持力和致伤强度测定
     精确测定和计算血管夹的夹持力和致伤强度(平均冲量)。三种血管夹(小、中、大号)夹持力分别为:32g、98g、148g,平均冲量分别为:397.52g.s/mm~2、1209.88g.s/mm~2、1549.74g.s/mm~2。
     3动物模型制作
     使用小、中、大号三种显微血管夹夹持三个损伤组动物一侧眼视神经各20s,分别造成损伤Ⅰ组、损伤Ⅱ组、损伤Ⅲ组不同程度损伤模型;假伤组仅分离暴露一侧眼视神经而不施加夹持;另一眼作为正常对照。
     4观察项目和时间点
     伤后3d、1w及2w观察视神经损伤局部的组织病理学改变、进行视神经Glee银染或丽春红G—亮绿染色后视神经纤维及髓鞘积分光密度测定;以及视网膜的形态学观察、视网膜神经节细胞(Retinal Ganglion Cell,RGC)计数、RGC凋亡检测和RGC凋亡率计算。伤后1h、6h、1d、3d、1w行F-VEP检查,观察5组间P2波潜伏期和波幅变化。
     5统计学分析
     数据运用单因素方差分析和t检验进行统计学处理。
     结果
     1视神经损伤局部的病理学观察结果
     1.1视神经损伤局部的HE染色和组织形态学观察
     正常组及假伤组视神经纤维排列密集规则,染色均匀,有少量神经胶质细胞。损伤Ⅰ组与正常组相比改变轻微。损伤Ⅱ组3d时视神经水肿,轴心区有梗死灶,胶质细胞排列紊乱,随时间推移,改变加重。损伤Ⅲ组3d时视神经水肿明显,有多处坏死,随时间推移,病变迅速发展,2w时神经束结构消失。各时间点损伤Ⅲ组改变较损伤Ⅱ组严重。
     1.2视神经纤维Glee浸银染色和积分光密度测定结果
     各时间点假伤组视神经形态与正常组基本一致;视神经纤维积分光密度与正常组比较,无显著性差异(P>0.05)。各时间点损伤Ⅰ组视神经形态与正常组相似;视神经纤维积分光密度较正常组降低,但无显著性差异(P>0.05)。损伤Ⅱ组及损伤Ⅲ组3d时视神经纤维稀疏扭曲,随时间推移,改变渐明显,各时间点损伤Ⅲ组较损伤Ⅱ组改变明显;两组在各时间点视神经纤维积分光密度均较正常组降低,差异有显著性(P<0.05),随时间推移,视神经纤维积分光密度进行性降低。在同一时间点,各损伤组之间视神经纤维积分光密度比较,差异有非常显著性(P<0.01)。
     1.3视神经切片丽春红G—亮绿染色和髓鞘积分光密度测定结果
     各时间点假伤组视神经形态与正常组基本一致;髓鞘积分光密度与正常组比较,无显著性差异(P>0.05)。各时间点损伤Ⅰ组视神经形态与正常组相似;髓鞘积分光密度较正常组降低,但无显著性差异(P>0.05)。损伤Ⅱ组及损伤Ⅲ组3d时有髓鞘脱失,随时间推移,改变渐明显,2w时损伤Ⅲ组大量髓鞘崩解,神经束结构基本消失,各时间点损伤Ⅲ组较损伤Ⅱ组改变明显;两组在各时间点髓鞘积分光密度均较正常组降低,差异有显著性(P<0.05),随时间推移,髓鞘积分光密度进行性降低。在同一时间点,各损伤组之间髓鞘积分光密度比较,差异有非常显著性(P<0.01)。
     2视网膜的病理学观察结果
     2.1视网膜HE染色组织形态学观察
     正常组及假伤组视网膜层次清晰,节细胞呈单层排列,整齐密集,胞核清楚,核膜光滑完整。损伤Ⅰ组与正常组相比改变轻微。损伤Ⅱ组3d时RGC出现核固缩,染色加深,数量减少;随后视网膜各层变薄,病变随时间进行性加重。损伤Ⅲ组3d时大量RGC出现核固缩,染色加深,RGC排列明显稀疏,随时间进行病变迅速加重。各时间点损伤Ⅲ组较Ⅱ组病变明显。
     2.2 RGC计数
     各时间点假伤组RGC数与正常组比较,无显著性差异(P>0.05)。各时间点损伤Ⅰ组RGC数较正常组减少,但无显著性差异(P>0.05)。各时间点损伤Ⅱ组及Ⅲ组RGC数与正常组相比,均明显减少,差异有非常显著性(P<0.01),RGC数随时间进行性减少。在同一时间点,各损伤组之间RGC数比较,差异有显著性(P<0.05)。
     2.3 RGC凋亡的检测和平均凋亡率
     正常组及假伤组视网膜切片未见凋亡细胞。各损伤组的凋亡细胞主要位于GCL。损伤Ⅰ组有少量凋亡细胞,各时间点RGC凋亡率之间无显著性差异(P>0.05)。损伤Ⅱ组凋亡细胞随时间进行性增多,各时间点RGC凋亡率之间差异有显著性(P<0.05)。损伤Ⅲ组3d时出现大量凋亡细胞,RGC凋亡率随时间进行性增高,各时间点RGC凋亡率之间差异有显著性(P<0.05)。在同一时间点,各损伤组之间RGC凋亡率有非常显著性差异(P<0.01)。
     3 F-VEP检测结果
     正常白兔P_2波潜伏期及波幅分别为(71.72±3.66)ms、(20.53±4.15)μv。各时间点假伤组与正常组的P_2波潜伏期和幅值比较,差异无显著性(P>0.05)。损伤后1h,各损伤组均出现P_2波潜伏期延迟,幅值降低,与正常组相比差异均有显著性(P<0.05)。损伤Ⅰ组1d时P_2波潜伏期及幅值基本恢复正常(P>0.05)。损伤Ⅱ组及损伤Ⅲ组,随时间推移,P_2波潜伏期进行性延迟,幅值进行性降低。
     结论
     1应用压力为32g、98g、148g的显微血管夹夹持兔视神经20s,可制作稳定、可重复的轻、中、重度视神经损伤动物模型。
     2轻度损伤组伤后视神经形态学改变轻微,无显著病理改变,视神经传导功能良好;中度损伤组伤后视神经形态学改变明显,随时间推移损伤进行性加重,但视神经有一定传导功能;重度损伤组伤后视神经迅速出现不可逆性溃变,伤后视神经传导功能完全丧失。
     3中度视神经损伤模型可作为观察外伤性视神经病变的治疗方法和效果的的动物模型。
Objective
     Traumatic optic neuropathy(TON), as a severe complication of brain, orbit and prosopo injury, often results in serious vision deterioration even permanent visual loss. For a long time, there have been arguments about the treatments of TON. The difference of injury degrees were recognized as the key for the reaction of treatment. Establishing a reliable, convenient and reproducible animal model with optic nerve injury which can be graded will be beneficial for the research of effects of different treating methods.
