生长分化因子-15基因多态性和血浆水平与冠脉疾病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     生长分化因子-15(Growth Differentiation Factor-15, GDF-15)是转化生长因子β(TGF-p)成员。它在炎症、氧化应激、缺血再灌注损伤等病理情况下短期内出现高表达,在不同时期分别起到抑制炎症、抗凋亡、抗增殖等不同作用。既往研究认为GDF-15在心血管疾病急性期的大量分泌起到修复抗凋亡的作用,且其水平高和病变严重程度及不良预后相关。最新研究认为GDF-15的单核苷酸多态性(Single Nucleotide Polymorphism, SNP)影响GDF-15的水平和生物活性,进而可能影响疾病的发病和进展。GDF-15的基因型和冠脉疾病之间的关系尚不明确,它与GDF-15循环水平、病变严重程度和预后之间的关系对阐明GDF-15的作用机制至关重要。本课题旨在探讨GDF-15基因型单独及联合GDF-15血浆水平后和冠状动脉疾病之间的关系。
     研究方法
     选取2007年4月至2009年12月北京协和医院心内科、CCU病房、急诊科因心绞痛、拟诊冠心病入院的患者作为研究对象。这部分患者中有264例之前进行过血浆GDF-15的测定,根据临床症状及冠脉造影检查结果,分为稳定病变组(包括冠状动脉狭窄<50%和稳定型心绞痛)、急性冠脉综合征组(包括不稳定心绞痛、非ST段抬高型心肌梗死、ST段抬高型心肌梗死)和冠脉扩张组(包括冠脉单纯扩张、冠脉扩张合并狭窄),同时排除重要脏器损伤、急慢性感染、结缔组织疾病和肿瘤患者。记录患者入院临床生化指标和造影结果及其GDF-15血浆水平,并采集血样用直接测序法测定GDF-15基因中三个SNP位点(rs1059519,rs1059369和rs1058587)的基因型。同时对所有患者进行电话随访,记录终点事件及其发生时间,进行统计分析。
     研究结果
     rs1059519:CC基因型较等位基因G携带者(CG+GG)患ACS和CAE的风险增高(P=0.045)。等位基因C频率在病变稳定组、ACS组、CAE组依次升高,达显著性差异,P=0.017。基因型CC、CG和GG组的GDF-15血浆水平逐渐升高,达显著性差异,P=0.040。在CC型分组下,GDF-15水平在病变稳定组、ACS组和CAE组逐渐升高,达显著性差异,P=0.035。在CC型分组下,GDF-15<400ng/L和不良预后显著相关,P=0.009。在CG型分组下,GDF-15>1000ng/L和不良预后相关,P=0.022。
     rs1059369:AA基因型较等位基因T携带者(AT+TT)患ACS和CAE的风险增高(P=0.017)。等位基因A频率在病变稳定组、ACS组、CAE组依次显著升高(P=0.008)。
     rs1059519、rs1059369和rs1058587三个位点的基因型与不良预后无显著相关性,与再通治疗获益也无显著相关性。
     研究结论
     GDF-15的基因型和冠脉疾病的严重程度相关。rs1059519的基因型显著影响GDF-15的分泌水平,分组除去基因型的干扰作用后,GDF-15水平表现出和疾病严重程度显著的正相关。在不同的基因型下,用GDF-15水平评估预后的分界值不同。
Background
     GDF-15is a member of the TGF-β cytokine superfamily. It is induced by various forms of stress, such as inflammation, oxidative stress, ischemia-reperfusion injury and so on. Many studies suggest that a large amount of GDF-15is secreted to resist apoptosis during the acute phase of cardiovascular disease, and high level of GDF-15is associated with severity of the disease and poor prognosis. Single Nucleotide Polymorphisms (SNP) of GDF-15are found to be associated with the bioactivity of this protein, and that means genotypes may play an important role in GDF-15-related phenomenons. GDF-15plasma level and genotypes may provide diagnostic and prognostic information in patients with coronary artery disease.
     Methods
     Blood samples were obtained after CAG from264patients with chest uncomfortable. GDF-15genotypes were determined by direct sequencing method. Clinical and biochemical information was recorded and all patients were followed up.
     Result
     rs1059519:Genotype CC group have a higher risk of ACS and CAE, P=0.045. The three clinic groups have different frequencies of allele C, P=0.017. The genotypes are associated with GDF-15plasma level. In genotype CC group, GDF-15<400ng/L is associated with poor prognosis and in genotype CG group, GDF-15>1000ng/L is associated with bad prognosis, P=0.022.
     rs1059369:Genotype AA group have a higher risk of ACS and CAE, P=0.017. The three clinic groups have different frequencies of allele A, P=0.008. No three SNPs are associated with the poor prognosis and PCI benefit.
