纳米粉体在橡胶基质中的聚集和分散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分两个部分:
    第一部分:利用纳米粉体填充橡胶复合材料,使其发挥纳米粉体对橡胶增强效应及其他特殊的功能,考察填料分散结构和复合材料性能之间的关系显得尤为重要。本论文对纳米粉体填料在橡胶基体中聚集动力学、填料在橡胶基体中的分散和增强效应及其在橡胶制品坦克履带着地胶中应用、填料分散和抗菌性能的影响等方面进行了研究,主要归结如下:
    纳米填料/橡胶混合体系中填料网络结构在热停放状态下的演变:提出采用低频率低应变下橡胶混合体系的储能模量G’0用来表征纳米粉体在基体中的填料网络结构;采用橡胶加工分析仪在线跟踪了混合体系在热存储下的填料网络结构的演变行为。在SiO2/SIR和SiO2/EPDM体系中纳米填料填充复合材料在初始几千秒内动态储能模量迅速恢复并逐渐达到平衡。模量恢复速率和填料用量具有良好的线性关系。填料网络结构的恢复速度对温度的依赖性较小,压力对SiO2/SIR体系的模量恢复没有影响,而SiO2/EPDM随压力的增大填料网络聚集加强。硅烷偶联剂改性纳米二氧化硅提高了其在橡胶基体当中的分散和稳定。透射电镜和结合胶等测试手段证实纳米填料填充橡胶复合材料在热停放过程中的模量恢复动力学过程是纳米填料絮凝和结合胶增加二者共同作用的结果。
    纳米填料在橡胶基质中的分散与增强效应:纳米二氧化硅表面富含有硅羟基,在非极性橡胶中自身有很强的聚集力和弱的填料-橡胶相互作用力,因而很容易产生聚集倾向。采用分散剂(含铵基的丙烯酸盐B52)、硅烷偶联剂TESPT、分散剂和TESPT并用改性纳米二氧化硅来增强EPDM,制备具有填料分散度和填料-橡胶相互作用等不同微观结构的复合材料,讨论了填料对复合材料增强能力,以及复合材料性能(动态力学性能)与微观结构之间的关系。结果表明:分散剂能提高二氧化硅在EPDM这种非极性基体当中的混合和分散,但并没有提高填料-橡胶作用,释放出非流动胶,降低硫化
    
    
    胶的模量。添加TESPT也能提高二氧化硅在EPDM基体中分散,同时提高二氧化硅-橡胶作用。TESPT和分散剂并用能进一步提高二氧化硅的分散和填料-橡胶间作用,从而提高纳米粉体的增强效应。填料分散程度的提高和填料-橡胶作用的加强有利于硫化胶的滚动阻力的提高;而抗湿滑性能的提高主要归功于填料-橡胶作用的加强。
    纳米二氧化硅增强EPDM在坦克履带着地胶(TTRP)中的应用:使用高分散的纳米白炭黑,采用TESPT原位改性分散技术,并通过各种配合体系的精心设计,获得了符合美军标主要技术指标要求的TTRP,某些指标还有明显的超出。同时,使用加入较多量ZDMA的TTRP胶料的胶浆作为粘合过渡层等方式,基本上成功地解决了EPDM难粘合的问题。因此,纳米二氧化硅/EPDM基TTRP可以作为我军新一代主战坦克用的高性能TTRP来使用。
    纳米二氧化钛/橡胶复合材料的分散结构与性能:新型纳米TiO2(BT)纳米二氧化钛可以提高丁腈橡胶(NBR)橡胶复合材料的硫化活性,却一定程度上延迟了天然橡胶(NR)复合材料的正硫化时间。Degussa 纳米TiO2(DT)对NR硫化特性基本没有影响。两种纳米TiO2在NR、NBR等基体中已达到纳米级分散,形成的聚集体的尺寸小于或接近于100nm,但BT在天然橡胶基体的分散度明显优于DT,与原生颗粒大小相近;纳米二氧化钛添加到橡胶复合材料中起到良好的抗杀菌作用,而且随着纳米二氧化钛含量的增加,其杀菌性能明显提高。BT的杀菌效果与DT的杀菌效果相当。在研究的范围内(0~5phr),纳米二氧化钛/橡胶复合材料的物理机械性能随纳米二氧化钛含量的增加变化不大;纳米二氧化钛对橡胶复合材料的老化性能基本没有影响;热氧老化并不影响复合材料中纳米二氧化钛的抗菌性能。
    
    本论文第二部分研究了短纤维增强橡胶发泡复合材料的微观结构与性能的关系,并对其性能进行预测。实验中分别制备了橡胶发泡体(MF)、未处理短纤维增强的橡胶发泡体(MFUS)、预处理短纤维增强的橡胶发泡体(MFPS),观察了气体泡孔和短纤维在橡胶发泡复合体中的微观形态,都得到泡孔分布均匀的发泡复合体,模压工艺使得短纤维在基体中呈现为二维平面分布,未处理的短纤维周围有气泡包围,处理过的短纤维与橡胶间粘合良
    