     Previous animal models of optic nerve injury were qualitative or semi-quantitative, there was not a unified standard calibrated model. In this experiment, mild, medium and severe optic nerve crush injury models were made in rabbits by using 3 kinds of vascular clamp of permanent pressure, as the animal model for the evaluation of effects of different treating methods.
     Materials and Methods
     1 Animal and grouping
     48 healthy adult albino rabbits without eye diseases were divided into 5 groups randomly: normal control group, false injury group, injury group I , injury group II, and injury group III. Among of them, 24 eyes of 12 rabbits were randomly assigned as the normal control group and the false injury group, another 36 rabbits were divided into 3 injury group, 12 rabbits in each group. Optic nerve crush injury was only made in unilateral eye of each animal.
     2 Measurement about pressure and injury intensity (average impulse) of vascular clamp
     The pressure power of the vascular clamp was measured by using the hang heavy tensile force, and the injury intensity (average impulse) was calculated according to the area of vascular clamp and the pressure power. The pressure power of small, moderate and big vascular clamp were respectively 32g, 98g and 148g, and the average impulse were 397.52g.s/mm~2, 1209.88g.s/ mm~2 and 1549.74 g.s/mm~2, respectively.
     3 Establishment of animal model
     The crush injury of optic nerve was made by using different vascular clamp in every group for twenty seconds, 32g for injury group I, 98g for injury group II and 148g for injury group III. The rabbits of false injury group only received optic nerve dissociation and exposure without optic nerve crush.
     4 Observation items and time
     Pathologic changes of the optic nerve crush injury were examined at 3d, 1w and 2w after injury. The changes of tissue morphology of optic nerve were observed by routine HE stain, the integral light density of optic nerve fiber and myelin were measured by using Glee-sliver stain and ponceau red G-light green stain.
     At 3d, 1w and 2w after injury, pathologic changes of retina and the apoptosis of RGC were examined by routine HE stain and terminal deoxynucleotidyl transferase mediated DIG-dUTP nick end labeling method (TUNEL). The number of RGC and the rate of apoptotic RGC were calculated.
     F-VEP was examined at 1h, 6h,1d, 3d and 1w after injury, the latency and amplitude of P_2 wave were analyzed.