     Conclusions
     GDF-15genotypes are associated with severity of coronary artery disease significantly and GDF-15plasma level is associated with severity of coronary artery disease and poor prognosis significantly only after remove the confounding effect of genotypes.
引文
[1]Bootcov M R, Bauskin A R, Valenzuela S M, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily [J]. Proc Natl Acad Sci U S A,1997,94(21):11514-11519.
    [2]Teresa A. Zimmers, Xiaoling Jin, Edward C. Hsiao, Sharon A. McGrath, Aurora F. Esquela, and Leonidas G.Koniaris. Growth differentiation factor-15macrophage inhibitory cytokine-1 induction after kidney and lung injury. SHOCK, Vol.23, No.6, pp. 543-548,2005
    [3]Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay[J]. Clin Chem,2007,53(2):284-291.
    [4]Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice.Nat Med. 2011,17(5):581-588.
    [5]Lawton L N, Bonaldo M F, Jelenc P C, et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta[J]. Gene,1997,203(1):17-26.
    [6]Baek S J, Kim J S, Nixon J B, et al. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1[J]. J Biol Chem,2004,279(8):6883-6892.
    [7]Li P X, Wong J, Ayed A, et al. Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression[J]. J Biol Chem,2000,275(26):20127-20135.
    [8]Tan M, Wang Y, Guan K, et al. PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway[J]. Proc Natl Acad Sci U S A,2000,97(1):109-114.
    [9]Khachigian L M. Early growth response-1 in cardiovascular pathobiology[J]. Circ Res,2006,98(2):186-191.
    [10]Mercer J, Bennett M. The role of p53 in atherosclerosis[J]. Cell Cycle,2006,5(17):1907-1909.
    [11]Lawton L N, Bonaldo M F, Jelenc P C, et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta[J]. Gene,1997,203(1):17-26.
    [12]Khan S Q, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction[J]. Eur Heart J,2009,30(9):1057-1065.
    [13]Wollert K C, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome[J]. Circulation,2007,116(14):1540-1548.
    [14]Brown D A, Breit S N, Buring J, et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women:a nested case-control study[J].Lancet,2002,359(9324):2159-2163.
    [15]Wang X, Yang X, Sun K, et al. The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension[J]. Clin Sci (Lond),2010,118(2):137-145.
    [16]Lindmark F, Zheng S L, Wiklund F, et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer [J]. J Natl Cancer Inst,2004,96(16):1248-1254.
    [17]Hayes V M, Severi G, Southey M C, et al. Macrophage inhibitory cytokine-1 H6D polymorphism, prostate cancer risk, and survival[J]. Cancer Epidemiol Biomarkers Prev,2006,15(6):1223-1225.
    [18]Cheng I, Krumroy L M, Plummer S J, et al. MIC1 and ILIRN genetic variation and advanced prostate cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2007,16(6):1309-1311.
    [19]Stark J R, Wiklund F, Gronberg H, et al. Toll-like receptor signaling pathway variants and prostate cancer mortality [J]. Cancer Epidemiol Biomarkers Prev,2009,18(6):1859-1863.
    [20]Arlestig L, Rantapaa-Dahlqvist S. Polymorphisms of the genes encoding CD40 and growth differentiation factor 15 and in the 9p21.3 region in patients with rheumatoid arthritis and cardiovascular disease. J Rheumatol.2012;39(5):939-45.
    [21]Wang X, Yang X, Sun K, et al. The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension[J]. Clin Sci (Lond),2010,118(2):137-145.
    [22]Chen Z, Xie F, Ma G, et al. Study of the association between growth differentiation factor 15 gene polymorphism and coronary artery disease in a Chinese population[J]. Mol Biol Rep,2011.
    [23]Cheng I, Krumroy L M, Plummer S J, et al. MIC1 and IL1RN genetic variation and advanced prostate cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2007,16(6):1309-1311.
    [24]Stark J R, Wiklund F, Gronberg H, et al. Toll-like receptor signaling pathway variants and prostate cancer mortality [J]. Cancer Epidemiol Biomarkers Prev,2009,18(6):1859-1863.
    [25]Sudhir K, Ports TA, Amidon TM, Goldberger JJ, Bhushan V, Kane JP et al. Increased prevalence of coronary ectasia in heterozygous familial hypercholesterolemia. Circulation 1995; 91:1375-80.
    [26]Peter Nyamu, Mullasari S Ajit, Peter K Joseph, et al. The Prevalence and Clinical Profile of Angiographic Coronary Ectasia. Asian Cardiovasc Thorac Ann 2003;11:122-126.