    
    好;并对它们对复合体的拉伸增强机理及破坏失效机理的影响进行了分析,添加短纤维能有效地提高发泡复合材料的100%拉伸应力和拉伸模量,撕裂强度有所提高,拉伸强度却提高不大。本文还考察了泡孔和短纤维在复合材料压缩过程中行为特征及其对破坏失效机理的影响,添加短纤维能有效地提高发泡复合材料的压缩强度和压缩模量。最后对橡胶发泡复合体的拉伸模量和压缩模量与聚合物发泡体模量预测模型进行了比较,MF的模量和简单混合模型符合较好,而模压成型获得的短纤维增强橡胶发泡复合体(MFPS和MFUS)与常用的简单混合模量预测模型、平方预测模量模型不能很好符合。经过修正的简单混合模型能较好地预测相对密度较低于0.7的MFPS的相对压缩模量,而修正的Halpin-Kerner模型能较好的预测相对密度高于0.7的MFPS的压缩模量。
This thesis contains two parts:
    Firstly, the research works focus on the agglomeration kinetics of nano-inorganic powders filled rubber composites, the relationship of the dispersion of filler and the reinforcement, and the application of nano-silica filled EPDM compounds in the tank-tracked pad. The relationship of dispersion of nano-titania and antimicrobial property of rubber composites are also investigated. Secondly, the research works focus on the reinforcement of short fibers in the microcellular rubber foams.
    The agglomeration kinetics of nano-silica filled rubber:The properties such as modulus of nanofiller filled rubber compounds are remarkably influenced by the extent of the filler microdispersion. The present work focuses on the microstructure evolution of nanofiller filled rubber composites during thermal annealing. It is found that the modulus at small strain amplitude and low frequency Go’ can be used to evaluate the microstructure of nanofiller filled rubber composites since it is sensitive to the microstructure. Times of wide-range strain sweeps technique is applied before the modulus kinetics testing to avoid the various dispersions of nanofillers in the rubber matrix. Experiment techniques such as transmission electron microscopy, bound rubber measurement are also applied to confirm the change of microdispersion of the nanofiller in the rubber matrix and nanofiller-polymer interactions. The experiment results show that the logarithm of the modulus Go’ grows linearly with the logarithm of time at the initial thousands of seconds. The correlation between the bound rubber and flocculation of nanofiller is also studied. The experiment results indicate that the agglomeration of nano-silica aggregates and the increasing bound rubber are responsible for the modulus recovery of nanofiller filled rubber matrix during thermal annealing. A filler networking
    
    
    mechanism, wherein the silica aggregate bridged by the immobilized shell layer and free polymer chains and the filler-filler network densified by nanofiller’s agglomeration, is proposed to explain the experiment results observed.
    The dispersion and reinforcement of nano-silica filled EDPM:As silica easily agglomerates in nonpolar rubber due to the strong filler-filler and weak filler-rubber interactions, a dispersant-an alphatic salt containing amine groups and carboxylic groups is used to study effect of the filler-filler and filler-rubber interactions on the reinforcement of silica as well as the dynamic properties of the compounds, in comparison with a traditional silane coupling agent-bis(triethoxysilylpropyl) tetrasulphide (TESPT). The experimental results indicate that incorporation of the dispersant leads to a reduction in the extent of particle agglomeration but also lowers the modulus of the composites by decreasing the adhesion between filler and rubber, while the introduction of TESPT improves the dispersion of silica but also strengthens filler-rubber interactions, therefore leads to a increase in reinforcing potential of the filler. Greater improvement in the dispersion of filler and filler-rubber interactions is obtained when TESPT is adopted to modify silica together with the dispersant. The results also suggest that the strengthened interfacial interaction are the primary contributor to the improved wet traction of the composites, and that both the improved dispersion of filler and the strengthened filler-rubber interactions are mainly responsible for the lowered rolling resistance.
    The application of nano-silica filled EPDM rubber composites in tank-tracked rubber pads:Tank-tracked rubber pad (TTRP) with excellent mechanical properties, which well meets with the requirement of the novel tanks, is obtained using the formula of nano-silica filled ethylene-propylene-diene terpolymer (EPDM) “in-situ” modified by silane coupling agent. The EPDM rubber composites have good bonded with the metal pad by incorporating dimethacrylic acid zinc salt.
    The dispersion and antimicrobial properties of nano-titana filled rubber composites
引文
Dannenberg, E. M. Rubber Chemistry and Technology, 1975,43(3):410
    
    Blanchad, A.F., Applied Science of Rubber, Naunton, W.J. (ED) Edwaed Arnold, London, 1961
    
    Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I [J]. J Appl Polym Sci 1962, 6(19): 57-63
    
    Payne A.R., Watson W.F. Carbon black structure in rubber [J]. Rubber Chem Technol 1963,36(1): 147-156
    
    Payne AR, Wittaker RE (1970) Rheol Acta 9:91
    
    Payne AR, Wittaker RE (1970) Rheol Acta 9:97
    
    Payne AR, Wittaker RE. Low strain dynamic properties of filled rubbers [J]. Rubber Chem Technol 1971,44(3): 440-470
    
    Payne A R Dynamic properties of heat-treated butyl vulcanizates [J]. J Appl Polym Sci 1963,7(3):873-885
    
    Payne A R. Strainwork dependence of filler-loaded vulcanizates [J]. J Appl Polym Sci 1964,8(6): 2661-2686
    
    Payne A R (1964) [J]. Trans IRI 40:T135
    
    Payne A R. In: Kraus G (ed) Reinforcement of elastomers. Interscience Publisher, NewYork, Chaper 3. 1972
    
    Payne A R Effect of vulcanization on the low-strain dynamic properties of filled rubbers [J]. J Appl Polym Sci 1972,16(5): 1191-1212
    
    Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I [J]. Rubber Chem Technol 1963,36(2): 432-444
    
    Medalia A I Elastic modulus of vulcanizatioes as related to carbon black [J]. Rubber Chem Technol 1973,46(3): 877-897
    
    Medalia A I Filler aggregates and their effect on reinforcement [J]. Rubber Chem Technol 1974,47(2): 411-434
    
    Medalia AI Effect of carbon black on the dynamic properties of rubber vulcanizates [J]. Rubber Chem Technol.1978, 51(3): 437-524
    
    Voet A, Cook FR Mild stress softening and dynamic properties of rubber vulcanizates [J]. Rubber Chem Technol 1967, 40(5): 1364-1373
    