     5 Statistical analysis
     All the data were analyzed statistically by ANOVA and t test.
     Results
     1 Focal pathological changes of optic nerve crush injury
     1.1 HE stain and focal morphological observation of optic nerve crush injury
     In normal group and false injury group, the optic nerve fiber was intensive, regular and stained evenly.
     No obvious changes were found in injury group I at 3d, 1w and 2w after injury.
     Optic nerve edema and focal infarct were seen in injury group II at 3d after injury. These changes deteriorated gradually within 2w.
     Optic nerve edema and infarct in injury group III were more obvious than that in injury group III. At 2w after injury, the frame of optic nerve bundles disappeared. The pathological change of injury group III showed more serious than injury group II in any time.
     1.2 Glee-sliver stain and the examination of integral light density of optic nerve fiber
     No significant difference of the integral light density of optic nerve fiber was found among the normal control group, the false injury group and injury group I (P >0.05).
     Optic nerve fiber of injury group II and III were sparse. The value of integral light density was lower at 3d after injury. Pathological change deteriorated gradually within 2w. At each point, the change in injury group III was more obvious than that in injury group II. At each point, the integral light density of optic nerve fiber in injury group II and IIIwere lower than normal group(P<0.05), and degraded gradually. At the same point, the difference of the integral light density of optic nerve fiber among these injury group was statistically significant(P<0.01).
     1.3 Ponceau red G-light green stain and the examination of integral light density of myelin
     The morphology of optic nerve of false injury group and injury group I were nearly identical with the normal group, and the difference of the integral light density of myelin showed no statistical significance, when we compared respectively false group and injury group I with normal group (P > 0.05). At 3d after injury, demyelination was observed in injury group II and III. These changes deteriorated gradually with the lapse of time. At each point, the change in injury group III was more obvious than that in injury group II. At each point, the integral light density of myelin in injury group II and III were lower than normal group(P<0.05), and degraded gradually. At the same point, the difference of the integral light density of myelin among these injury group was statistically significant(P< 0.01). 2 pathological observation of retina
     2.1 HE stain and morphological observation of retina
     In normal group and false injury group, the layers of retina were clear. Distribution of RGC was regular intensively, nucleus was distinct. The changes of injury group I were slight. At 3d after injury, nucleus pyknosis of RGC was seen in injury group II and injury group III, then RGC loss were seen within 2w, and the thickness of retina become thin. These pathological changes were more obvious in injury group III. With the lapse of time, these changes deteriorated quickly. At each point, the changes of injury group III were more serious than the injury group II.
     2.2 Count of RGC
     At each point, the number of RGC in false injury group and injury group I were approximate to the normal control group(P>0.05). The number of RGC both in injury group II and III were fewer than normal group(P<0.01), and count of RGC decreased continuously. At the same point, the difference of count of RGC among each injury group showed statistically significant(P<0.05).
     2.3 Examination of RGC apoptosis and rate of RGC apoptosis
     There were few apoptotic RGC in normal control group and false injury group. In each injury group, apoptotic RGC distributed in ganglion cell layer.
     In injury group I , there was less apoptotic RGC at each point, but the difference of the rate of apoptotic RGC showed no statistically significant(P>0.05) at each time point.
     In injury group II, the rate of apoptotic RGC increased gradually within 3d~2w after injury, however, the rate of apoptotic RGC among different time points showed statistically significant(P<0.05).
     In injury group III, there were more apoptotic RGC at 3d after injury, the number of apoptotic RGC increased gradually within 2w, and among different time points, the rate of apoptotic RGC showed statistically significant(P<0.05).
     At the same point, the difference among different injury groups showed extremely statistical significance.
     3 The result of F-VEP
     In normal group, the latency of P_2 wave was (71.72±3.66)ms, and the amplitude of P_2 wave was (20.53±4.15)μv. At each point, the difference of latency and amplitude between false injury group and normal group showed no statistical significance(P> 0.05).
     The delay of P_2 wave latency was found in all three injury groups at 1h after injury compared with normal group (P>0.05). and the amplitude was lower than normal group(P<0.05).
     At 1d after injury, latency and amplitude of injury group I had recovered to normal(P>0.05). But latency and amplitude of injury group II and III deteriorated gradually within 2w.
     Conclusions
     1 Stable and reproducible animal model of mild, medium and severe optic nerve crush was established by using the vascular clamp which pressure power was 32g, 98g and 148g, respectively.
