钢渣粉活性粉末混凝土组成、结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土(RPC)是一种具有高力学性能和优异耐久性的高性能水泥基复合材料,应用前景非常广阔。本论文针对当前RPC材料研究与应用中所存在的成本高、能耗大的突出问题,采用钢渣粉、超细粉煤灰等作为活性组分并用细河砂代替石英砂,进行钢渣粉RPC的研究。通过对钢渣粉RPC的物理力学性能、耐久性能和水化硬化及微观结构的系统研究,揭示了钢渣粉RPC组成、结构与性能之间的相互影响和变化规律,掌握了钢渣粉RPC的设计方法与制备技术,为钢渣粉RPC材料的制备和推广应用提供了重要参考。
     本文进行的主要研究工作和取得的重要成果如下:
     从材料的实际应用目的出发,根据发展战略、技术要求和经济性三方面的综合考虑,指出钢渣粉RPC的设计思路为:设计制备的钢渣粉RPC应具有“高强度(抗压强度200级)、优异的耐久性及良好的经济性和环境相容性”特点;依据中心质理论建立了钢渣粉RPC微观结构的理想模型。在此基础上,提出了钢渣粉RPC的设计方法:(1)材料组成设计上,使用钢渣粉、超细粉煤灰和硅灰等掺合料作活性组分,并运用灰色关联度分析法进行钢渣粉颗粒级配的优化,提高颗粒群的水化活性;(2)材料密实度设计上,一方面运用最紧密堆积理论进行钢渣粉RPC的配合比设计,以提高钢渣粉RPC复合体系的堆积密实度,另一方面使用与复合体系相容性良好的高效减水剂,降低体系水胶比,以提高浆体密实度。运用以上设计方法,利用复合体系中不同材料特性与颗粒尺度的活性差异,通过颗粒群的有序次第水化,实现RPC复合体系的动态水化填充和静态密实堆积,形成结构良好的水泥石微观结构,以期获得高性能的钢渣粉RPC。
     基于最紧密堆积理论的钢渣粉RPC配合比优化设计,通过Matlab和Microsoft Excel分析方法进行规划求解实现,主要有如下四个步骤:首先,根据粉体学工程原理,确定适用于RPC的Dinger-Funk方程中分布模数n的取值;其次,由各原料组分的颗粒分布曲线,选定RPC配合比求解问题的目标值和调节值;第三,根据原料等实际情况设定配合比求解问题的相应限制条件;最后,运用Matlab和Microsoft Excel程序进行优化求解。采用浆体最小需水量试验和配合比正交设计试验对设计结果进行了验证。
     通过化学组成、比表面积及养护温度对钢渣粉胶凝性能影响的研究,以及钢渣粉掺量、比表面积对RPC力学性能影响的研究,运用灰色关联度分析法对钢渣粉及其颗粒级配进行优选和优化,以提高RPC性能;研究了水胶比、砂胶比及钢纤维掺量等配比参数对RPC力学性能的影响;系统研究了热养护制度对RPC力学性能和微观结构的影响规律。掌握了高性能钢渣粉RPC的制备技术,使用总掺量为42%~48%(胶凝材料质量)的钢渣粉复合矿物掺合料及其他原料,在合适的成型养护工艺下制备出高耐久性的200级钢渣粉RPC材料。
     运用XRD、IR、综合热分析(TG-DTG-DSC)、SEM-EDXA、显微硬度、纤维拔出试验与孔结构分析等测试手段,系统研究了钢渣粉RPC的水化硬化机理与微观结构,探明了其微观结构形成过程和结构特征,揭示钢渣粉RPC优异的力学性能和耐久性的根本原因是:钢渣粉RPC体系较高的堆积密实度和极低的水胶比,硅灰、钢渣粉和超细粉煤灰等活性组分的次第水化效应和密实填充效应的有效发挥,钢纤维的阻裂、增强和增韧作用。
Reactive powder concrete (RPC), otherwise known as high-performance concrete, has high durability and excellent mechanical properties, so the application of RPC has good prospects. In this paper, aiming at the main problems in application of RPC, i.e., high production costs and energy consumption, steel slag powder (SS) and ultra-fine fly ash (UFFA) were used as reactive powder component to product RPC, and meanwhile, fine river sand was used as aggregate instead of quartz sand. Based on systematic study of the physical and mechanical properties, durability, microstructure and hydration as well as hardening of RPC containing SS, the relationship among the composition, structure and performance of RPC containing SS was revealed and the design methods and preparation technology for RPC containg SS were grasped, which provided important references for preparation and application of RPC containing SS.