    Voet A, Cook FR. Analysis of contributions to dynamic mechanical properties of carbon filled vulcanized [J]. Rubber Chem Technol 1968, 41 (5): 1215-1219
    
    Sircar AK, Lamond TG Strain-dependent dynamic properties of carbon black reinforced vulcanizates, I. Individual elastomers, II. Elastomer blends [J]. Rubber Chem Technol 1975,48(1): 79-97
    
    Roland CM, Lee GF (1989) NTIS Rep AD-A2 12824
    
    Amari T, Mesugi K, Suzuki H (1997) Prog Org Coat 31:171
    
    Kraus G. Loss mechanism of carbon black filled rubber [J]. J Appl Polym Sci, Appl Polym Symp 1984,39(1): 75-84
    
    Ouyang G.B, Tokita N, Wang M.J. Paper No 108, ACS Rubber Division Meeting, Cleveland, Ohio,1995
    
    Sircar AK, Lamond TG Strain-dependent dynamic properties of carbon black reinforced vulcanizates, I. Individual elastomers, II. Elastomer blends [J]. Rubber Chem Technol 1975,48(1): 79-97
    
    Rong M Z, Zhang M.Q., Walter R. Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites[J]. Polymer, 2001, 42(1): 167-174
    
    Carotenuto G. Polymer-based nanocomposites: new potentialities for polymers [J]. Polymer News, 2000,25(6): 191-199
    
    Saujanya C, Ashamol, Padalkar S, et al. Control of nanoparticle size of fillers by polymer blend technique [J]. Polymer, 2001,42(5): 2255-2258
    
    Clarke J, Freakley P K.Reduction in viscosity of an SBR compound caused by mastication and disagglomeration during mixing [J]. Rubb. Chem. Technol., 1994, 67(4): 700-716
    
    LeBlanc J.L. and Stragliati B. An extraction kinetics method to study the morphology of carbon black filled rubber compounds [J]. J.Appl. Polym. Sci., 1997,63(8): 959-970
    
    Guido Raos. Application of the Christensen-Lo Model to the reinforcement of elastomers by fractal fillers [J]. Macromol. Theory Simul. 2003,12(1): 17-23
    
    卢红斌,杨玉良.填充聚合物的熔体流变学[J].高分子通报,2001, 12(1): 18-26
    
    Kosinski L.E., Caruthers. J. M.[J] Rheol Acta, 1986,25:153-160
    
    G. Kraus, Interactions of elastomers and reinforcing fillers [J] Rubber Chem. Technol. 1965:38(5): 1070-1115
    
    G.R.Cotton and E.M.Dannenberg, [J]. Tire Sci Technol., 1974,2():211
    
    J.O.Bien, E.Cashell, G.E.Wardell and V.J.McBriertyl, [J]. Macromolecules, 1976,9():653
    
    E.M. Dannenberg, Bound rubber and carbon black reinforcement [J]. Rubber Chem. Technol. 1986, 59(3): 512-520
    
    Choi Sung-Seen. Influence of storage time and temperature and silane coupling agent on bound rubber formation in filled styrene-butadiene rubber compounds [J]. Polymer Testing, 2002,21(1): 201-208
    
    Leblanc J.L. Cartault M. Advanced torsional dynamic methods to study the morphology of uncured filled rubber compounds [J]. J. Appl. Polym. Sci. 2001, 80(11): 2093-2104
    
    Leblanc J.L., A.Staelraeve. Studying the storage maturation of freshly mixed rubber compounds and its effects on processing properties [J]. J. Appl. Polym. Sci. 1994,53(8): 1025-1035
    
    Lealanc J.L. A molecular explanation for the origin of bound rubber in carbon black filled rubber compounds [J]. J Appl. Polym. Sci. 1997, 66(12): 2257-2268
    
    Meissner B. Theory of bound rubber [J]. Rubber Chem. Technol. 1975, 48(5): 810-819
    
    Meissner B. Theory of bound rubber [J]. J.Appl. Polym. Sci. 1974, 18(8): 2488-2491
    
    Karasek L. Meissner B. Experimental testing of the polymer-filler gel formation theory. PartI[J]J. Appl. Polym. Sci 1994,52(13):1925-1931
    
    P.J. Flory Principles of polymer chemistry,Cornell University Press ,Tthaca, NY, 1953
    
    Leblanc J.L. A molecular explanation for the origin of bound rubber in carbon black filled rubber compounds [J]. J Appl. Polym. Sci. 1997, 66(12): 2257-2268
    
    Cohen-Addad J.P., [J]. Polymer, 1989,30:1820-
    
    J.Mewis, Rhelo.22, 238(1978);
    
    Q. D. Nguyen and D.V. Boger. Rheol. Acta, 24,427(1985)
    
    E.R.Fitzgerald, Response of carbon black-in-oil to low-amplitude dynamic stress at audiofrequencies [J]. Rubber Chem.Technol. 1982, 55(5): 1547-1569
    
    M.Mooney, [J]. J.Colloid Sci., 1946, 1(2):195
    
    Rwei S.P. Ku F. H. Cheng K.C. Dispersion of Carbon Black in a Continuous Phase : Electrical, Rheological, and Morphological Studies [J]. Colloid Polym. Sci 2002, 280(6):1110-1115
    
    Nelson R.D., Dispersing Powders in Liquids, Elsevier, Amsterdam, 1988:7
    
    Wang M.J.,Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates [J]. Rubber Chem. Technol. 1998,3(3): 520-590
    