     2 In mild injury group, changes of morphology were slight, and visual function was fine. In medium injury group, pathological changes of optic nerve were obvious, and the injury deteriorated gradually within 2w observing time, however, part visual function remained. In severe injury group, changes of morphology were irreversible sooner after injury, and the visual function lost completely
     3 The medium optic nerve crush model can be used to observe the therapy effect of different treatment methods of TON.
引文
1. Carta A, Ferrigno L, Salvo M, et al. Visual prognosis after indirect traumatic optic neuropathy[J]. J Neurol Neurosurg Psychiartry, 2003, 74(2): 246-248
    2. Spoor TC, Hartel WC, Lensink DB, et al. The treatment of traumatic optic neuropathy with corticosteroids. Am J Ophthalmol, 1990, 110(6): 665-669
    3. Tsai RK, Wang HZ, shen MW. Cpality of neurite regeneration of retinal explant from audult rat after optic nerve injury[J]. Kao Hsiung I Hsueh Ko Hsueh Tsa Chih (Kaohsiung J Med Sci), 1998, 14(5): 247-249
    4. Perry JD. Treatment of traumatic optic neuropathy remains controversical [J]. Arch Otolaryngol Head Neck Surg, 2004, 130(8): 1000-1001.
    5. Kudlachev AV, Goncharov GG, Ivanov PI, et al. Traumatic optic neuropathy—the present state [J]. Klin Monatsbl Augenheilkd, 2004, 221(8): 701-705
    6. Mcnab AA. Orbit and optic trauma. World J Surg, 2001, 25(8): 1084-1088
    7. Levin LA, Beck LW, Joseph MP, et al. The treatment of traumatic optic neuropathy: the international optic nerve trauma study. Ophthalmology, 1999, 106(7): 1268-1277
    8.李旭,陈君,王永照,等.经颅视神经管减压治疗视神经损伤.中国临床神经外科杂志,2006,11(4):241-242
    9.张大良,张红萍,剪京芬.新西兰兔视神经减压术后视网膜及视神经GAP-43mRNA的表达及意义.山东大学耳鼻喉眼学报,2005,19(5):296-299
    10. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, et al. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion calls. Invest Ophthalmol Vis Sci, 2001, 42(5): 975-982
    11. Levkovitch-Verbin H, Quigley HA, Martin KRG, et al. A Model to Study Differences between Primary and Secondary Degeneration of Retinal Ganglion Cells in Rats by Partial Optic Nerve Transection. Investigative Ophthalmology & Visual Science, 2003, 44(8): 3388-3393
    12. Gellrich NC, Schimming R, Zerfowski M, et al. Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats. Br J Ophthalmol, 2002, 86(2): 233-237
    13. Schwartz M. Optic nerve crush: protection and regeneration. Brain Res Bull, 2004, 62(6): 467-471
    14. Klocker N, Zerfowski M, Gellrich NC, et al. Morphological and functional analysis of an incomplete CNS fiber tract lesion: graded crush of the rat optic nerve. J Neurosci Methods, 2001, 110(1-2): 147-153
    15.孙晓川.轴突细胞骨架对非中断性轴索损伤的反应及在亚低温治疗后的早期改变.中华创伤杂志,2000,160(10):585-588
    16. Gennarelli TA, Thibault LE, Tipperman R, et al. Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain. J Neurosurg, 1989, 71(2): 244-253
    17. Okada T, Ichikawa M, Tokita Y, et al. Intravitreal macrophage activation enables cat retinal ganglion cells to regenerate injured axons into the mature optic nerve. Exp Neurol, 2005, 196(1): 153-163
    18.蔡莉,惠延年,马吉献,等.兔视神经挫伤的实验研究.眼外伤职业眼病杂志,2000,22(2):125-127
    19.李志刚,朱豫.视神经损伤动物模型的研制方法.河南实用神经疾病杂志,2004,7(2):32-33
    20. Yoles E, et al. NMDA--recptor antagonize protects neurons from secondary degeneration after partial optic crush. J Neurotrauma, 1999, 14(9): 665-675
    21.朱豫,黄冬莲,钟建胜,等.兔眼眶动脉血管铸型和灌注解剖.眼科新进展,1998,18(1):5-8
    22. Sarikcioglu L, Demir N, Demirtop A. A standardized method to create optic nerve crush: Yasargil aneurysm clip. Experimental Eye Research, 2007, 84(2): 373-377
    23.张效房,杨进献,主编.眼外伤学[M].郑州:河南医科大学出版社,1997,97
    24.汤景乾,李亚楠,梁圣彬,等.眼外伤性视神经挫伤患者的早期视觉诱发电位分析[J].临床神经电生理学杂志,2003,12(4):211-213.