     The main research and achievements accomplished in this paper are as follows:
     In order to propel the application of RPC, taking three aspects, i.e., development strategies, technical requirements and economy of material into account, it was pointed out that the design of RPC containing SS must flollow the principle that RPC prepared in this paper should have high strength (RPC 200), excellent durability, good economy and environmental compatibility. Based on the centroplasm theory developed by Wu ZhongWei, the ideal microstructure model of RPC containing SS was built, which provided theoretical guidance for design and preparation of RPC. On this basis, the design methods of RPC were proposed: In the component design, compound mineral admixture containing SS and UFFA was utilized as reactive powder component and the particle size distribution (PSD) of SS was optimized by gray correlation method in order to improve the hydration activity of SS; in the dense microstructure design, on one hand, a mix design method based on the maximum density theoretical model (i.e., Dinger-Funk equation) was developed in order to enhance the packing density of compound system of RPC containing SS, on the other hand, superplasticizer having good compatibility with compound system was utilized to reduce the water-cement ratio of compound system and thus to increase the paste density. By the design methods mentioned above, dense microstructure of cement paste could be formed through dynamic hydration filling effect and stastic dense packing effect of the compound system, which were brought out by ordered hydration owing to the different hydration activity of mineral admixture particles with different chemical compositions and particles size. Therefore, RPCs with high-performance would be obtained.
     The mix design based on the Maximum Density Theoretical Model was carried out through Matlab and Microsoft Excel 2003, which had the following 4 steps: Firstly, the value of distribution modulus, n, in Ding-Funk equation sutiable for RPC was chosen according to some principles of powder engineering; secondly, the target and adjustable value of mix design was defined on the basis of particle size distribution (PSD) of each raw material; thirdly, the constrains were determined according to the circumstances; Finally, an optimization algorithm is programmed in Microsoft Excel and Matlab. The mix proportion of RPC obtained by this method was verified by experimental programs for minimum water requirement of paste and orthogonal experimental design for RPC.
     The influence of chemical composition, specific surface area and curing temperature on hydration activity of SS and the effect of the amount of and specific surface area of SS on mechanical properties of RPC were studied. The effect of PSD characteristics of SS on mechanical properties of RPC was analysed by gray correlation method. Based on these findings, the PSD of SS would be optimized in order to improve RPC performance. Moreover, the influence of water cement ratio, sand-cement ratio and steel fiber content on mechanical properties of RPC was researched and the effect of heat-curing regime on both mechanical properties and microstructure of RPC was analysed systematically. Therefore, the preparation technology for high-performance RPC containing SS was grasped. RPCs with excellent-durability as well as high mechanical properties were prepared by utilizing 42%~48% (by weight of binder) compound mineral admixtures, which included SS, silica fume and UFFA, and other raw materials and through curing in a proper heat-curing procedure.
     The hydration, hardening mechanism and microstructure were systematically studied through XRD, IR, thermal analysis (TG-DTG-DSC), SEM-EDXA, micro-hardness, steel fibers pull-out test and pore structure analysis. Therefore, the process of microstructure forming and structural characteristics of RPCs containing SS were discovered and the excellment mechanical properties and high durability of RPCs containing SS resulted from 3 aspects: the higher packing density and very low water-binder ratio of RPCs; the static dense packing and dynamic hydration filling effect of the compound system, which included silica fume, SS and UFFA; the cracking resistance, enhancing and toughening effect of steel fibers in RPCs.
引文
[1]吴中伟,陶有生.中国水泥和砼工业的现状与问题[J].水泥工程,1999.(1):1-3.
    [2]http://www.chinahnt.com/news/news_detail.asp?id=6280
    [3]吴中伟,廉慧珍著.高性能混凝土.北京:中国铁道出版社.1999.
    [4]Richard P.and Cheyrezy M.Composition of reactive powder concretes.Cement and Concrete Research,1995,Vol.25(7):1501-1511.
    [5]Richard P.and Cheyrezy M.Reactive powder concretes with high ductility and 200-800MPa compressive strength.ACI SP.,1994,144(24):507-518.
    [6]覃维祖,曹峰.一种超高性能混凝土——活性粉末混凝土[J].工业建筑,1999,Vol.29(4):16-18
    [7]王冲.粉砂高性能混凝土配制技术及流动性能研究:[硕士学位论文].重庆:重庆建筑大学,1999,12
    [8]冯乃谦编著.高强混凝土技术.北京:中国建筑工业出版社,1992.