    A.R.Payne, [J]. J.Colloid Sci., 1946 1():195
    
    J.Mewis, VIII Int. Conger. Rheology, Naples,1980
    
    E.T.Fitzgerald and J.D. Ferry, Dynamic mechanical properties for carbon black-in-oil; analysis of frequency and temperature dependence [J]. Rubber Chem. Technol. 1982,55 (5): 1569-1584
    
    Gert Heinrich, Manfred Kluppel. Recent advances in the theory of filler networking in elastomers. [J]. Advances in Polymer Sci. 2002,160(1): 1-44
    
    Georg G. A. B?hm, My N. Nguyen. Flocculation of carbon black in filled rubber compounds. I. Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures [J]. J. Appl. Polym. Sci.1995, 55(7): 1041-1050
    
    Solomon M.J. AlmusallamA.S. Seefeldt K.D.etal. Rheology of Polypropylene/Clay Hybrid Materials [J]. Macromolecules, 2001,34(18): 1864-1872
    
    Frohlich J. Luginsland H.D. RPA-studies into the silica/silane system [J]. Rubber World 2001, (4): 28-35
    
    Schaal ScoranA.Y. 轮胎胶料的流变特性与加工性能 [J]. 轮胎工业2002, 22(4): 245-253
    
    Drozdov A. D. & Dorfmann A. The Payne Effect for particle-reinforced elastomer [J]. Polym. Eng.Sci. 2002,42(3): 591-604
    
    Gerspacher M. Nikiel L., Yang h. H. and ORarrell C. P. Worth F. Flocculation in carbon black filled rubber compounds [J]. Kautschuk Gummi Kunststoffe, 2002,55(11): 596-604
    
    Georg Bohm G.A. and Nguyen M. N. Flocculation of carbon black in filled rubber compounds [J]. J. Appl. Polym. Sci. 1995,55(7): 1041-1050
    
    D.Stauffer and A.Aharony “Introduction to Percolation Theory”, 2nd Ed., Taylor & Francis, London, 1994.
    
    Choi Sung-seen. Improvement of properties of silica-filled natural rubber compounds using polychloroprene [J]. J Appl. Polym. Sci. 2002,83(12): 2609-2616,
    
    Schaal S., Coran. A. Y., Mowdood S. K. Rubber Division 156th Technical Meeting Paper :75 & Schaal ScoranA.Y. 轮胎胶料的流变特性与加工性能 [J]. 轮胎工业2002,22(4): 245-253
    
    Leblanc J.L.An extaction kinetics method to study the morphology of carbon black filled rubber compound [J] J.Appl. Polym. Sci. 1997, 63(8): 959-970
    
    LeBlanc J.L. and Staelraeve A., Studying the storage maturation of freshly mixed rubber compounds and its effects on processing properties [J] J. Appl. Polym. Sci. 1994, 53(8): 1025- 1035
    
    吕强,吴启明,张有华等.混炼工艺对混炼胶中炭黑分散性的影响.轮胎工业.2001,21(9): 559- 561
    
    Leblanc J.L. Cartault M. Advanced torsional dynamic methods to study the morphology of uncured filled rubber compounds [J]. J. Appl. Polym. Sci. 2001,80(11): 2093-2104
    
    Wang T., Wang M.-J., Shell J. etc. The effect of compound processing on filler flocculation. Kautschuk Gummi Kunststoffe [J]. 2000,9(2): 497-565
    
    Choi S.S. Nah C. Lee S.G. etc. Effect of filler-filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica [J]. Polym. Int. 2003, 52(1): 23-28
    
    Cochrane H. Lin C.S. The influence of fumed silica properties on the processing, curing and reinforcement properties of silicone rubber [J] Rubber Chem. Technol. 1993,66(1): 48-61
    
    周光义.炭黑分散对胶料主要性能的影响 [J].炭黑工业 1992(3):29-35
    
    CoranA.Y. Bonnet J.B. The dispersion of carbon black in rubber Part III. The effect of dispersion quality on the dynamic mechanical properties of filled natural rubber [J]. Rubber Chem. Technol. 1992,65(5): 1016-1041
    
    Hess W.M. Characterization of dispersion [J]. Rubber Chem. Technol. 1992,64(3): 387-448
    
    Madalia A.I. Effect of carbon black on dynamic properties of rubber culcanizaties [J] Rubber. Chem. Technol. 1978,51(3): 437-523
    
    Cohet P. Barruel,P., Barriquand L.,etal Dispersibility measurement of prec. Silicas [J]. Rubber World 1994,213(1):20-25
    
    Pu Z.C., Mark J.E., Jethmalani J.M. etc, Effects of dispersion and aggregation of silica in the reinforcement of poly(methyl acrylate) elastomers.[J] Chem. Mater. 1997,9(8): 2442-2447
    
    潘颐,吴国章,益小苏,三氧化二钒-聚合物导电复合材料的电阻热敏特性研究,[J] 浙江大学学报(自然科学版)1995, 5(1):25-31
    
    Sau K.P.,Chaki T.K. Khastgir D. Electrical and mechanical properties of condcting carbon black filled composites based on rubber and rubber blends [J]. J Appl. Polym. Sci. 1999,71(6): 887-895,
    
    Rwei S.P. Ku F. H. Cheng K.C. Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies. Colloid Polym. Sci 2002, 280:1110-1115
    
    Wang M.J.,Wolff S., and Tan E.H., Filler-elastomer interactions. Part VIII. The role of the distance between filler aggregates in the dynamic properties of filled vulcanizates [J] Rubber Chem. Technol. 1993, 66(2): 178-196
    
    Georg G. A. B?hm, My N. Nguyen. Flocculation of carbon black in filled rubber compounds. I. Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures [J]. J. Appl. Polym. Sci.1995, 55(7): 1041-1050
    