    25. Cerovski B, Sikic J, Juri J, et al. The role of visual evoked potentials in the diagnosis of optic nerve injury as a result of mild head trauma. Coll Antropol, 2001,25:47-55
    26.吴乐正,吴德正,主编.临床视觉电生理学[M].北京:科学出版社,1999,330-349
    27. Agarwal A, Mahapatra AK. Visual outcome in optic nerve injury patients without initial light perception. Indian J Ophthalmol, 1999, 47(4): 233-236
    28. Holmes MD, Sires BS. Flash visual evoked potentials predict visual outcome in traumatic optic neuropathy. Ophthal Plast Reconstr Surg, 2004, 20(5): 342-346
    29.蔡莉,惠延年,郭守一.严重视神经损伤后视觉诱发电位变化分析.眼外伤职业眼底杂志,1999,21(5):407-408
    30. Greenberg RP, Becker DP, Miller JD, et al. Evaluation of brain function in severe human head trauma with multimodality evoked potentials. Part 2: Localization of brain dysfunction and correlation with posttraumatic neurological conditions. J Neurosurg, 1977, 47(2): 163-177
    31.邹倩,叶剑,冯联兵.大鼠视神经损伤致视网膜病变的病理形态学定量分析.实用医药杂志,2005,22(6):526-528
    32. Bartus RT, Chen EY, Lynch G, et al. Cortical ablation induces a spreading calcium-dependent, secondary pathogenesis which can be reduced by inhibiting calpain. Exp Neurol, 1999, 155(2): 315-326
    33.袁洪峰,刘少章,贺翔鸽.颅脑撞击伤早期视神经超微结构的改变.中华眼底病杂志,2005,21(1):41-43
    34.孔祥梅,孙兴怀.大鼠视神经钳夹伤动物模型的病理学观察.中国眼耳鼻喉科杂志,2005,5(2):76-78
    35. Tomei G, Spagnoli D, Ducati A, et al. Morphology and neurophysiology of focal axonal injury experimentally induced in the guinca pig optic nerve. Acta Neuropathol, 1990, 80(5): 506-513
    36. Maxwell WL, Irvine A, Graham, et al. Focal axonal injury: the early axonal response to stretch. J Neurocytol, 1991, 20(3): 157-164
    37.卢海涛,孙晓川,郑履平.星形胶质细胞对中枢神经损伤再生的影响.山西医科大学学报,2003,3(3):285-287
    38. Sellés NI, Ellezam B, Fajardo R, et al. Retinal Ganglion Cell and Nonneuronal Cell Responses to a Microcrush Lesion of Adult Rat Optic Nerve. Experimental Neurology, 2001, 167(2): 282-289
    39.孙瑞霞,张东杲,马志中.兔视神经间接损伤后视觉电生理及视神经超微结构观察.中国实用眼科杂志,2002,20(11):861-864
    40.张世杰,王传富,孙为荣,等.视神经挫伤轴浆运输和超微结构变化的实验研究.眼科研究,2003,21(6):585-587
    41. Sable BA, Aschoff A. Functional Recovery and Morphol6gical Changes after injury to the Optic nerve. Neuropsychobiology, 1993, 28(1-2): 62-65
    42.易少华,吴红色,邓伟连,等.视神经挫伤后视网膜形态学和Bcl-2/Bax表达.眼外伤职业眼病杂志,2006,28(5):321-324
    43. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267(5203): 1456-1462
    44. Bien A, Seidenbecher CI, Bockers TM. Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma, 1999, 16(2): 153-163
    45. Northington FJ, Ferriero DM, Graham EM, et al. Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis, 2001, 8(2): 207-219
    46. Kurokawa T, Katai N, Shibuki H, et al. BDNF diminishes caspase-2 but not c-jun immunoreactivlty of neurons in retinal ganglion celll layer after transient isehemia[J]. Invest Opthalmol Vis Sic, 1999, 40(12): 3006-3011
    47.王晓春.兔视神经损伤后视网膜及视神经iNOSmRNA的表达及意义.山东医药,2006,46(4):30-31
    48. Lain TT, Abler AS, Tso MM, et al. Apoptosis and caspases after ischemia-reperfusion injury in rat retina [J]. Invest Ophthalmol Vis Sci, 1999, 40 (5): 967-975
    49.刘太平,赵君晖,高鹰.视神经压迫性损伤后视网膜神经节细胞凋亡的研究.中国综合临床,2004,20(8):755-756
    50.胡爱莲,孙葆忱,李辽青,等.大鼠视神经夹挫伤视网膜视神经病理学动态观 察及功能检测.眼科,2003,12(6):357-360