    [9]冯乃谦,邢锋编著.高性能混凝土技术.北京:原子能出版社,2001.
    [10]牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社,2003
    [11]龚洛书,刘春圃.混凝土的耐久性及其防护修补.北京:中国建筑工业出版社,1990
    [12]赵铁军编著.混凝土渗透性.北京:科学出版社,2006
    [13]汪澜编著.水泥混凝土:组成结构性能北京:中国建材工业出版社,2005
    [14]蒲心诚.C100-C150 超高性能混凝土的强度及变形性能研究[J].混凝土,2002,No.2:3-8
    [15]覃维祖.活性粉末混凝土的研究[J].石油工程建设,2002,28(3):1-4
    [16]安明喆,王庆生,丁建彤.活性粉末混凝土的配制原理及应用前景[J].建筑技术,2001,Vol.32,No.1:15-16
    [17]朱英磊.活性粉末混凝土的性能研究及应用[J].混凝士,2000,No.7:31-34
    [18]白泓,高日.活性粉末混凝土(RPC)在工程结构中的应用[J].建筑科学,2003,19(4):51-55
    [19]鞠杨,贾玉丹,刘红彬等.活性粉末混凝土钢纤维增强增韧的细观机理[J].中国科学(E 辑:技术科学),2007,37(11):1403-1416
    [20]何雁斌.活性粉末混凝土(RPC)的配制技术与力学性能试验研究:[硕士学位论文].福州:福州大学,2003
    [21]马爱青.环保节能活性末混凝土试验研究:[硕士学位论文]北京:北京交通大学,2008
    [22]未翠霞,宋少民.大掺量粉煤灰活性粉末混凝士耐久性研究[J].新型建筑材料,2005,No.9:27-29
    [23]李忠,黄利东.钢纤维活性粉末混凝土耐久性能的研究[J].混凝土与水泥制品,2005,No.3:42-43
    [24]叶青,朱劲松,马成畅,等.活性粉末混凝土的耐久性研究[J].新型建筑材料,2006,No.6:33-36
    [25]施惠生,施韬,陈宝春,等.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报(自然科学版),2006,34(1):93-96
    [26]施韬.掺矿渣活性粉末混凝土及其高耐久性的研究:[硕士学位论文].杭州:浙江工业大学,2004
    [27]柯开展.纤维增强活性粉末混凝土基本力学性能及应用研究:[硕士学位论文].福州:福州大学,2005
    [28]Marcel Cheyrezy,Vincent Maret,Laurent Frouin.Microstructural analysis of RPC (Reactive Powder Concrete).Cement and Concrete Research[J],1995,25(7):1491-1500
    [29]S.Philippot,J.P.Korb,D.Petit,et al.Analysis of microporosity and setting of reactive powder concrete by proton nuclear relaxation[J].Magnetic Resonance Imaging,1998,16(5-6):515-519
    [30]Pierre Claude Aitcin,Pierre Richard.The Pedestrian/Bikeway Bridge of Sherbrooke[A].In:the 4~(th) International symposium on utilization of high strength/high performance concrete.Paris,1996.1399-1403.
    [31]Olivier Bonneau,Mohamed Lachemi,Eric Dallaire,et al.Mechanical Properties and Durability of Two Industrial Reactive Powder Concretes[J].ACI Materials Journal,Vol.94,No.4,July-August 1997,pp286-290.
    [32]Bouygues Company.RPC International Symposium on High Performance and Reactive Particle Concrete.Canada,1998
    [33]Dauriac,Christopher.Special Concrete May Give Steel Stiff Competition.Seattle Daily Journal of Commerce.May 9,1997.