    Parice M, Sandrine M. David B. etal. Reinforcement effects in fractal-structure-filled rubber [J]. Polymer 2002,43 (20): 5577-5586
    
    Gerspacher M. Nikiel L., Yang h. H. and ORarrell C. P. Worth F. Flocculation in carbon black filled rubber compounds [J]. Kautschuk Gummi Kunststoffe, 2002,55(11): 596-604
    
    Nikeiel L, Gerspacher M, Yang H, O.Farrell C P. Filler dispersion, network density, and tire rolling resistance. Rubber Chemistry and Technology.2001, 74(2): 249-259
    
    C. Michael Roland, Dynamic mechanical behavior of filled rubber at small strains. J. Rheol. 34(l),1990:
    
    Jintana Yunyongwattanakorn; Yasuyuki Tanaka; Seiichi Kawahara; Warunee Klinkl. Effect of non-rubber components on storage hardening and gel formation. Rubber Chemistry and Technology; 2003; 76(5): 1228
    
    J.V.DeGroot, Jr. and C.W. Macosko. Aging Phenomena in Silica-Filled Polydimethylsiloxane. Journal of Colloid and Interface Science 217,86-93(1999)
    
    Levresse P, Feke D L, Manas-Zloczower. Analysis of the formation of bound poly(dimethylsiloxane) on silica, Polymer, 1998,39(17):3919-3924
    
    Jean L. Leblance. Elastomer–filler interactions and the rheology of filled rubber compounds. J Appl Polym Sci 78: 1541–1550, 2000
    
    ?P. Andersson. Thermal conductivity of some rubbers under pressure by the transient hot-wire method??J. Appl. Phys., 1976,47(6):2424-2426
    
    张碧俊,何立中.白炭黑偶联剂Si-69及天然胶相互作用机理的初步探讨[J].炭黑工业,1992(5):26-30
    
    Choi S S. Improvement of properties of silica-filled natural rubber composites using polychloroprene [J].J Appl Polym Sci ,2002,83:2609-2616
    
    Choi S S. Improvement of properties of silica-filled styrene-butadiene rubber compounds using acrylonitrile-butadiene rubber [J]. J Appl Polym Sci 2001,79:1127-1133
    
    宁凯军.改善轮胎胎面材料滚动阻力和湿抓着性能的研究[D].华南理工大学.博士论文,2002
    
    Nikiel L, Gerspacher M, Yang H, Ofarrell C P. Filler dispersion, network density, and tire rolling resistance. Rubber chemistry and Technology. 2001,74(2):249-259
    
    Wong W K, Ourieva G, Tse MF, Wang H C. Filler-filler interaction and filler-polymer interaction in carbon black and silica filler ExxproTM polymer. Macromol. Symp. 2003,194(1)175-184
    
    张志峰.橡胶加工助剂的应用[J].特种橡胶制品,2002,23(1): 15-17
    
    张清岑,刘小鹤,黄苏萍.超分散剂分子结构设计的研究[J].矿产综合利用,2002, (4): 15-19
    
    王立新.橡胶加工助剂-分散剂的合成及应用[J].贵州化工,2002,27(5): 12-14
    
    Ismail H, Ishiaku U S, Ishak A AM, Freakley PK. The effects of a cationic surfactant (fatty diamine) and a commercial silane coupling agent on the properties of a silica filled natural rubber compound [J]. Eur Polym J. 1997,33(1): 1-6,
    
    Sheng E, Sutherland I, Bradley R H, Freakley PK. Effect of a multifunctional additive on bound rubber in carbon black and silica filled natural rubbers [J]. Eur Polym J, 1996,32(1): 35-41
    
    David J. Harvey K.橡胶用白炭黑填料的分散剂.轮胎工业 [J]. 2001,21(6): 360-363
    
    Ma, J.; Feng, Y.; Lei C.; Zhu Y. Investigation on structure and properties of EPDM/nylon high-performance elastomer. [J]. Acta Polymerica Sinica 2000, 6,727-731.
    
    Ma, J.; Feng, Y.; Xu, J.; Xiong M.; Zhu Y.; Zhang L. Effects of compatibilizing agent and in situ fibril on the morphology, interface and mechanical properties of EPDM/nylon copolymer blends [J]. Polymer 2002,43,937-945.
    
    Panenka, R.D.; Haddeman, M.; Wolff S. D.; Nakahama H.?Vulcanised compsns. Used for vehicle tyres, windscreen wipers, vibration dampeners, etc DE4236218,?and 1993,06,24.?
    
    Magnus, F.L.; Gujarathi, R. Method for improving processability and storage stability of a silica filled elastomeric composition US2003158325?2003,08,21
    
    Kojiya, S.; Ikeda, Y. Reinforcement of general-purpose grade rubbers by silica generated in situ [J]. Rubber Chem Technol 2000, 73(3), 534-541.
    
    Doi, A. [J]. J Soc Rubber Ind Jpn 1998, 71,102.
    