    51.白桦,朱豫,周丽君,等.大剂量地塞米松治疗外伤性视神经病变的研究[J].眼外伤职业眼病杂志,2004,26(4):223
    52.王琦,刘太平,王林洪.地塞米松对视神经视网膜损伤的保护机制.华北煤炭医学院学报,2006,8(1):51-53
    53.吕红彬,罗清礼,张勤修,等.视神经管减压术治疗外伤性视神经损伤的手术时机——国内文献分析.国际眼科杂志,2006,6(1):138-140
    54. Mahapatra AK, Tandon DA. Traumatic optic neuropathy in children: a prospective study. Pediator neurosurg, 1993, 19(1): 34-39
    55. McNab AA. Orbit and optic nerve trauma. World J Surg, 2001, 25(8): 1084-1088
    56. Yang WG, Chen CT, Tsay PK, et al. Outcome for traumatic optic neuropathy—surgical versus nonsurgical treatment[J]. 2004, 52(1): 36-42
    57. Ansari MH. Blindness after facial fractures: a 19-year retrospective study. J Oral Maxillofac Surg, 2005, 63(2): 229-237
    58. Duncker GI. Can the optic nerveregenerate after trauma? Klin Monatsbl Augenheilkd, 2004, 221 (8): 683-685
    1. Hsieh CH, Kuo YR, Hung HC, et al. Indirect traumatic optic neuropathy complicated with periorbital facial bone fracture. J Trauma, 2004, 56(4): 755-801
    2. Carta A, Ferrigno L, Salvo M, et al. Visual prognosis after indirect traumatic optic neuropathy[J]. J Neurol Neurosurg Psychiartry, 2003, 74(2): 246-248
    3. Spoor TC, Hartel WC, Lensink DB, Et al. The treatment of traumatic optic neuropathy with corticosteroids. Am J Ophthalmol, 1990, 110(6): 665-669
    4.朱豫,张效房.深入开展外伤性视神经病变的诊断及治疗研究[J].中华眼科杂志,2002,38(11):641-643.
    5.李源,许庚,谢民强等.外伤性视神经病变外科治疗的意义及疗效[J].中华耳鼻喉科杂志,2002,37(4):206-209.
    6. Thale A, Jungmann K, Paulsen F, et al. Morphological studies of the optic canal. Orbit, 2002, 21(2): 131-137
    7. Foster BS, March GA, Lucarlli M J, et al. Optic nerve avulsion. Arch Ophthalmol, 1997, 115(5): 623-630
    8.陶存山,卢亦成,楼美清,等.视神经管的显微外科解剖.中国微侵袭神经外科杂志,2005,10(8):363-365
    9. Uemura T, Iisaka Y, Kazuno T, et al. Optic canal decompression--the significance of the simultaneous optic canal sheath incision (author's transl). Neurol Med Chir (Tokyo), 1978, 18(2 pt 2): 151-157
    10.李健.后组筛窦及其毗邻结构解剖学研究[J].中华耳鼻喉杂志,1991,26(3):138-141
    11. Lang J. Surgical anatomy of the hypothalamus. Acta Neurochir (Wien), 1985, 75(1-4): 5-22
    12.刘金军,刘承杏,范艳,等.眼眶的应用解剖研究进展.局解手术学杂志,2003.12(5):376-378
    13. Chou PI, Sadum AA, Lee H. Vasculature and morphometry of the optic canal and intracanalicular optic nerve[J]. J Neuro Ophthalmol, 1995, 15(3): 185-190
    14. Klocker N, Zerfowski M, Gellrich NC, et al. Morphological and functional analysis of an incomplete CNS fiber tract lesion: graded crush of the rat optic nerve[J]. J Neurosci Methods, 2001, 110(1-2): 147-153
    15. De Wecker L. On incision of the optic nerve in case of neuroretinitis. Rep Int Ophthalmol Congr, 1872, 4: 11-14
    16. Aldo Cossl Stamm, Wolfgang Draf. Micro-endoscopic surgery of the paranasal sinuses and the skull base[M]. Berlin. Springer, 2000, 441-449
    17. Joos KM, Mawn LA, Shen JH, Casagrande VA. Chronic and acute analysis of optic nerve sheath fenestration with the free electron laser in monkeys. Laser Surg Med, 2003, 32(1): 32-41
    18.李娜,张念凯,鞠建宝.鼻内镜下视神经管减压术治疗外伤性视力障碍14例报告.临床耳鼻咽喉科杂志,2003,17(4):205-206 Li N,Zhang N,Ju J.Endoscopic optic nerve decompression in traumatic visual loss.Lin Chuang Er Bi Yan Hou Ke Za Zhi,2003,17(4):205-206
    19. Frenkel RE, Spoor TC. Diagnosis and management of traumatic optic neuropathies. Adv Ophthalmic Plast Reconstr Surg, 1987, 6: 71-90