    [34]刘斯凤,孙伟,林玮,等.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,Vol.1(11):1080-1085
    [35]Yazici H.,Yigiter H.,Karabulut A.,et al.Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete[J].Fuel(2008),doi:10.1016/j.fuel.2008.03.005
    [36]施韬,陈宝春,施惠生.掺矿渣活性粉末混凝土配制技术的研究[J].材料科学与工程学报,2005,Vol.23(6):867-870
    [37]谢友均,刘宝举,龙广成.掺超细粉煤灰活性粉末混凝土的研究[J].建筑材料学报,2001,Vol.4(3):280-284
    [38]焦楚杰,孙伟,赖建中等.生态型活性粉末混凝土单轴压缩力学性能[J].工业建筑,2004,34(1):60-62
    [39]张云升,孙伟,沙建芳等.地聚合物基活性粉末混凝土的制备及特性研究[J].建筑技术,2003,34(2):131-132
    [40]刘斯凤,孙伟,张云升,等.绿色环保型活性粉末混凝土制备技术的研究[J].建筑技术,2003,34(1):38-39
    [41]刘斯凤,孙伟,张云升,等.新型超高性能混凝土的力学性能研究及工程应用[J].工业建筑,2002,32(6):1-4
    [42]龙广成,谢友均,刘宝举.超高性能混凝士的试验研究[J].新型建筑材料,2000,No.7:12-14
    [43]李钟华.150MPa超高强水泥基复合材料的试验研究:[硕士学位论文].西安:西北工业大学,2002
    [44]F.M.李.水泥和混凝土化学,第三版,北京:中国建筑工业出版社,1980:128-162
    [45]刘崇熙,汪在芹,李珍,等编著.硬化水泥浆化学物理性质.广州:华南理工大学出版社,2003
    [46]Stovall T,De Larrard F.,Buil M.Linear Packing Density model for Grain Mixtures[J].Powder Technology,1986,48(1):1-12
    [47]毛丹.矿物微粉在水泥基复合材料中的颗粒级配效应研究:[硕士学位论文].长沙:湖南大学,2004
    [48]PAN Ganghua,SUN Wei,ZHANG Yamei.Experimential Study on the Micro-aggregate Effect in High-strength and Super-high-strength Cementitious Composites[J].Cement and Concrete Research.1998,28(2):171-176.
    [49]ZHANG Chengzhi.,WANG Aiqin,TANG Mingshu.The Filling Role of Pozzolanic Material[J].Cement and Concrete Research,1996,26(6):943-947
    [50]LANGE F,MORTEL H,RUDENT V.Dense packing of cement pastes and resulting consequences on mortar properties[J].Cement and Concrete Research,1997,Vol.27(10):1481-1488
    [51]唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报,2001,Vol.17(4):272-275
    [52]LARRARD F,SEDRAN T.Optimization of ultra-high performance concrete by the use of a packing model[J].Cement and Concrete Research,1994,24(6):997-1009
    [53]J.Dugat,N.Roux,G.Bemier.Mechanical properties of reactive powder concretes[J].Materials and Structures,Vol.29,May 1996,pp233-240.
    [54]龙广成,谢友均,王培铭,等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461
    [55]刘小平.活性粉末混凝土的特性及其发展前景[J].混凝土与水泥制品,2006,No3:17-18
    [56]毕巧巍,杨兆鹏.活性粉末混凝土的研究与应用概述[J],山西建筑,2008,Vol.34(17):5-6
    [57]Ming-Gin Lee,Yung-Chih Wang,Chui-Te Chiu.A preliminary study of reactive powder concrete as a new repair material[J].Construction and Building Materials,2007,21:182-189
    [58]Olivier Bonneau,Christian Vernet,Micheline Moranville et al.Characterization of the granular packing and percolation threshold of reactive powder concrete[J].Cement and Concrete Research,2000,30(12):1861-1867
    [59]Pierre Y.Blais,Marco Couture.Precast,Prestressed Pedestrian Bridge——World's First Reactive Powder Concrete Structure[J].PCI Joumal.September-October 1999:60-71.
    [60]Brjan Fortner.FHWA gives superior marks to concrete bridge girder[J].Civil Engineering Magazine,2001,71(10):12-13
    [61]张保和,李传平,刘耀武.无普通钢筋的预应力活性粉末混凝土结构[J].建筑结构技术通讯,2007,No.7:26-27
    [62]曹峰,覃维祖.超高性能纤维增强混凝土初步研究[J].工业建筑,1999,29(6):42-44.