    Georg G A Bohm, My N. Nguyen Flocculation of carbon black in filled rubber compounds. I. Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures [J]. J Appl Polym Sci, 1995,55:1041-1050
    
    Karasek L, Meissner B, Asai S, Sumita M, Polymer-Filler Gel Formation, Electrical Conductivity and Dynamic Electrical Properties of Carbon-Black-Filled Rubbers [J]. Polymer Journal 1996.28 (2): 121-132
    
    Payne, A.R. Dynamic mechanical properties of carbon-black filled rubber composites [J]. Rubber Chem Technol 1966,33,365-
    
    Guido Raos. Application of the Christensen-Lo Model to the reinforcement of elastomers by fractal fillers [J]. Macromol. Theory Simul. 2003,12(1): 17-23
    
    M. Kluppel, R. H. Schuster Structure and properties of reinforcing fractal filler network in elastomers.[J] Rubber Chem Technol. 1997,70: 243-255
    
    林桂,钱燕超,张秀娟,张立群.分散剂对EPDM中白炭黑分散的研究[J].合成橡胶工业2004,27
    
    Wu G., Asai S, Sumita M, Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements [J]. Colloid Polym Sci 2000,278:220-228
    
    Karasek L., Meissner B., Asai S., Sumita M.: Polymer-Filler Gel Formation, Electrical Conductivity and Dynamic Electrical Properties of Carbon-Black-Filled Rubbers [J]. Polymer Journal 1996.28 (2): 121-132
    
    Lealanc J.L. A molecular explanation for the origin of bound rubber in carbon black filled rubber compounds [J]. J Appl. Polym. Sci. 1997, 66(12): 2257-2268
    
    Choi S S. Influence of storage time and temperature and silane coupling agent on bound rubber formation in filled styrene-butadiene rubber compounds [J]. Polymer Testing, 2002,21:201-20
    
    Brinke, J.W.; Debnath, S.C.; Reuvekamp, L.A.E.M.; Noordermeer, J.W.M. Mechanistic aspects of the role of coupling agents in silica–rubber composites [J].Comp Sci Technol 2003,63(8),1165-1174.
    
    Parent, J.S.; Mrkoci, M. I.; Hennigar, S.L. Silica agglomeration and elastomer reinforcement: influence of surface modifications [J].Plast Rubber Comp 2003,32(3),114-121.
    
    Chenchy, J.L.; Hergenrother, W.L.; Alexanina, E.; Bohm, G.G.A. On the filler flocculation in silcia-filled rubbers part I. Quantifying and tracking the filler flocculation and polymer-filled interactions in the unvulcanized rubber compounds [J]. Rubber Chem Technol 2003,75(5), 865-890.
    
    Kraus, G. Loss mechanism of carbon black filled rubber composites [J]. J Appl Polym Sci: Appl Polym Symp 1984,39,75.
    
    Wang, M.J. [J]. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizatesRubber Chem Technol 1998,71(3), 520-589.
    
    Nozomu, S.; Fumito, Y.; Massyoshi, I. Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems [J] .J Appl Polym Sci 2002, 86(6), 1622-1639.
    
    Berriot J, Montes H, Francois Lequeux.etal. Evidence for the shift of the glass transition near the particles in silica-filled elastomers [J]. Macromolecules, 2002, 35(26): 9756-9762
    
    Brinke, J.W.; Litvinov, V.M.; Wijnhoven, J.E.; Noordermeer, J.W.M. Evidence for the shift of the glass transition near the particles in silica-filled elastomers [J]. Macromolecules, 2002, 35(26): 9756-9762
    
    张立群,马晓兵,宋晓东等. 坦克装甲车辆橡胶履带板的研究开发.合成橡胶工业, 1996, 19(6): 325
    
    R School. Saturated Pads. Europe Rubb J. 1988,170(6):50
    
    A-A Basfer, J Silverman J. Improved mechanical properties and ozone resistance of radiation cured SBR. MTL-TR-91-29, 95p(Eng.): AD-241074, 1992
    
    张建华,张镭,王方林.SBR与NR并用胶料在橡胶履带中的应用.世界橡胶工业,2000,27(26):25-27
    
    USP 200 2 061979 Vulcanizable EPDM containing rubber composition
    
    G N Avgeropulos, T Maistres, J Patt. Reinforcement of guayule rubber with non-oil dependent fillers application in tank track pads. TACOM-TR-12651. AD-A 119170,1985. 54
    
    D Mclntyre, E A Meinecke. Elastomer Suitable for track pad use that will change from the amorphous to the crystalline state on stress application. TACOM-TR-13204, AD-A 176402,1987. 52
    
    V A Grasso. Cast urethanes for high stress dynamic applications. Rubber World,1986,194(6):23
    
    G J Stelyer, H Calvin. Composite rubber-urethanes tank track pads to improve service life. USP, US 4505984,1985
    
    涂学忠译. 坦克履带垫的纤维补强材料. 国外橡胶工业动态,1986,10:9~12
    
    薛惠才译. 一种轻质廉价的碳纤维填料. 橡胶参考资料,1989,9:18
    
    E Willam. Elastomer-PTFE blend. PCT Int Appl, WO 8703515,1987
    
    H. S. Katz, J. Witting. Development and fabrication track pads. TACOM-TR-13 199, AD-A182 766,1987.41
    
    H. S. Katz, J. Witting. Development and Fabrication Track Pads. TACOM-TR-13 199, AD-A182 766,1987.41
    
    G Rodriguez, P Touchet, H Feuer. Improved Rubber Compound in Tracked Vehicles. Rubb Chem Technol. 1988,61:721
    
    C G Pergantis, Y Murray, R J Mead, et al. Field Observation on Rubber Tank Tracks. Rubber World, 1989,200(1):31
    
    Hamano, Naoki. Process for producing vulcanized rubber composition. EP 0590423A2, 1994.04.06A I Medalia, A L Alesi, J L Mead. Pattern abrasion and other mechanisms of wear of tank track pads. Rubb Chem Technol, 1992, 65:154
    
    C G Pergantis, Y Murray, R J Mead, et al. Field observation on rubber tank tracks. Rubber World, 1989,200(1):31
    
    P Thavamani, D K Khastgir, A K Bhowmick. Development and Field Performance of Tank Track Pad Compounds. Plast Rubb Compos Proc Appl,1993,19:245A Goldberg, D R Lesuer, J Patt. Observation made during stretching, tearing and fatigue of nr and sbr loading with various amounts of carbon black. Rubb Chem Technol, 1989,62:289
    