    20. Gellrich NC. Controversies and current status of therapy of optic nerve damage in eraniofacial traumatology and surgery. Mund Kiefer Gesiehtsehir (German), 1999, 3(4): 176-194
    21. Anderson RL, Panje WR, Gross CE. Optic nerve blindness following blunt forehead trauma. Ophthalmology, 1982, 89(5): 445-455
    22. Lanning BK, Richard BM, Swaid NS. Indirect injury of optic nerve. Neurosurgery, 1984, 14(6): 756-764
    23. Thankar A, Mahapatra AK, Tandon DA. Delayed optic nerve decompression for indirect optic nerve injury. Laryngoscope, 2003, 113(1): 112-119
    24. Joseph MP, Lessell S, Rizzo J, et al. Extracranial optic nerve decompression for traumatic optic neuropathy [J]. Arch Ophthalmol, 1990, 108(8): 1091-1093
    25. Radius RL, Anderson DR. Reversibility of optic nerve damage in primate eyes subjected to intraocular pressure above systolic blood pressure. Br J Ophthalmol. 1981, 65(10): 661-672
    26. Gupta AK, Gupta AK, Gupta A, et al. Traumatic optic neuropathy in pediatric population: early intervention or delayed intervention? Int J Pediatr Otorhinolaryngol. 2007, 71(4): 559-562
    27. Lubben B, Stoll W, Grenzebach U. Optic nerve decompression in the comatose and conscious patients after trauma. Laryngoscope, 2001, 111 (2): 320-328.
    28. Gellrich NC, Gellrich MM, Zerfowski M, et al. Clinical and experimental study of traumatic optic nerve damage. Ophthalmologe, 1997, 94(11): 807-814
    29.狄静芳,史剑波,曾耀英,等.视神经撞击和挤压损伤后视网膜细胞凋亡的实验研究.暨南大学医学报,1999,20(4):88-93
    30.张大良,张红萍,剪京芬.新西兰兔视神经减压术后视网膜及视神经GAP-43mRNA的表达及意义.山东大学耳鼻喉眼学报,2005,19(5):296-299
    31. Wohlrab TM, Mass. S, de Carpentier JP. Surgical decompression in traumatic optic neuropathy. Acta Ophthalmol Stand, 2002, 80(3): 287-293
    32.史剑波,文卫平,许赓,等.外伤性视神经损伤手术时机选择的实验研究.中山大学学报,2003,24(4):368-370
    33.刘婉莹,张卯年,鞠躬,等.视神经切开减压术对大鼠视神经不完全损伤的疗效观察.军事进修学院学报,2004,25(3):213-215
    34.宰春和.神经眼科学[M].北京:人民卫生出版社,1987,194
    35. Sofferman RA, Sphenoethmoid approach to the optic nerve. Laryngoscope, 1981, 91(2): 184-196
    36. Maroon JC, Kennerdell JS. Surgical approaches to the orbit.Indications and techniques. J Neurosurgery, 1984, 60(6): 1226-1235
    37.王守森,荆俊杰.视神经损伤与经颅视神经管减压术[J].中华神经医学杂,2002,1(1):76-78
    38.张红萍,张大良,张辉.经鼻内镜下视神经减压术39例报告.临床耳鼻咽喉科杂志,2005,19(4):165-167
    39. Chen YH, Lin SZ, Chiang YH, et al. Supraorbital keyhole surgery for optic nerve decompression and dura repair. J Neurotrauma, 2004, 21 (7): 976-981
    40.宋维贤,孙华.不同入路视神经管减压开放术疗效分析.眼科,2002,11(5):286-288
    41. Kountakis SE, Maillard AA, El-Harazi SM, et al. Endoscopic optic nerve decompression for traumatic blindness. Otolaryngol Head Neck Surg, 2000, 123(1 pt 1): 34-37
    42. Stilianos E, Kountakis. Endoscopic appradch to traumatic visual loss[J] Otolaryngol Head Neck surg, 1997, 11(6): 652-655
    43.陈丹,李秋华,徐伟.颅眶损伤视神经减压术的探讨.眼外伤职业眼病杂志,2003,25(2):91
    44.石祥恩,王忠诚,杨松,等.手术治疗间接性视神经损伤19例.中华创伤杂志,2000,16(11):672-674
    45. Levin LA, Joseph MP, Rizzo JF 3rd, et al. Optic canal decompression in indirect optic nerve trauma. Ophthalmology, 1994, 101 (3): 566-569