    [63]陈广智,孟世强,阎培渝.养护条件和配合比对活性粉末混凝土变形率的影响[J].工业建筑,2003,33(9):63-66
    [64]陈毅卓,阎贵平,安明喆.常规搅拌工艺条件下活性粉末混凝土抗压强度影响因素的研究[J].铁道建筑,2003,No.3:44-48
    [65]闫光杰,阎贵平,安明喆等.200MPa级活性粉末混凝土试验研究[J].铁道学报,2004,26(2):116-119
    [66]吴炎海,何雁斌.活性粉末混凝土(RPC200)的配制试验研究[J].中国公路学报,2003,16(4):44-49
    [67]吴炎海,何雁斌,杨幼华.活性粉末混凝土(RPC200)的力学性能[J].福州大学学报(自然科学版),2003,3I(5):598-602
    [68]黄政宇,岑小艳,柳红霞.碳纤维筋与活性粉末混凝土粘结性能试验研究[J].铁道科学与工程学报,2006,3(1):65-69
    [69]何峰,黄政宇.硅灰和石英粉对活性粉末混凝土抗压强度贡献的分析[J].混凝土,2006,No.1:39-41
    [70]何峰,黄政宇.200~300MPa活性粉末混凝土(RPC)的配制技术研究[J]混凝土与水泥制品,2000,No.4:3-7
    [71]单波,杨吴生,黄政宇.钢纤维对RPC抗压强度增强作用的研究[J].湘潭大学自然科学学报,2002,24(1):19-22
    [72]何峰,黄政宇.养护制度对活性粉末混凝土(RPC)强度的影响研究[J].混凝士,2000,No.2:31-34
    [73]龙广成,谢友均,陈瑜.养护条件对活性粉末砼(RPC200)强度的影响[J].混凝土与水泥制品,2001,No.3:15-16
    [74]周锡玲,谢友均,张胜.湿热养护制度对RPC200强度影响的研究[J].施工技术,2007,Vol.36(4):49-51
    [75]闫光杰,闫贵平,方有亮.RPC200人行道板抗弯承载力试验研究[J].中国安全科学学报,2004,14(2):87-90
    [76]刘建忠.钢渣活性粉末混凝土的研究及其应用探讨:[硕士学位论文].重庆:重庆大学,2001
    [77]李永鑫.含钢渣粉掺合料的水泥混凝土组成、结构与性能的研究:[博士学位论文].北京:中国建筑材料科学研究院,2003
    [78]http://www.custeel.com/gb2312/refer/viewArticle.jsp?articleID=1699053
    [79]沈晓冬.中国粉煤灰综合利用现状、趋势和对策.第一届中国粉煤灰综合利用技术高级论坛会刊,2004
    [80]朱航.钢渣矿粉的制备及其在水泥混凝土中的应用研究:[硕士学位论文].武汉:武汉理工大学,2004.
    [81]吕林女,何永佳,丁庆军,等.利用磨细钢渣矿粉配制C60高性能混凝土的研究[J].混凝土,2004(6):51-53
    [82]关少波.钢渣粉活性与胶凝性及其混凝土性能的研究:[博士学位论文].武汉:武汉理工大学,2008
    [83]肖纪美.材料的应用与发展北京:宇航出版社,1987
    [84]王发洲.高性能轻集料混凝土研究与应用:[博士学位论文].武汉:武汉理工大学,2003
    [85]杨久俊,昊科如.混凝土科学未来发展的思考[J].混凝土,2001,No.3:3-9
    [86]Zanni H.,Cheyrezy M.,Maret V.,et al.Investigation of hydration and pozzolanic reaction in reactive powder concrete(RPC) using ~(29)Si NMR[J].Cement and Concrete Research,1996,26(1):93-100
    [87]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989
    [88]Regourd M.Microstructure of cement blends,silica fume,slag and fillers[J].MRS Proceedings.1987.85:187-200.
    [89]Pratt,P.L.The use of fly ash in concrete-a European view[J].MRS proceedings,1990.178:177-188.
    [90]林清.纤维约束活性粉末混凝土基本力学性能研究:[硕士学位论文].福州:福州大学,2004
    [91]彭艳周,丁庆军,胡曙光.适于钢管高强混凝土的缓凝保塑高效减水剂的研制[J].公路,2006.12:42-46
    [92]吴中伟.水泥基复合材料的界面问题[J].武汉建材学院学报,1982(2):21-26
    [93]Manmohan D,Mehta P.K.Study on Blended Portland Cements Containing Santirin Earth [J].Cement and Concrete Research,1981(1):12-23
    [94]龙世宗,罗吉祥,柳学忠,等.用粉煤灰配制复合高标号水泥试验研究[J],粉煤灰综合利用,2001,No.4:13-14
    [95]龙世宗,黄新,柳学忠,等.绿色复合高性能水泥的研究[J],新世纪水泥导报,2001,No.4:29-31
    [96]马保国.高性能海洋混凝土的研究:[博士学位论文].武汉:武汉理工大学,2000:42
    [97]王迎飞,马保国.一种复合型砼阻裂抗渗掺合料SHJ-X的研制[J].水运工程,2007,No.4:8-12
    [98]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991
    [99]Roy D M,Goudu G R,Brobrowsky A.Very high strength cement pastes prepared by hot pressing and other high pressure techniques[J].Cement and Concrete Research,1972,2:349-353
    [100]J.D.Birchatt,A.J.Howard and K.Kendall,et al..European Patent application[P],No.0021682 and 0030408(1981)
    [101]J.D Birchatt,A.J.Howard and K.Kendall[J].Nature,1981:289-293
    [102]吴中伟.高技术混凝土[J].硅酸盐通报,1994,(1):42-46
    [103]唐明述.混凝土耐久性研究领域应成为最活跃的研究领域[J].混凝土与水泥制品,1989,(5):4-8