    马兴法,王仲平,宋风华.金属-橡胶硫化粘接研究进展. 功能高分子学报.2000,13(1)103-106
    
    Costin R. 含金属活性剂对橡胶与金属粘合的影响 [J] 罗光择译.橡胶译丛,1997,(2):25-29
    
    赵阳,张立群,卢咏来,冯予星,刘力,田明.不饱和羧酸金属盐在橡胶工业中的应用.橡胶工业.2000,47(2): 497-502
    
    Rubber compound for tracked vehicle track pads. U.S.P 4,843,114 6/1989
    
    Improved rubber compound for tracked vehicle track pads. U.S.P 5,264,290 11/1993
    
    张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    
    成庆堂,顾立新,徐斌海,石劲松.GC-100光触媒剂的性能及其应用[J].广西化工.2000.29(3): 13~15
    
    李绍箕,石劲松.一种新型光催化剂的性能及应用[J].化学工程师.2000, 80(5):3~5
    
    许莹.无机抗菌剂和抗菌功能材料的现状和发展[J]. 河北理工学院学报. 2001, 23(4):77~82
    
    杨亚丽,龚家荣,刘贤政,崔金山,张玉敏.光化学消毒桶的饮用水致突变性实验研究[J].解放军预防医学杂志.1999, 17(2): 107~109
    
    徐瑞芬,许秀艳,付国柱. 纳米二氧化钛在抗菌塑料中的应用性能研究[J].塑料.2002.31(3): 26~29
    
    陈瑞君.二氧化钛粉体的制备及其在陶瓷生产中的应用[J].唐山高等专科学校学报.2000, 13(2):74~77
    
    沈国良,宁桂玲. 纳米二氧化钛在功能纤维中的应用[J].辽阳石油化工高等专科学校学报.2001, 17(4):1~4
    
    陈仪本,欧阳友生,黄小茉等.工业杀菌剂[M]北京:化学工业出版社,2001
    
    童玉清,田明,胡伟康.新型的高杀菌纳米二氧化钛/聚丙烯复合材料的结构和物理特性研究[J].复合材料学报,2003,20(5):88-94
    
    孙阁彪,吴刚,徐瑞芬,武德珍.纳米Ti02的表面处理及聚丙烯/ Ti02复合体系的研究[J].中国塑料2002,16(12):47~51
    
    董元彩,孟卫,魏欣等.环氧树脂/二氧化钛纳米复合材料的制备及性能[J].塑料工业,1999,27(6): 37~38
    
    张金柱,汪信. HIPS/Ti02/TAS 纳米复合材料的制备及性能[J].中国塑料,2001,(1):24~26
    
    贾红兵,金志刚,吉庆敏,胡国林,张士齐. 新型无机纳米填料对SBR的补强性能[J]. 橡胶工业. 2002,47(11): 647~651
    
    郑安呐,管涌,周强,程岩.分子组装技术制备抗菌聚丙烯管材.中国给水排水.2002,18(7):91-92
    
    Tong YQ, Tian M, Xu RF, Hu WK, Yu Liang, Zhang LQ. The novel high-antimicrobial nano-TiO2/PP composites and its structure and properties. Acta Mater Compsites Sinica 2003; 20(5): 88-94.
    
    Marcì M, Sclafani A, Augugliaro V, Palmisano L, Schiavello M. Influence of some aromatic and aliphatic compounds on the rate of photodegradation of phenol in aqueous suspensions of TiO2. J Photochem Photobiol A: Chem. 1995; 89 (1-2): 69-74.
    
    Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem. Rev. 1993; 93: 671-680.
    
    Toshihiro M, Donald A T, Phillip S, Yoshihiko K, Kazuhito H, Akira F. TiO2-mediated photodegradation of liquid and solid organic compounds. J Photochem Photobiol A: Chem. 2003; 137: 53-62
    
    Anders H, Michael G. Light induced redoxreactions in nanocrystalline systems. Chem Rev. 1995; 95(1): 49~68.
    
    Sun GB, Wu G., Xu RF, Wu DZ. Studies on the surface treatment of nano-TiO2 and PP/TiO2 composites. China Plastics.2002; 16(12): 47~51.
    
    Dong YC, Meng W, Wei X, Yang YJ, Lu LD, Wang X. Preparation and property of EP/TiO2 nanocomposite. China Plastics Industry.1999; 27(6): 37~38.
    
    Gao Y, Liu H. Preparation of TiO2/silicone rubber film by a fluidifying sedimentation method and its photocatalytic reactivities for the purification of water. J Mater Sci Lett. 2003; 22(24) 1821-1823.
    
    Kazuya I, Rende S, Motoyuki T, Ken H, Osamu Y. Sol-gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. J Phys. Chem Solids. 2003; 64:507-513.
    
    Anders Hagfeldt, Michael Gratzel. Light induced redoxreactions in nanocrystalline systems [J]. Chem Rev. 1995, 95(1):49~68.
    