    1. Bootcov MR, Bauskin AR, Valenzuela SM,Moore AG, Bansal M,He XY, Zhang HP, Donnellan M, Mahler S, Pryor K,Walsh BJ,Nicholson RC,Fairlie WD,Por SB, Robbins JM, Breit SN (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA 94:11514-11519
    2. Strelau J, Bottner M, Lingor P, Suter-Crazzolara C, Galter D, Jaszai J, Sullivan A, Schober A, Krieglstein K, Unsicker K. GDF-15/MIC-1 a novel member of the TGF-beta superfamily. J Neural Transm Suppl.2000;(60):273-6
    3. Hsiao EC, Koniaris LG, Zimmers-Koniaris T, Sebald SM, Huynh TV, Lee SJ (2000) Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol 20:3742-3751
    4. Teresa A. Zimmers, Xiaoling Jin, Edward C. Hsiao, Sharon A. McGrath, Aurora F. Esquela, and Leonidas G.Koniaris. Growth differentiation factor-15macrophage inhibitory cytokine-1 induction after kidney and lung injury. SHOCK, Vol.23, No.6, pp. 543-548,2005
    5. Schober A, Bottner M, Strelau J, Kinscherf R, Bonaterra GA, Barth M, Schilling L, Fairlie WD, Breit SN, Unsicker K (2001) Expression of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol 439:32-45
    6. Lawton L N, Bonaldo M F, Jelenc P C, et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta[J]. Gene,1997,203(1):17-26.
    7. Baek S J, Kim J S, Nixon J B, et al. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1[J]. J Biol Chem,2004,279(8):6883-6892.
    8. Li P X, Wong J, Ayed A, et al. Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression[J]. J Biol Chem,2000,275(26):20127-20135.
    9. Tan M, Wang Y, Guan K, et al. PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway[J]. Proc Natl Acad Sci U S A,2000,97(1):109-114.
    10. Khachigian L M. Early growth response-1 in cardiovascular pathobiology[J]. Circ Res,2006,98(2):186-191.
    11. Mercer J, Bennett M. The role of p53 in atherosclerosis [J]. Cell Cycle,2006,5(17):1907-1909.
    12. Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay[J]. Clin Chem,2007,53(2):284-291.
    13. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD, Niessen HW, Drexler H, Wollert KC. Transforming growth factor-{beta} superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res.2006; 98:351-360.
    14. Jian Xu, Thomas R. Kimball, John N. Lorenz, David A. Brown, Asne R. Bauskin Raisa Klevitsky, Timothy E. Hewett, Samuel N. Breit and Jeffery D. Molkentin GDF15MIC-1 Functions As a Protective and Antihypertrophic Factor Released From the Myocardium in Association With SMAD Protein Activation.Circ Res.2006; 98: 342-250.
    15. Khan S Q, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction[J]. Eur Heart J,2009,30(9):1057-1065.
    16. Wollert K C, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome[J]. Circulation,2007,116(14):1540-1548.
    17. Brown D A, Ward R L, Buckhaults P, et al. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma[J]. Clin Cancer Res,2003,9(7):2642-2650.
    18. de Lemos JA,McGuire DK,Drazner MH (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362:316-322
    19. Fairlie W D, Russell P K, Wu W M, et al. Epitope mapping of the transforming growth factor-beta superfamily protein, macrophage inhibitory cytokine-1 (MIC-1): identification of at least five distinct epitope specificities [J]. Biochemistry,2001,40(1):65-73.
    20. Brown D A, Bauskin A R, Fairlie W D, et al. Antibody-based approach to high-volume genotyping for MIC-1 polymorphism[J]. Biotechniques,2002,33(1):118-120, 122,124.
    21. Brown D A, Breit S N, Buring J, et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women:a nested case-control study[J]. Lancet,2002,359 (9324):2159-2163.
    22. Wang X, Yang X, Sun K, et al. The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension[J]. Clin Sci (Lond),2010,118(2):137-145.
    23. Lindmark F, Zheng S L, Wiklund F, et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer[J]. J Natl Cancer Inst,2004,96(16):1248-1254.
    24. Hayes V M, Severi G, Southey M C, et al. Macrophage inhibitory cytokine-1 H6D polymorphism, prostate cancer risk, and survival[J]. Cancer Epidemiol Biomarkers Prev,2006,15(6):1223-1225.
    25. Cheng I, Krumroy L M, Plummer S J, et al. MIC1 and IL1RN genetic variation and advanced prostate cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2007,16(6):1309-1311.
    26. Stark J R, Wiklund F, Gronberg H, et al. Toll-like receptor signaling pathway variants and prostate cancer mortality[J]. Cancer Epidemiol Biomarkers Prev,2009,18(6):1859-1863.
    27. Chen Z, Xie F, Ma G, et al. Study of the association between growth differentiation factor 15 gene polymorphism and coronary artery disease in a Chinese population[J]. Mol Biol Rep,2011.