    [104]P.Kumar Mehta.Influence of fly ash characteristics on the strength of Portland-fly ash cement[J].Cement and Concrete Research,1985,Vol.15:669-674
    [105]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色度系统研究[J].硅酸盐学报,1998,Vol.26 No.10:68-73
    [106]Dhir P.K.,Apte A.G and Munday G.L.Effect in source variability of pulverized-fuel ash upon the strength of OPC/PFA[J].Concrete,Vol.33,No.4:424-429
    [107]朱洪波.高钙灰胶凝材料的制备与性能研究:[博士学位论文].武汉:武汉理工大学,2005
    [108]V.Johansen,P.J.Andersen.Particle packing and concrete properties[J].Materials Science of Concrete,The American Ceramic Society,USA,1991:111-147
    [109]Powers T.C.Structure and Physical Properties of Hardened Portland Cement Paste[J].Journal of the American Ceramic Society.Vol.41,No.1,Jan.1958:38-48
    [110]W.B.Fuller,S.E.Thompson.The laws of proportioning concrete[J],Trans,ASCE,1907,(59):67-143
    [111]E.Suenson.Building Materials Ⅲ:Stone,pottery,mortar,concrete,artificial stone,glass [M](in Danish):1911
    [112]C.C.Furnas.Flow ofgasses through beds of broken solids[J].Bureau of Mines Bulletin,1929,307
    [113]Aim,R.B.and Goff,P.L.,‘Effet de paroi dans les empilements de'sordonne's de spheres et application a' la porosite' de me'langes binaires'[J],Powder Technology,Volume 1,Issue 5,February 1968,Pages 281-290
    [114]Toufar W.,Born,M and Klose E.‘Contribution of optimization of components of different density in polydispersed particles systems',in‘Freiberger Booklet A 558',(VEB Deutscher Verlagfur Grundstoflindustrie,1976) 29-44(in German).
    [115]Dewar,J.D.Ready-mixed concrete mix design[J].Municipal Engineering 1986(3):236-249.
    [116]De Larrard,F.,Ultrafine particle for making very high strength concretes[J].Cement and Concrete Research,1989,Vol.19(1):161-172
    [117]De Larrard,F.Concrete Mixture Proportioning:A Scientific Approach.E & FN Spon,1999
    [118]Dewar,J.D.Computer Modeling of Concrete Mixtures.E & FN Sport,1999
    [119]C.C.Furnas.Grading the aggregates I——Mathematical relations for beds of broken solids of maximum density.Ind.Eng:1931,23(9):1052-1058
    [120]陆厚根编著.粉体技术导论[M].上海:同济大学出版社,1998
    [121]唐明,潘吉,巴恒静.水泥基粉体颗粒群分形几何密集效应模型[J],沈阳建筑大学学报(自然科学版),2005,Vol.21(5):515-518
    [122]廉惠珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996:106-43
    [123]卢迪芬,陈森凤,吴建其,等.矿渣微粉颗粒分布对胶凝材料性能影响的灰色系统[J].华南理工大学学报(自然科学版),2003,Vol.31(1):30-33
    [127]WANG Aiqin,ZHANG Chengzhi.Study of the influence of the particle size distribution on the properties of cement[J].Cement and Concrete Research,1997,27(5):685-695
    [128]WANG Aiqin,ZHANG Chengzhi,ZHANG Ningsheng.The theoretic analysis of the influence of particle size distribution of cement system on the Property of cement [J].Cement and Concrete Research,1999,29(11):1721-1726
    [129]谢友均,刘宝举,龙广成.水泥复合胶凝材料体系密实填充性能研究[J].硅酸盐学报,Vol.29(6):512-517
    [130]龙广成,王新友,肖瑞敏.矿物掺合料对C_(3)S胶凝体系的填充密实效应研究[J].建筑材料学报,2002,5(3):215-219
    [131]牛全林,冯乃谦,杨静.矿渣超细粉作用机理的探讨[J].建筑材料学报,2002,5(1):84-89
    [132]牛全林,冯乃谦,杨静.矿物质超细粉在水泥粉体中填充效果的分析[J].硅酸盐学报,2004,Vol.32(1):102-106
    [133]龙湘敏,谢友均,刘宝举.超细粉煤灰在低水胶比浆体中的密实填充作用[J].混凝土,2002,No.3:38-40