    闵洁.无机抗菌剂及其纤维应用[J].2002,31(2): 21~24
    
    张琦,田明,吴友平,刘力,童玉清,胡伟康,张立群. 纳米氢氧化镁/橡胶复合材料的分散特性及分散机理 [J].复合材料学报.2003,20(4): 88~95
    
    Gent, A.N. Kawahara, S.; Zhao, J., Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene.[J] Rubber Chemistry and Technology. 1998, 71(4): 668~678
    
    Gent, A.N. Zhang, Liqun. Strain-induced crystallization and strength of elastomers. I. Cis-1, 4-polybutadiene. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39(7): 811-817
    
    吴舜英,徐敬一. 泡沫塑料成型. 化学工业出版社. 1996
    
    杨清芝.现代橡胶工艺学. 中国石化出版社. 1997
    
    张立群, 周彦豪. 尼龙和聚酯短纤维用量对其与NR、CBR复合材料性能的影响[J]. 橡胶工业. 1994,41(5): 267
    
    朱玉俊.弹性体力学改性.科学出版社. 1991
    
    闻狄江.玻璃纤维增强硬质聚氨酯泡沫塑料的研究[J]. 塑料工业,1984,(3):21-26
    
    M.V. Murthy, B.A. Luxon, R.S. Carey, J.D. Kuc. Metal coated graphite fiber structural foam composites [A].Fourteen Annual Structural Foam conference and Parts Competition, Boston, Massachusetts, USA, 1986
    
    陈再新,闻狄江,李国忠等.玻璃纤维增强灌注型聚氨酯泡沫塑料的微观结构和增强机理[J]. 高分子材料科学与工程,1999 ,15(5):102-104
    
    李国忠,于衍真.玻璃纤维对硬质聚氨酯泡沫塑料的增强机理的探讨[J]. 高分子材料科学与工程,1997 ,13(4):131-133
    
    闻狄江, 陈再新, 李国忠. 玻璃纤维增强灌注型聚氨酯泡沫塑料的拉伸、压缩性能和破坏机理[J]. 复合材料学报,1999, 16(4):64-67
    
    胡文军,陈宏,张凯,陈晓丽.孔隙度对开孔硅橡胶泡沫材料性能的影响[J].橡胶工业,1998,45(11):647-651
    
    胡文军,陈宏,徐镜廉,周德惠.蜂窝结构复合硅橡胶泡沫材料的制备与性能[J].橡胶工业,2000,47(9):543-546
    
    E.A. Cole, F.N. Cogswell, E.J. Huxtabl and S. Turner. Fibre-foam: a rheological phenomenon and a novel product [J]. Polym. Eng. Sci., 1979,19(1) 12-17
    
    R. Ghaus. Foaming of PS/Wood fiber composites using moisture as a blowing agent [J]. Polym. Eng. Sci., 2000, 40(10): 2124-2132
    
    S.F. Shuler, D.M. Binding, R.B. Pipe. Rheological behavior of two- and three- phase fiber suspensions [J]. Polym. Compos. , 1994,15(6): 427-435
    
    杨金才.高发泡高回弹发泡体亚微观结构群子参数与成型工艺力学性能相关性研究.北京化工大学博士论文,1997
    
    卢子兴,王建华等.增强聚氨酯泡沫塑料力学行为的研究[J].复合材料学报,1999 ,169(2):39-45
    
    卢子兴,李怀祥等.不同载荷作用下泡沫塑料的变形和失效机理分析[J]. 塑料,1996 ,25(2):38-41
    
    K. Kurek, A.K. Bledzki. Effect of micropores on mechanical properties of laminates. Polimery (Poland) , 2000,45(4) :271-281
    
    T. Cotgreave, J.B. Shortall. The fracture toughness of reinforced polyurethane foam [J]. J Mater Sci, 1978, 13(4): 722-730
    
    T. Cotgreave, J.B.Shortall. Failure mechanism in fiber reinforced rigid polyurethane foam [J]. Cell Plast (USA), 1977,13(4): 240-244
    
    D.R..Moore, H.K. Couzens and M.J. Iremonger. The deformational behavior of foamed thermoplastics [J], J.Cell.Plast.1974, 10:135
    
    R.C. Progechof, J.L. Throne. Young’s modulus of uniform density thermoplastic foam [J]. Polym.Eng.Sci., 1979,19:493
    
    M.Lederman, The prediction of the tensile properties of flexible foam [J]. J Appl. Poly.Sci., 1971,52(2):699
    
    Jpn.Kokai Tokkyo Koho JP10 168,206[98 168,206]
    
    Jpn.Kokai Tokkyo Koho JP10 138,276[98 138,276]
    
    M.Laurent, Mautuana, N. Chul, Park, J. Balatinecz. Cell morphology and property relationship of microcellular foamed PVC/Wood-Fiber composites [J]. Polym.Eng.Sci., 1998,38(11):1682
    
    E.Q. Clutton and G.N. Rice. Structure-Property Relationships in Thermoplastic Foams [J]. Cell. Polym. , 1992, 11 (6): 429-449
    
    木村吉郎,山田章义,东乡正道.增强プテスチツヶス,1992,38(2):54
    
    A.K.Blezki, K.Kurek, J. Gassan. The influence of micropores on the dynamic-mechanical properties on reinforced epoxy foams. J. Mater. Sci., 1998,33:3207-3211
    
    R. Ghaus. Foaming of PS/Wood fiber composites using moisture as a blowing agent [J]. Polym. Eng. Sci., 2000, 40(10): 2124-2132
    
    M.Laurent, Mautuana, N. Chul, Park, J. Balatinecz. Cell morphology and property relationship of microcellular foamed PVC/Wood-Fiber composites [J]. Polym.Eng.Sci., 1998,38(11):1682
    
    许鑫华,方洞浦,陈贻瑞,张爽男.纤维增强环氧发泡复合材料的研究[J].化学工业与工程,1997,14(1):36-40
    
    彭宗林.张隐西.橡胶介质中发泡剂分解特性测试方法的研究.橡胶工业1995,42(5)299-303
    
    彭宗林.张隐西.影响发泡剂H热分解的因素探讨橡胶工业1995,42(6):358-562
    
    Wang JH, Lu A, Zhou QM. Compressive properties of short glass fibers reinforcing rigid polyurethane foam plastic. Polym. Sci. Eng. China. 2001; 17(3): 150-152
    
    Hilyard NC. Mechanics of Cellular Plastics. London: Applied Science Publishers LTD. 1982. p.340-350