    46. Yang Y, Wang H, Shao Y, et al. Extradural anterior clinoidectomy as an alternative approach for optic nerve decompression: anatomic study and clinical experience. Neurosurgery, 2006, 59(4): 253-262
    47.朱建新,李丽,张利勇,等.经颅视神经减压术治疗视神经损伤疗效观察.山东医药,2005,45(12):24-25
    48. Hong Y, Lin P, Liang Z. Clinical study of decompression of optic nerve through combined orbit, ethmoid and sphenoid approach. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2001, 15(12): 546-547, 549
    49. Raginiganth MG, Gupta AK, Gupta A, et al. traumatic optic neuropathy: visual outcome following combined therapy protocol [J]. Arch Otolaryngol Head Neck Surg, 2003, 129(11): 1203-1206
    50.陈晓红,李云,王明善,等.外伤性视神经损伤的处理.临床耳鼻咽喉科杂志,2001,15(8):350-351
    51.姜荔,马志中,陶海,等.兔视神经间接损伤的视神经组织压观察.中华创伤杂志,2000,16(4):238-240
    52.袁绍纪,苗凤君,司永兵,等.高颅内压与视乳头水肿及视神经束增宽.中华 眼底病杂志,1996,12(2):86-87
    53.林其仁,姚学东.显微神经束膜切开减压治疗坐骨神经损伤.中华显微外科杂志,1993,16(3):218-219
    54.高永峰,郭希让,田清芬,等.放射状视神经切开术治疗视网膜中央静脉阻塞的效果观察.中国实用眼科杂志,2006,24(9):964-967
    55. Bloching M. Indications and surgical technique of the endonasal decompression of the optic nerve from an HNO medical viewpoint. Klin Monatsbl Augenheilkd, 2004, 221(11): 927-932
    56. Perry JD. Treatment of traumatic optic neuropathy remains controversial. Arch Otolaryngol Head Neck Surg, 2004, 130(8): 1000-1001
    57. Chen CT, Huang F, Tsay PK, et al. Endoscopically assisted transconjunctival decompression of traumatic optic neuropathy. J Craniofac Surg, 2007, 18(1): 19-26
    58. Li KK, Teknos TN, Lai A, et al. Traumatic optic neuropathy: result in 45 consecutive surgically treated patients[J]. Otoalaryngol Head Neck Surg, 1999, le0(l): 5-11
    59. Yang WG, Chen CT, Tsay PK, et al. Outcome for traumatic optic neuropathy--surgical versus nonsurgical treatment. Ann Plast Surg, 2004, 52(1): 36-42
    60. Kudlachev AV, Goncharov GG, Ivanov PI, et al. The problem of decompression the optic nerve in traumatic neuropathies. Vestn Oftalmol, 2002, 118(2): 44-48
    61. Levin LA, Beck LW, Joseph MP, et al. The treatment of traumatic optic neuropathy: the international optic nerve trauma study. Ophthalmology, 1999, 106(7): 1268-1277
    62. Wilhelm H. Traumatic optic neuropathy--the present state. Klin Monatsbl Augenheilkd, 2004, 221 (8): 702-705
    63. Mcnab AA. Orbit and optic trauma. World J Surg, 2001, 25(8): 1084-1088
    64. Yu Wai Man P, Griffiths PG. Surgery for traumatic optic neuropathy. Cochrane Database Syst Rev, 2005, 19(4): CD005024
    65. Ansari MH. Blindness after facial fracture: a 19-year retrospective study. J Oral Maxillofac Surg, 2005, 63(2): 229-237
    66. Duncker GI. Can the optic nerve regenerate after trauma? Klin Monatsbl Augenheilkd, 2004, 221: 683-685
    67. Mine S, Yamakami I, Yamaura A, et al. Outcome of traumatic optic neuropathy. Comparison between surgical and nonsurgical treatment. Acta Neurochir (Wien), 1999, 141(1): 27-30
    68. Wang BH, Robertson BC, Girotto JA, et al. Traumatic optic neuropathy: a review of 61. Plastic and reconstructive surgery, 2001, 107 (7): 1655-1664
    69. Holmes MD, Sires BS. Flash Visual Evoked Potentials Predict Visual Outcome in Traumatic Optic Neuropathy. Ophthalmic Plastic and Reconstructive Surgery, 2004, 20(5): 342-346
    70.韩宝红,朱豫,张效房.外伤性视神经病变52例流行病学分析.眼外伤职业眼病杂志,2006,28(4):252-254