    [134]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1989
    [135]陆红兵.煤矸石-水泥体系的颗粒群分布与其性能的相关性研究:[硕士学位论文].武汉:武汉理工大学,2007
    [136]Goltermann P.,Johansen V.,and Palbol L.Packing of aggregate:an alternative tool to determine the optimal aggregate mix[J].ACI Materials Journal,1997,Vol.94(5):435-443
    [137]M.R.Jones,L.Zheng and M.D.Newlands.Comparison of Particle Packing Models for Proportioning Concrete Constituents for Minimum Voids Ratio[J].Materials and Structures,2002,Vol.35(6):301-309
    [138]Dinger D.R.,Funk J.K.Particle Size Analysis Routines[J].At Ceram.Soc.Bull,1989,Vol.68(8):1406-1416
    [124]GOLDMAN A,BENTUR A.The influence of microfillers on enhancement of concrete strength[J].Cement and Concrete Research,1993,Vol.23(4):962-972
    [125]谭克锋,蒲心诚.矿物掺合料对混凝土增强机理的研究[J].西南科技大学学报,2007,Vol.22(3):6-9
    [126]冯乃谦,石云兴,郝挺宇.矿物质超细粉对水泥浆体的流动性和强度的影响[J].山东建材学院学报,1998,Vol.12(S1):103-109
    [139]G.M.Idorn.Europack V1.1 User Manual[M].Idorn G M Consult A/S,1995
    [140]Questjay Limited.MixSim98-Operating Manual.Draft Version 5,Questjay Limited,1998
    [141]De Larrard F.and Sedran T.Computer-aided mix design:predicting final results[J].Concrete International,1996,Vol.18(12):39-41
    [142]Brouwers,H.J.H.On the particle size distribution and void fraction of polydisperse random packings[J].Civil Engineering and Management Research Report 2005R-003/CME-001,University of Twente,Enschede,The Netherlands,2005.
    [143]Brouwers,H.J.H.Particle-size distribution and packing fraction of geometric random packings[J].Physical Review E,Vol.74,No.3,2006,pp.031309-1-14.
    [144]Brouwers,H.J.H.and Radix,H.J.Self-compacting concrete:theoretical and experimental study[J].Cement and Concrete Research,Vol.35,No.11,2005,pp.2116-2136
    [145]G.Husken and H.J.H.Brouwers.Experimental and Theoretical Study of Earth-Moist Concrete[J].1143-1151
    [146]Brouwers,H.J.H.The role of nanotechnology for the development of sustainable concrete [J].2007,Vol.16:69-90
    [147]胡曙光,彭艳周,陈凯,等.掺钢渣活性粉末混凝土的制备及其变形性能[J].武汉理工大学学报,2009,No.1:26-29
    [148]Shuguang Hu,Yanzhou Peng,Qingjun Ding.Strength and Chloride Ion Permeability of Reactive Powder Concrete Containing Steel Slag Powder and Ultra-Fine Fly Ash[A].In:Proceedings of the First International Conference on Microstructure Related Durability of Cementitious Composites,Nanjing,China,Oct.13-15,RILEM Publications S.A.R.L.:437-444
    [149]朱桂林,武光玺,孙树彬.钢渣的性质与胶凝性能的评价方法.建材院内部资料,1988.9
    [150]蒲心诚.应用比强度指标研究活性矿物在水泥混凝土中的火山灰效应[J].混凝土与水泥制品.1997(3):6-14
    [151]唐明述,袁美栖,韩苏芬,等.钢渣中MgO,FeO,MnO的结晶状态与钢渣的体积安定性[J].硅酸盐学报,1979,Vol.7(1)37-45.
    [152]邓聚龙著.灰色控制系统[M].武汉:华中理工出版社,1997
    [153]袁嘉祖编著.灰色系统理论及其应用[M].北京:科学出版社,1991
    [154]孙伟.钢纤维对高强砼的增强、增韧与阻裂效应的研究[J].东南大学学报,1991,Vol.2l(1):50-57
    [155]赵国藩,彭少民,黄承逵,等著.钢纤维混凝土结构北京:中国建筑工业出版社,1999
    [156]李刚.新型环保型RPC的制备、特性及机理研究:[硕士学位论文].南京:东南大学,2001
    [157]铁道部丰台桥梁工厂,铁道部科学研究院铁道建筑研究所.混凝土的蒸汽养护[M].北京:中国建筑工业出版社,1978
    [158]J.Alexanderson.Strength Losses in Heat Curing-Causes and Countermeasures[J].American Concrete Institute Special Publication,1973,39:91-108.
    [159]彭小芹,黄佳木,丁星.蒸压硅酸盐混凝土水化产物的分析及其与性能的定量关系[J].硅酸盐学报,2002,30(6):798-803
    [160]王燕谋,苏慕珍,张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999
    [161]彭艳周,丁庆军,胡曙光.硫铝酸盐水泥早强微膨胀钢管混凝土的制备[J].建筑材料学报,2008,Vol.11(6):636-641
    [162]胡曙光,丁庆军著.钢管混凝土[M].北京:人民交通出版社,2007
    [163]张静.钢管活性粉末混凝土短柱轴压受力性能试验研究:[硕士学位论文].福州:福州大学,2003
    [164]安明喆,王军民,崔宁,等.活性粉末混凝土的微观结构研究[J].低温建筑技术,2007,No.3:1-3.
    [165]沈威,黄文熙,闵盘荣编著.水泥工艺学[M].武汉:武汉工业大学出版社,1991
    [166]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(一):实验技术[J].硅酸盐学报,2004.1(32):63-69
    [167]涂文懋,魏茂.钢渣显微构造和特性及其在混凝土中的应用研究[J].混凝土,2007,No.11:77-79
    [168]Yin-Wen Chan,Shu-Hsien Chu.Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J].Cement and Concrete Research,2004,Vol.34:1167-1172
    [169]张秀芝,孙伟,张倩倩,等.混杂钢纤维增强超高性能水泥基材料力学性能分析[J].东南大学学报,2008,Vol.38(1):156-161
    [170]丁庆军.高强次轻混凝土的研究与应用:[博士学位论文].武汉:武汉理工大学,2006
    [171]Ei-ichi Tazawa,Shingo Miyazawa.Experimental study on mechanism of autogenous shrinkage of concrete[J].Cement and Concrete Research,1995,Vol.25,No.8:1635-1638
    [172]Powers T C.A working hypothesis for further studies of frost resistance of concrete[J].ACI Journal,1945,41:245-272
    [173]Powers T C,Helmuth R A.Theory of volume change in hardened Portland cement paste during freezing[J].Proceedings,Highway Research Board,1953,32:285-297
    [174]黄士元,蒋家奋,杨南如,等.近代混凝土技术[M].西安:陕西科学技术出版社,1998
    [175]冷发光,田冠飞.混凝土抗氯离子渗透性试验方法[J].东南大学学报(自然科学版),2006,Vol.36 Sup(Ⅱ):32-38
    [176]K.Stanisha,R.D.Hootonb,M.D.A.Thomas.A novel method for describing chloride ion transport due to an electrical gradient in concrete:Part 2.Experimental study[J].Cement and Concrete Research,2004,34(1):51-57.
    [177]彭波.蒸养制度对高强混凝土性能的影响:[博士学位论文].武汉:武汉理工大学,2007
    [178]耿健.杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究:[博士学位论文].武汉:武汉理工大学,2008
    [179]N.J.Crammond.The thaumasite form of sulfate attack in the UK[J].Cement Concrete Composites.2003,Vol.25:809-818
    [180]Menashi D.Cohen and Mather.Sulfate Attack on Concrete-Research Need[J].ACI Materials Journal,1991:62-69
    [181]Sunil Kumar,C.V.S.Kameswara Rao.Strength loss in concrete due to varying sulfate exposures[J].Cement and Concrete Research,1995,25(1):57-62
    [182]梁咏宁,袁迎曙.超声检测混凝土硫酸盐侵蚀的研究[J].混凝土,2004(8):15-17
    [183]Fevziye Ak(o|¨)z,,Fikret T(u|¨)rker,Sema Koral,Nabi Y(u|¨)zer,Effects of sodium sulfate concentration on the sulfate resistance of mortars with and without silica fume[J].Cement and Concrete Research,1995,25(6):1360-1368.
    [184]E.F.Irassar,M.Gonzalez,V.Rahhal.Sulfate Resistance of Type V Cements with Limestone Filler and Natural Pozzolana[J].Cement Concrete Composite,2004,Vol.22:361-368
    [185]杨吴生,黄政宇.活性粉末混凝土耐久性能研究[J].混凝土与水泥制品,2003,No.1:19-20